Quarterly Groundwater Monitoring Report

Red Hill Bulk Fuel Storage Facility, Pearl Harbor, O'ahu, Hawai'i

Latitude: 21°22'15"N Longitude: 157°53'33"W

DOH Facility ID No. 9-102271 DOH Release ID No. 99051, 010011, 020028

December 2010

Department of the Navy Naval Facilities Engineering Command, Hawai'i 400 Marshall Road Pearl Harbor, HI 96860-3139

Environmental Technical Services Contract Number N62742-08-D-1930, Contract Task Order HC14

Quarterly Groundwater Monitoring Report

Red Hill Bulk Fuel Storage Facility, Pearl Harbor, O'ahu, Hawai'i

Latitude: 21°22'15"N Longitude: 157°53'33"W

DOH Facility ID No. 9-102271 DOH Release ID No. 99051, 010011, 020028

December 2010

Prepared for:

Department of the Navy Naval Facilities Engineering Command, Hawai'i 400 Marshall Road Pearl Harbor, HI 96860-3139

Prepared by:

Environet, Inc. 650 Iwilei Road, Suite 204 Honolulu, HI 96817-5318

Prepared under:

Environmental Technical Services Contract Number N62742-08-D-1930, Contract Task Order HC14

Table of Contents

List of Acronyms	. <i>iii</i>
Executive Summary	<i>v</i>
Section 1 Introduction	1-1
 1.1 Project Objective	1-1 1-1 1-2 1-2 1-2 1-5
Section 2 Groundwater Monitoring Activities	2-1
 2.1 Oil/Water Interface Measurements 2.2 Groundwater Sampling. 2.2.1 Monitoring Well Purging. 2.2.2 Groundwater Sample Collection. 2.2.3 Sample Management and Shipment. 2.3 Analytical Program. 2.4 Field Quality Control Samples . 2.5 Laboratory Quality Control Samples . 2.6 Equipment Decontamination . 2.7 Investigation-Derived Waste Management . 3.1 Results of Oil/Water Interface Measurements . 	2-1 2-1 2-1 2-1 2-2 2-2 2-2 2-2 2-3 3-1
 3.2 Summary of Groundwater Analytical Results	3-1 3-2
Section 4 Data Quality Assessment	4-1
 4.1 Data Validation	
Section 5 Summary, Conclusions, and Recommendations	5-1
 5.1 Summary	5-1 5-1 5-2 5-2
Section 6 References	6-1

Tables

- Appendix C: Groundwater Sampling Logs, October-November 2010 Appendix D: Laboratory Analytical Results, October-November 2010

List of Acronyms

<	less than
μg/L	micrograms per liter
COPC	chemical of potential concern
DL	detection limit or MDL
DLNR	Department of Land and Natural Resources
DOH	State of Hawai'i Department of Health
DON	Department of the Navy
DRO	diesel range organics
DTW (TOC)	depth to water from top of well casing
EAL	Environmental Action Level
EPA	U.S. Environmental Protection Agency
FISC	Fleet and Industrial Supply Center
GRO	gasoline range organics
HAR	Hawai'i Administrative Rules
IDW	investigation-derived waste
J	Estimated result. Indicates that the compound was identified but
	the concentration was above the DL and below the LOQ.
JP	Jet Propellant
LCS	laboratory control sample
LNAPL	light non-aqueous phase liquid
LOD	limit of detection
LOQ	limit of quantitation or RL
MDL	method detection limit
MS	matrix spike
MSD	matrix spike duplicate
N/A	not applicable
NAVFAC	Naval Facilities Engineering Command
ND	not detected
NP	measurement not provided
NT	measurement not taken
PAHs	polynuclear aromatic hydrocarbons
pН	hydrogen activity
PHWS	Pearl Harbor Water System
PPE	personal protective equipment
Q	data qualifier
QC .	quality control
RHSF	Red Hill Bulk Fuel Storage Facility
RL	reporting limit
RPD	relative percent difference
SSRBL	site-specific risk-based level
SWL	static water level
TEC	The Environmental Company, Inc.
TIC	tentatively identified compound
TPH	total petroleum hydrocarbons

U	Indicates the compound or analyte was analyzed for but not
	detected. The result is reported as ND.
U.S.	United States
USGS	U.S. Geological Survey
UST	underground storage tank
VOC	volatile organic compound

Executive Summary

There are 18 active and two inactive, 12.5 million gallon capacity, field-constructed underground storage tanks (USTs) located at the Red Hill Bulk Fuel Storage Facility (RHSF). Previous environmental site investigations indicated a release had occurred and contaminated the groundwater underlying the RHSF.

The United States (U.S.) Navy implemented a groundwater monitoring program, which includes collecting groundwater samples quarterly from U.S. Navy Well 2254-01 (RHMW2254-01) and four groundwater monitoring wells installed within the RHSF lower access tunnel (RHMW01, RHMW02, RHMW03, and RHMW05). The U.S. Navy Well 2254-01 is located approximately 3,000 feet downgradient from the RHSF and provides approximately 24 percent of the potable water to the Pearl Harbor Water System (PHWS). The groundwater samples are analyzed for petroleum constituents and compared against State of Hawai'i Department of Health (DOH) Drinking Water Environmental Action Levels (EALs) (DOH, 2009).

This groundwater monitoring report presents the analytical results and compares them to the DOH Drinking Water EALs for samples collected on October 18, 19, 20, and November 3, 2010 at the five groundwater monitoring wells (RHMW2254-01, RHMW01, RHMW02, RHMW03, and RHMW05). Contaminant trends that have exceeded DOH Drinking Water EALs are also provided in this report.

October-November 2010 Groundwater Monitoring Results

Laboratory analytical results from the October-November 2010 groundwater monitoring event indicated that total petroleum hydrocarbons (TPH)-diesel range organics (DRO), TPH-gasoline range organics (GRO), and polynuclear aromatic hydrocarbons (PAHs), specifically 1-methylnaphthalene and naphthalene, were present in the groundwater beneath the RHSF at concentrations that exceeded the EALs. All other chemical of potential concern (COPC) concentrations (i.e., volatile organic compounds (VOCs) and dissolved lead) were below the EALs.

In RHMW2254-01, lead (3.3 micrograms per liter (μ g/L)) was detected at a concentration which was below the EAL. All other COPC concentrations were not detected at or above the limits of detection (LODs) and the limits of quantitation (LOQs).

In monitoring well RHMW01, naphthalene (0.17 μ g/L), acetone (2.4 μ g/L), and lead (0.47 μ g/L) were detected at estimated concentrations which were below the EALs. All other COPCs in RHMW01 were not detected at or above the LODs and LOQs.

In monitoring well RHMW02, TPH-DRO (1,700 μ g/L), TPH-GRO (150 μ g/L), 1methylnaphthalene (15 μ g/L), and naphthalene (59 μ g/L) were detected at concentrations which exceeded the EALs. Acenaphthene (0.28 μ g/L) and 2-methylnaphthalene (5.0 μ g/L) were detected at concentrations which were below the EALs. Acenaphthylene (0.14 μ g/L), fluorene (0.16 μ g/L), ethylbenzene (0.25 μ g/L), xylenes (0.60 μ g/L), and lead (0.32 μ g/L) were detected at estimated concentrations which were below the EALs. All other COPCs in RHMW02 were not detected at or above the LODs and LOQs. In monitoring well RHMW03, TPH-DRO (330 μ g/L) was detected at a concentration which exceeded the EAL. Lead (0.28 μ g/L) was detected at an estimated concentration which was below the EAL. All other COPCs in RHMW03 were not detected at or above the LODs and LOQs.

In RHMW05, all COPC concentrations were not detected at or above the LOD and LOQ.

All laboratory detection limits (DLs), LODs, and LOQs were generally below the EALs. In the case where an EAL for a specific COPC is less than the LOQ, it is generally acceptable to consider the LOQ in place of the EAL (DOH, 2009).

TPH-DRO Contaminant Trends

From January 2008 to April 2010, TPH-DRO at RHMW01 fluctuated within the historical range established from September 2005 through September 2007. In July 2010, TPH-DRO decreased to the lowest detected concentration observed to date ($228 \mu g/L$), and during October-November 2010, TPH-DRO was not detected at or above the LODs and LOQs.

At RHMW02, TPH-DRO concentrations were relatively stable prior to 2008, after which significant variations occurred. In October-November 2010, TPH-DRO showed a decrease in concentration; however, the TPH-DRO concentration remains within the historical range for this groundwater monitoring well.

From May 2009 through July 2010, TPH-DRO concentrations at RHMW03 were below the LODs and LOQs. However, during October-November 2010, TPH-DRO was detected at the highest concentration to date $(330 \ \mu g/L)$ which was above the EAL.

At RHMW05, TPH-DRO had been increasing since it was first sampled in May 2009. However, in April 2010, July 2010, and October-November 2010, TPH-DRO at RHMW05 was not detected at or above the LODs and LOQs.

TPH-GRO Contaminant Trends

TPH-GRO has remained below the EAL or has not been detected in monitoring wells RHMW01, RHMW03, and RHMW05. Since September 2005, TPH-GRO concentrations at RHMW02 had remained below the EAL, except in July 2006, December 2006, March 2007, and October-November 2010 when TPH-GRO was detected at the highest averaged concentration (average of primary and duplicate samples) to date (155 μ g/L).

PAHs Contaminant Trends in RHMW02

Since October 2008, the concentrations of 2-methylnaphthalene have remained below the EAL. Naphthalene concentrations decreased to below the EAL in May 2009 and July 2009. However, naphthalene concentrations increased above the EAL in July 2010 and remained above the EAL during this October-November 2010 groundwater monitoring event. Similarly, 1-methylnaphthalene concentrations decreased below the EAL in October 2009 and increased above the EAL during the following groundwater monitoring events, including this October-November 2010 groundwater monitoring events, including this October-November 2010 groundwater monitoring events, including this October-November 2010 event.

Conclusions

To date, the presence of light non-aqueous phase liquid (LNAPL) has been observed only once (i.e., in January 2008 in RHMW01 and RHMW02 at less than 0.01 feet). This indicates that a significant release from one or more of the USTs at the RHSF has not occurred at this time.

COPC concentrations in samples collected from the U.S. Navy Well 2254-01 have not been detected at or above the LODs and LOQs or are below the EALs. This indicates that elevated COPC concentrations detected in samples collected from monitoring wells within the RHSF are not migrating and impacting the Navy's potable water source.

COPC concentrations detected in samples collected from monitoring well RHMW05 have decreased to below the EALs for at least three consecutive monitoring events. The data suggest that elevated COPC concentrations detected in samples collected from monitoring wells located adjacent to the USTs are not migrating in the downgradient direction. RHMW05 is an intermediate monitoring point between the USTs and the U.S. Navy Well 22554-01. At this time, there is no indication that COPCs are migrating in a downgradient direction towards the Navy's potable water source.

COPC concentrations detected in samples collected from monitoring wells adjacent to the USTs (i.e., RHMW01, RHMW02, and RHMW03) are not steadily increasing for more than one consecutive sampling event. The data suggest that the concentrations are relatively stable over time. It is likely that the COPCs are associated with a previous release from the USTs and not a current or active release.

Recommendations

Based on the results of this monitoring event, continuation of the quarterly groundwater monitoring program at the RHSF is recommended. In addition, continuation of monthly free product measurements at RHMW01, RHMW02, RHMW03, and RHMW05; and monthly soil vapor monitoring is also recommended. In response to the Category 2 status of RHMW02, submission of this quarterly report to DOH and initiation of a leak determination program to identify if tanks are leaking are recommended.

This page is intentionally left blank.

Section 1 Introduction

This report presents the results of the 21st groundwater monitoring event, conducted in October-November 2010 at the RHSF, Pearl Harbor, O'ahu, Hawai'i (Figure 1-1). The RHSF consists of 18 active and two inactive USTs operated by the Fleet and Industrial Supply Center (FISC), Pearl Harbor. The groundwater sampling and analysis event is part of a groundwater monitoring program for the UST site in response to past UST releases, previous environmental investigations, and recommendations from the DOH. The groundwater monitoring was performed by Environet for the Department of the Navy (DON), Naval Facilities Engineering Command (NAVFAC), Hawai'i under Environmental Technical Services, Contract Number N62742-08-D-1930, Contract Task Order HC14.

The field activities performed for the October-November 2010 quarterly groundwater monitoring event were conducted in accordance with the procedures described in the *Work Plan, Long-Term Monitoring, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oʻahu, Hawaiʻi* (Environet, 2010).

1.1 Project Objective

The groundwater monitoring was performed to evaluate the presence of COPCs in groundwater underlying the RHSF. The groundwater monitoring was conducted to ensure the DON remains in compliance with DOH UST release response requirements as described in Hawai'i Administrative Rules (HAR) 11-281 Subchapter 7, Release Response Action. Analytical results are compared to the DOH Drinking Water EALs for samples collected from five groundwater monitoring wells (RHMW2254-01, RHMW01, RHMW02, RHMW03, and RHMW05).

1.2 Background

The U.S. Navy implemented a groundwater monitoring program, which includes collecting groundwater samples quarterly from U.S. Navy Well 2254-01 (RHMW2254-01) and four groundwater monitoring wells installed within the RHSF lower access tunnel (RHMW01, RHMW02, RHMW03, and RHMW05). The U.S. Navy Well 2254-01 is located approximately 3,000 feet downgradient from the RHSF and provides approximately 24 percent of the potable water to the PHWS. The groundwater samples are analyzed for petroleum constituents and compared against DOH Drinking Water EALs (DOH, 2009).

1.2.1 Site Description

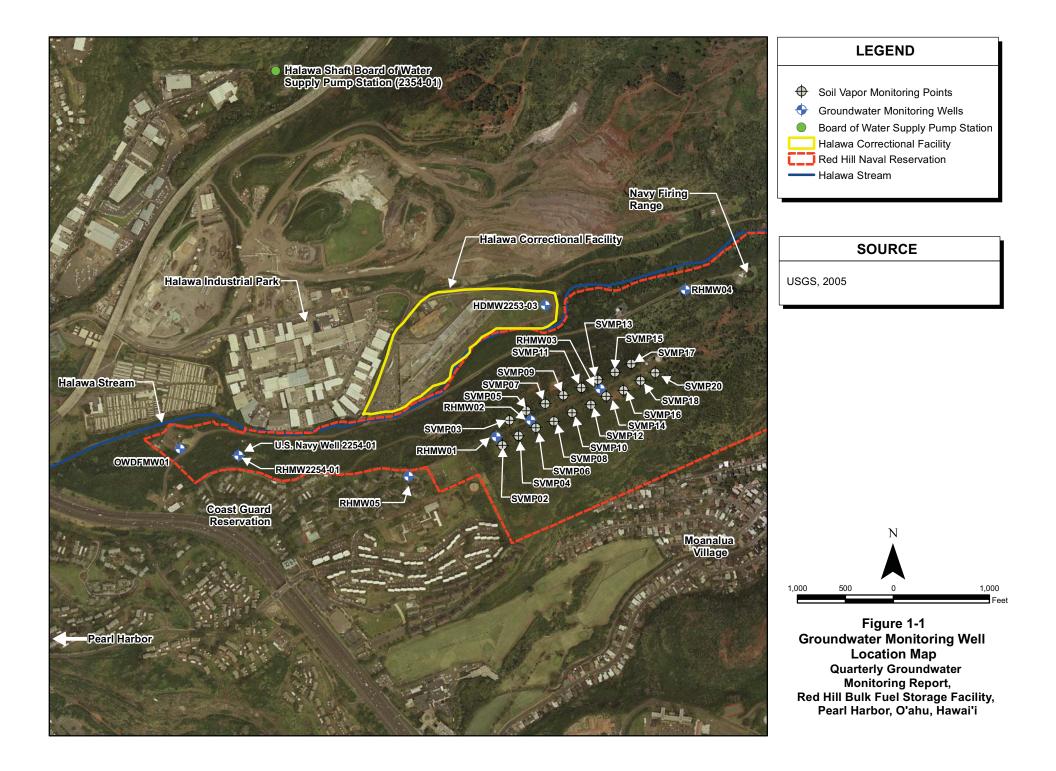
The RHSF is located on the island of O'ahu, Hawai'i, approximately 2.5 miles northeast of Pearl Harbor in Hālawa Heights (Figure 1-1). Land adjacent to the north of the RHSF is occupied by the Hālawa Correctional Facility and private businesses. Land to the south and west of the facility includes the Coast Guard Reservation and other residential neighborhoods. Moanalua Valley is located east of the facility (Environet, 2010).

The Navy Public Works Department operates a potable water infiltration tunnel approximately 1,550 feet hydraulically downgradient from the RHSF (Environet, 2010). The U.S. Navy Well

2254-01 is located approximately 3,000 feet downgradient (west) of the RHSF and provides approximately 24 percent of the potable water to the PHWS, which serves approximately 52,200 military consumers (The Environmental Company, Inc. (TEC), 2008).

1.2.2 Facility Information

The RHSF consists of 18 active and two inactive USTs operated by Navy FISC Pearl Harbor. Each UST has a capacity of 12.5 million gallons. The RHSF is located approximately 100 feet above the basal aquifer (Dawson Group, Inc., 2006).


1.2.3 UST Information

The USTs were constructed in the early 1940s. The tanks were constructed of steel and currently contain Jet Propellant (JP)-5 fuel, JP-8, and marine diesel fuel (F-76). Previously, several tanks stored Navy Special Fuel Oil, Navy Distillate, aviation gasoline, and motor gasoline. Each tank measures approximately 245 feet in height and 100 feet in diameter. The upper domes of the tanks lie at depths varying between approximately 100 feet and 200 feet below the existing ground surface (TEC, 2006).

1.2.4 Previous Reports

The following groundwater monitoring reports were previously submitted to the DOH:

- 1. Groundwater Sampling Report, First Quarter 2005 (submitted April 2005);
- 2. Groundwater Sampling Report, Second Quarter 2005 (submitted August 2005);
- 3. Groundwater Sampling Report, Third Quarter 2005 (submitted November 2005);
- 4. Groundwater Sampling Report, Fourth Quarter 2005 (submitted February 2006);
- 5. Groundwater Monitoring Results, July 2006 (submitted September 2006);
- 6. Groundwater Monitoring Results, December 2006 (submitted January 2007);
- 7. Groundwater Monitoring Results, March 2007 (submitted May 2007);
- 8. Groundwater Monitoring Results, June 2007 (submitted August 2007);
- 9. Groundwater Monitoring Results, September 2007 (submitted October 2007);
- 10. Groundwater Monitoring Results, January 2008 (submitted March 2008);
- 11. Groundwater Monitoring Results, April 2008 (submitted May 2008);
- 12. Groundwater Monitoring Results, July 2008 (submitted October 2008);
- 13. Groundwater Monitoring Results, October and December 2008 (submitted February 2009);
- 14. Groundwater Monitoring Results, February 2009 (submitted May 2009);

This page is intentionally left blank.

- 15. Groundwater Monitoring Results, May 2009 (submitted July 2009);
- 16. Groundwater Monitoring Results, July 2009 (submitted September 2009);
- 17. Groundwater Monitoring Results, October 2009 (submitted December 2009);
- 18. Groundwater Monitoring Results, January, February, and March 2010 (submitted April 2010);
- 19. Groundwater Monitoring Results, April 2010 (submitted May 2010); and
- 20. Groundwater Monitoring Results, July 2010 (submitted August 2010).

1.2.5 Previous Environmental Investigations

1998 to 2001 - From 1998 to 2001, the Navy conducted an investigation at the RHSF to assess potential releases from the fuel storage USTs and piping systems. In February 2001, the Navy installed a one-inch diameter monitoring well RHMW01 (previously known as MW-V1D) to monitor for contamination of the basal aquifer underlying the RHSF. The well was installed and completed at approximately 100 feet below grade within the lower access tunnel. At the time of well completion, depth to water in RHMW01 was measured at 86 feet below grade (Dawson group, Inc., 2006).

In February 2001, groundwater samples collected from RHMW01 contained TPH concentrations ranging from 883 μ g/L to 1,050 μ g/L and total lead ranging from 10.4 μ g/L to 15 μ g/L. The total lead concentrations in the samples exceeded the groundwater DOH Tier 1 Action Level of 5.6 μ g/L (Dawson Group, Inc., 2006).

2005 Groundwater Sampling - The Navy began quarterly groundwater sampling at existing monitoring wells in 2005. Dawson Group, Inc. collected groundwater samples from RHMW01 and RHMW2254-01 in February 2005, June 2005, September 2005, and December 2005.

Samples collected in February 2005 and June 2005 were not filtered in the field prior to analysis for lead. Analytical results for samples collected from RHMW01 indicated concentrations of total lead were above the DOH Tier 1 Action Level of $5.6 \mu g/L$. The results were not considered appropriate for risk assessment since the sample had not been filtered. In addition, lead was not a component of fuels from the tanks near RHMW01, but was a component in fuels stored in other tanks during the history of the RHSF. Lead may also have been part of the RHSF construction material (TEC, 2007). Previous sampling efforts showed elevated lead concentrations when analyzed as unfiltered samples. Subsequent efforts where the lead samples were filtered had resolved this issue. Samples were filtered in September 2005 and December 2005, and dissolved lead concentrations were below the DOH Tier 1 Action Level. Concentrations of all other COPCs were below the DOH Tier 1 Action Levels.

2005 Site Investigation - As part of a site investigation, TEC installed three groundwater monitoring wells at the RHSF between June 2005 and September 2005. Monitoring well RHMW02 was installed in the lower access tunnel near Tank 05 and Tank 06. Monitoring well RHMW03 was installed in the lower access tunnel near Tank 13 and Tank 14. Monitoring well RHMW04 was installed north of the UST Tank 20 to evaluate groundwater within the basal aquifer upgradient from the RHSF. Monitoring wells RHMW02 and RHMW03 were completed

to depths of approximately 125 feet below the tunnel floor, and well RHMW04 was completed to a depth of approximately 300 feet below ground surface outside the tunnel. Groundwater samples were collected from the three newly installed wells and two existing wells (RHMW01 and RHMW2254-01) in September 2005 (TEC, 2010).

Naphthalene and trichloroethylene were detected in samples collected from RHMW02 at concentrations greater than the DOH Tier 1 Action Levels. Lead was detected in the sample collected from RHMW01 at a concentration greater than the DOH Tier 1 Action Level; however, the sample was not filtered in the field prior to analysis. Analytical results for filtered samples obtained by Dawson Group, Inc. during the same period indicated concentrations of dissolved lead were below the DOH Tier 1 Action Level (TEC, 2010).

2006 Site Investigation - Dedicated sampling pumps were installed in five wells (RHMW01, RHMW02, RHMW03, RHMW04, and RHMW2254-01). TEC collected groundwater samples from the wells in July 2006. The groundwater samples were analyzed for petroleum constituents. Naphthalene was detected in samples collected from RHMW02 at concentrations above the DOH Tier 1 Action Level (TEC, 2010).

In September 2006, with concurrence from the DOH, the Navy decided to use the newer DOH EALs for the Red Hill Site Investigation and Risk Assessment project. The EALs provide action levels for more chemicals, and are much more useful for conducting screening risk assessments. Since the DOH (DOH May 2005) Policy Letter stated that the two sets of action levels should not be mixed, the Tier 1 screening levels presented in HAR Section 11-281-78 would no longer be used to evaluate environmental impact at the RHSF (TEC, 2010).

2006 Groundwater Sampling - Groundwater samples were collected in December 2006. Analytical results indicated the following:

- no chemicals were detected in samples collected from RHMW2254-01 or RHMW03;
- TPH-DRO concentrations were detected in samples collected from RHMW01 at concentrations above the DOH Drinking Water EAL; and
- TPH-GRO, TPH-DRO, and naphthalene were detected in samples collected from RHMW02 at concentrations above the DOH Drinking Water EALs (TEC, 2010).

2007 Groundwater Sampling - Groundwater samples were collected in March, June, and September 2007. Analytical results indicated the following:

- no chemicals were detected above DOH Drinking Water EALs at RHMW2254-01;
- TPH-DRO concentrations exceeded the DOH Drinking Water EAL in samples collected from RHMW01 during all three monitoring events;
- TPH-GRO concentrations exceeded the DOH Drinking Water EAL in samples collected from RHMW02 in March;
- TPH-DRO and naphthalene concentrations exceeded DOH Drinking Water EALs in samples collected from RHMW02 during all three monitoring events;

- 1-methylnaphthalene and 2-methylnaphthalene concentrations exceeded DOH Groundwater Gross Contamination EALs in samples collected from RHMW02 during all three monitoring events; and
- TPH-DRO concentrations exceeded DOH Drinking Water EAL in the sample collected from RHMW03 in June.

2008 Groundwater Sampling - Groundwater samples were collected in January, April, July, and October 2008. Analytical results indicated the following:

- no chemicals were detected above the DOH Drinking Water EALs at RHMW2254-01;
- trace detections of 1-methylnaphthalene and naphthalene prompted a resample event in December at RHMW2254-01, no chemicals were detected above the DLs;
- TPH-DRO concentrations exceeded the DOH Drinking Water EAL in samples collected from RHMW01 during all four monitoring events;
- TPH-GRO concentrations did not exceed the DOH Drinking Water EAL in samples collected from RHMW02;
- TPH-DRO, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene concentrations exceeded DOH Drinking Water EALs in samples collected from RHMW02. Additionally, the site-specific risk-based level (SSRBL) of 4,500 μ g/L for TPH-DRO was exceeded in the October monitoring event at RHMW02 (Appendix A); and
- TPH-DRO concentrations exceeded the DOH Drinking Water EAL in samples collected from RHMW03 during all four monitoring events.

2009 Groundwater Sampling and RHMW05 Installation - Groundwater samples were collected in February, May, July, and October 2009. In April 2009, a new groundwater monitoring well, RHMW05, was installed by TEC. RHMW05 is located within the lower access tunnel between RHMW01 and RHMW2254-01 (located at the U.S. Navy Well 2254-01). It was installed to identify any contamination migrating past RHMW01 prior to it reaching the U.S. Navy Well 2254-01 (TEC, 2010). Analytical results indicated the following:

- no chemicals have been detected above the DOH Drinking Water EALs at RHMW2254-01;
- TPH-GRO concentrations in samples collected from RHMW2254-01 were detected above the LOD and significantly below the LOQ and DOH EAL in February and May 2009;
- TPH-DRO concentrations exceeded the DOH Drinking Water EAL in samples collected from RHMW01 during all four monitoring events;
- TPH-GRO concentrations did not exceed the DOH Drinking Water EAL in samples collected from RHMW02;
- TPH-DRO concentrations exceeded the DOH Drinking Water EAL in samples collected from RHMW02 during all four monitoring events;

- naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene concentrations exceeded the DOH Drinking Water EALs in samples collected from RHMW02 in February 2009, however, only the 1-methylnaphthalene concentration exceeded the DOH Drinking Water EAL in May 2009 and July 2009 and only the naphthalene concentration exceeded the DOH Drinking Water EAL in October 2009;
- TPH-DRO concentrations exceeded the DOH Drinking Water EAL in samples collected from RHMW03 in February, but not in May or July; and
- TPH-DRO concentration exceeded the DOH Drinking Water EAL in the sample collected from RHMW05 during the July 2009 monitoring event.

2010 Groundwater Sampling - Groundwater samples were collected in January, April, and July 2010 (and TPH-DRO was re-sampled at RHMW02 in February 2010 and March 2010). Analytical results indicated the following:

- no chemicals have been detected above the DOH Drinking Water EALs in samples collected from RHMW2254-01;
- naphthalene concentration in the sample collected from RHMW2254-01 was detected above the LOD and significantly below the LOQ and DOH Drinking Water EAL in January;
- TPH-DRO concentrations exceeded the DOH Drinking Water EAL in samples collected from RHMW01 in January, April, and July;
- TPH-DRO concentrations exceeded the DOH Drinking Water EAL in samples collected from RHMW02 in January, February, March, April, and July, however, significant increases in January and February were attributed to tentatively identified compounds (TICs) apparently not associated with petroleum from the RHSF;
- naphthalene and 1-methylnaphthalene concentrations exceeded the DOH Drinking Water EALs in samples collected from RHMW02 in January, April, and July;
- TPH-DRO concentrations exceeded DOH Drinking Water EAL in samples collected from RHMW05 in January, however, the significant increase was attributed to TICs apparently not associated with petroleum from the RHSF; and
- TPH-DRO concentrations in samples collected from RHMW03 were not detected above the LODs and LOQs in January, April, and July 2010.

1.2.6 Regulatory Updates

During the summer and fall of 2008 DOH updated their EALs which resulted in significant changes to the action levels associated with methylnaphthalenes. The drinking water toxicity EAL for these compounds was 240 μ g/L. This concentration presumed that methylnaphthalenes were non-carcinogenic. Evidence that they are human carcinogens has now been accepted by the U.S. Environmental Protection Agency (EPA). As a result, DOH adopted more rigorous EALs of 4.7 μ g/L for 1-methylnaphthalene and 24 μ g/L for 2-methylnaphthalene, corresponding to a residential tap water scenario, and a one in a million cancer risk (DOH, 2009).

Also, the drinking water EAL for naphthalene was increased from 6.2 μ g/L to 17 μ g/L (DOH, 2009). Finally, the DOH Drinking Water EAL for TPH-DRO was increased from 100 μ g/L to 210 μ g/L, although the DOH Groundwater Gross Contamination EAL for TPH-DRO remains 100 μ g/L.

This page is intentionally left blank.

Section 2 Groundwater Monitoring Activities

Groundwater monitoring was conducted at the five monitoring wells (RHMW2254-01, RHMW01, RHMW02, RHMW03, and RHMW05 on October 18, 19, 20, and November 3, 2010 using procedures described in the Work Plan (Environet, 2010). Field activities were documented in the field notebook (Appendix B).

2.1 Oil/Water Interface Measurements

The presence and thickness of LNAPL, otherwise known as "free product," released from the USTs is monitored at the RHSF. Groundwater gauging measurements were collected at the five monitoring wells prior to purging and sample collection. A Solinst[®] oil/water interface probe was used to measure the depth to groundwater, as well as detect the presence and thickness of LNAPL to the nearest 0.01 foot, according to the procedures described in Procedure I-C-3, *Monitoring Well Sampling* (DON, 2007).

2.2 Groundwater Sampling

Groundwater samples were collected from the five monitoring wells according to the procedures described in Procedure I-C-3, *Monitoring Well Sampling* (DON, 2007).

2.2.1 Monitoring Well Purging

Each monitoring well was purged using a dedicated bladder pump system. Groundwater was purged at a low flow rate (less than one liter per minute) using the dedicated bladder pump system until three or more successive water quality parameter measurements had stabilized within 10 percent. A Horiba[®] U-22 multi-parameter water quality meter was used to measure hydrogen activity (pH), temperature, specific conductivity, dissolved oxygen, turbidity, and oxidation reduction potential. At least four to six readings were recorded on Groundwater Sampling Log data sheets (Appendix C).

2.2.2 Groundwater Sample Collection

Groundwater samples were collected using dedicated bladder pump systems. Groundwater samples were collected directly into laboratory provided specially cleaned sample containers already containing the appropriate preservatives (i.e., hydrochloric acid for VOC analysis and nitric acid for dissolved lead analysis). The dissolved lead samples were filtered in the field, except at RHMW01, and placed in polyethylene bottles containing preservatives. The dissolved lead sample collected at RHMW01 was placed into a polyethylene bottle without preservative and was later filtered in the laboratory.

2.2.3 Sample Management and Shipment

Each sample container sent to the laboratory was assigned a project-specific chain of custody identification number and a descriptive identification number. The sample identifiers provided specific data unique to each sample and were entered into the field notebook. The samples were labeled according to the procedures described in Procedure III-E, *Record Keeping, Sample Labeling, and Chain-of-Custody* (DON, 2007).

Following sample collection and labeling, the sample containers were bubble-wrapped and placed into individual ZipLoc[®] bags, then immediately into insulated coolers with ice for preservation. The samples were shipped via FedEx to the laboratory on the following day of collection, with the exception of one sample which was shipped two days following sample collection. The samples were managed under standard chain-of-custody protocol and documentation from collection to delivery to the laboratory. Sample handling, storage, and transport were performed according to the requirements described in Procedure III-F, *Sample Handling, Storage, and Shipping* (DON, 2007).

2.3 Analytical Program

During the October-November 2010 groundwater monitoring event, five sets of primary groundwater samples, one set of duplicate groundwater samples, and one set of quality control (QC) groundwater samples (i.e., matrix spike (MS)/matrix spike duplicate (MSD)) were submitted to APPL, Inc. located in Clovis, California. Groundwater samples were analyzed for VOCs and TPH-GRO by EPA Method 8260B, TPH-DRO by EPA Method 8015B, PAHs by EPA Method 8270D SIM, and dissolved lead by EPA Method 6020. The results of the laboratory analyses are presented and discussed in Section 3.

2.4 Field Quality Control Samples

Field QC procedures were followed to ensure viability and integrity of sample analytical data. Field duplicates were collected according to the procedures described in Procedure III-B, *Field QC Samples (Water, Soil)* (DON, 2007) and the Work Plan (Environet, 2010). Field duplicate samples were collected at a minimum of 10 percent of primary samples and analyzed for the same contaminants. Field rinsate samples were not required since dedicated bladder pump systems were used.

2.5 Laboratory Quality Control Samples

Laboratory QC samples were analyzed as part of the standard laboratory QC protocols as presented in the Work Plan (Environet, 2010). Laboratory QC for the monitoring event consisted of MS/MSD samples for organic analysis. Laboratory QC samples were collected and analyzed according to the procedures described in Procedure III-A *Laboratory QC Samples (Water, Soil)* (DON, 2007). Laboratory QC MS/MSD samples are an aliquot (i.e., a subset) of the field sample. They are not separate samples, but a special designation of an existing sample. Laboratory QC MS/MSD samples were analyzed for the same constituents as the standard samples. At a minimum, one MS/MSD sample pair was required per 20 samples, including duplicates.

2.6 Equipment Decontamination

Decontamination of monitoring equipment was performed to ensure data quality, to prevent cross contamination, and to prevent the potential introduction of contaminants into previously un-impacted areas. Decontamination of monitoring equipment (i.e., Solinst[®] oil/water interface probe and Horiba[®] U-22 water quality meter) was conducted between monitoring locations according to the procedures described in Procedure I-F, *Equipment Decontamination* (DON,

2007). Decontamination water was disposed of in the RHSF's lower tunnel oil/water separator sump.

2.7 Investigation-Derived Waste Management

Investigation-derived waste (IDW) was managed in accordance with the procedures described in Procedure I-A-6, *IDW Management* (DON, 2007). The various potential waste streams included the following:

- personal protective equipment (PPE) including: nitrile gloves, etc.;
- liquids including: equipment rinse water and purged groundwater; and
- disposable sampling equipment and supplies, including: poly sheeting, etc.

Equipment rinse water and purge water was disposed of in the RHSF's lower tunnel oil/water separator sump.

This page is intentionally left blank.

Section 3 Groundwater Monitoring Results

This section provides a summary of analytical results for groundwater samples collected from the five monitoring wells on October 18, 19, 20, and November 3, 2010. Complete analytical laboratory reports are provided in Appendix D.

3.1 Results of Oil/Water Interface Measurements

Free product was not measured at RHMW01, RHMW02, RHMW03, and RHMW05 during the October-November 2010 sampling event. The trend of free product measurements over time show that in January 2008, fuel was measured in monitoring wells RHMW01 and RHMW02 at a thickness of less than (<) 0.01 feet, but was not observed in other monitoring wells. Since the trace amounts observed in January 2008, no free product has been observed in any of these RHSF monitoring wells (Table 3-1).

3.2 Summary of Groundwater Analytical Results

All laboratory DLs, LODs, and LOQs were generally below the EALs. In the case where an EAL for a specific COPC is less than the LOQ, it is generally acceptable to consider the LOQ in place of the EAL (DOH, 2009).

<u>RHMW2254-01</u>

Lead (3.3 μ g/L) was detected at a concentration which was below both the DOH Drinking Water EAL (15 μ g/L) and the DOH Groundwater Gross Contamination EAL (5,000 μ g/L). All other COPC concentrations were not detected at or above the LODs and LOQs (Table 3-2 and Appendix D).

<u>RHMW01</u>

Naphthalene (0.17 μ g/L), acetone (2.4 μ g/L), and lead (0.47 μ g/L) were detected at estimated concentrations which were below both the DOH Drinking Water EALs (17 μ g/L for naphthalene; 22,000 μ g/L for acetone; 15 μ g/L for lead) and the DOH Groundwater Gross Contamination EALs (21 μ g/L for naphthalene; 20,000 μ g/L for acetone; 5,000 for lead). All other COPCs were not detected at or above the LODs and LOQs (Table 3-2 and Appendix D).

<u>RHMW02</u>

TPH-DRO (1,700 μ g/L), TPH-GRO (150 μ g/L), 1-methylnaphthalene (15 μ g/L), and naphthalene (59 μ g/L) were detected at concentrations which exceeded both the DOH Drinking Water EALs (210 μ g/L for TPH-DRO; 100 μ g/L for TPH-GRO, 4.7 μ g/L for 1-methylnaphthalene; 17 μ g/L for naphthalene) and the DOH Groundwater Gross Contamination EALs (100 μ g/L for TPH-DRO; 100 μ g/L for TPH-GRO, 10 μ g/L for 1-methylnaphthalene; 21 μ g/L for naphthalene) (Table 3-2 and Appendix D).

Acenaphthene (0.28 μ g/L) and 2-methylnaphthalene (5.0 μ g/L) were detected at concentrations which were below both the DOH Drinking Water EALs (370 μ g/L for acenaphthene; 24 μ g/L for

2-methylnaphthalene) and the DOH Groundwater Gross Contamination EALs (20 μ g/L for acenaphthene; 10 μ g/L for 2-methylnaphthalene) (Table 3-2 and Appendix D).

Acenaphthylene (0.14 μ g/L), fluorene (0.16 μ g/L), ethylbenzene (0.25 μ g/L), xylenes (0.60 μ g/L), and lead (0.32 μ g/L) were detected at estimated concentrations which were below both the DOH Drinking Water EALs (240 μ g/L for acenaphthylene; 240 μ g/L for fluorene; 700 μ g/L for ethylbenzene; 10,000 μ g/L for xylenes; 15 μ g/L for lead) and the DOH Groundwater Gross Contamination EALs (2,000 μ g/L for acenaphthylene; 950 μ g/L for fluorene; 30 μ g/L for ethylbenzene; 20 μ g/L for xylenes; 5,000 μ g/L for lead). All other COPCs were not detected at or above the LODs and LOQs (Table 3-2 and Appendix D).

<u>RHMW03</u>

TPH-DRO (330 μ g/L) was detected at a concentration which exceeded both the DOH Drinking Water EAL (210 μ g/L) and the DOH Groundwater Gross Contamination EAL (100 μ g/L) (Table 3-2 and Appendix D).

Lead (0.28 μ g/L) was detected at estimated concentration which was below both the DOH Drinking Water EAL (15 μ g/L) and the DOH Groundwater Gross Contamination EAL (5,000 μ g/L). All other COPCs were not detected at or above the LODs and LOQs (Table 3-2 and Appendix D).

<u>RHMW05</u>

All COPC concentrations were not detected at or above the LODs and LOQs (Table 3-2 and Appendix D).

3.3 Groundwater Contaminant Trend

Groundwater samples have been collected and analyzed in monitoring wells RHMW01, RHMW02, RHMW03 since September 2005, and in monitoring well RHMW05 since May 2009 (Appendix A). The following is a discussion of compounds that exceeded DOH Drinking Water EALs during two or more recent consecutive sampling events of increasing or decreasing concentrations, thus establishing a trend:

<u>RHMW2254-01</u>

COPCs have never been detected at RHMW2254-01 at concentrations greater than the DOH Drinking Water EALs. In October-November 2010, all COPCs were not detected at or above the LODs and LOQs, except lead ($3.3 \mu g/L$), which was detected at a concentration less than both the DOH Drinking Water EAL and DOH Groundwater Gross Contamination EAL.

<u>RHMW01</u>

Concentrations of TPH-DRO have been greater than the DOH Drinking Water EAL since September 2005, but less than 25 percent of the SSRBL of 4,500 μ g/L. TPH-DRO concentrations decreased from October 2008 (459 μ g/L) through July 2009 (248F μ g/L); increased in October 2009 (299F μ g/L), January 2010 (312F μ g/L), and April 2010 (377 μ g/L);

	RHMW01			R	HMW02		R	HMW03		RHMW05			
	Elevation =	102.27	ft. ¹	Elevation =	104.76	ft. ¹	Elevation =	121.06	ft. ¹	Elevation =	101.55	ft. ¹	
Date	DTW (TOC)	SWL	LNAPL	DTW (TOC)	SWL	LNAPL	DTW (TOC)	SWL	LNAPL	DTW (TOC)	SWL	LNAPL	
Sep-2007	NT ²	NT ²	NT ²	86.80	17.96	NP	103.44	17.62	NP	~	~	~	
Jan-2008	84.67	17.60	< 0.01	86.23	18.53	< 0.01	NT ³	NT ³	NT ³	~	~	~	
Jul-2008	83.37	18.90	0.00	86.10	18.66	0.00	102.45	18.61	0.00	~	~	~	
Oct-2008	83.80	18.47	0.00	86.45	18.31	0.00	102.49	18.57	0.00	~	~	~	
Nov-2008	83.91	18.36	0.00	86.56	18.20	0.00	102.80	18.26	0.00	~	~	~	
Jan-2009	83.13	19.14	0.00	85.79	18.97	0.00	102.04	19.02	0.00	~	~	~	
Feb-2009	NT^4	NT^4	NT^4	86.35	18.41	0.00	102.56	18.50	0.00	~	~	~	
Mar-2009	83.82	18.45	0.00	86.44	18.32	0.00	102.64	18.42	0.00	~	~	~	
May-2009 ⁵	83.72	18.55	0.00	86.37	18.39	0.00	102.59	18.47	0.00	NT^{6}	NT^{6}	NT^{6}	
May-2009	83.50	18.77	0.00	86.15	18.61	0.00	102.41	18.65	0.00	NT^{6}	NT^{6}	NT^{6}	
Jul-2009 ⁷	83.75	18.52	0.00	86.42	18.34	0.00	102.67	18.39	0.00	83.09	18.46	0.00	
Aug-2009	84.04	18.23	0.00	86.71	18.05	0.00	102.84	18.22	0.00	83.51	18.04	0.00	
Sep-2009	84.21	18.06	0.00	86.84	17.92	0.00	103.07	17.99	0.00	83.61	17.94	0.00	
Oct-2009	84.24	18.03	0.00	86.87	17.89	0.00	103.07	17.99	0.00	83.62	17.93	0.00	
Nov-2009	83.91	18.36	0.00	86.56	18.20	0.00	102.81	18.25	0.00	83.25	18.30	0.00	
Dec-2009	84.12	18.15	0.00	86.75	18.01	0.00	103.00	18.06	0.00	83.53	18.02	0.00	
Jan-2010	84.36	17.91	0.00	87.00	17.76	0.00	103.22	17.84	0.00	83.75	17.80	0.00	
Feb-2010	84.24	18.03	0.00	86.89	17.87	0.00	103.14	17.92	0.00	83.60	17.95	0.00	
Mar-2010	84.53	17.74	0.00	87.15	17.61	0.00	103.38	17.68	0.00	83.96	17.59	0.00	
Apr-2010	84.75	17.52	0.00	87.37	17.39	0.00	103.60	17.46	0.00	84.17	17.38	0.00	
May-2010	84.80	17.47	0.00	87.43	17.33	0.00	103.66	17.40	0.00	84.23	17.32	0.00	
Jun-2010	84.87	17.40	0.00	87.51	17.25	0.00	103.74	17.32	0.00	84.30	17.25	0.00	
Jul-2010	85.03	17.24	0.00	87.66	17.10	0.00	103.89	17.17	0.00	84.48	17.07	0.00	
Sep-2010	85.30	16.97	0.00	87.92	16.84	0.00	104.13	16.93	0.00	84.71	16.84	0.00	
Oct-2010	85.29	16.98	0.00	87.91	16.85	0.00	104.13	16.93	0.00	84.75	16.80	0.00	

Table 3-1: Red Hill Oil/Water Interface Measurements, September 2007 through October 2010

Notes:

¹ Elevations were updated based on the Groundwater Flow Direction/Gradient and Tier 3 Risk Assessment Re-evaluation Letter Report, Red Hill Bulk Fuel Storage Facility, 04-D-8514, Task Order 54, dated April 15, 2010.

² A measurement was not taken at RHMW01 in September 2007.

³ A measurement was not taken at RHMW03 in January 2008 due to equipment malfunction.

⁴ A measurement was not taken at RHMW01. The monitoring well was inaccessible due to extensive work being conducted at Tank 02.

⁵ The April 2009 measurements were pushed back a week (to 5/6/09) due to RHMW05 installation.

⁶Measurements were not taken at RHMW05 until the installation of the dedicated oil/water interface probe was completed.

⁷ The June 2009 measurements were skipped due to the installation of dedicated oil/water interface probes.

Units are in feet (ft.).

Measurements recorded prior to September 2010 were collected by TEC. Measurements recorded in September 2010 and after were collected by Environet.

DTW (TOC) - depth to water from top of well casing

LNAPL - light non-aqueous phase liquid attributed to the Red Hill Bulk Fuel Storage Facility

NP - measurement not provided

NT - measurement not taken

SWL - static water level

~ - period prior to the installation of RHMW05

< - less than

This page is intentionally left blank.

Table 3-2: Analytical Results for Quarterly Groundwater Monitoring, October-November 2010

	ts for Quarterly Groundwater Monitoring, October	DOH Drinking Water	DOH Groundwater Gross	RHMW2254-01			RHMW01				RHMW02				RHMW03				RHMW05				
Method Chemical		EALs for Human Toxicity ^a	Contamination EALs ^a	(E3004)			(ES009)			DI	(ES002)				(ES001)				(ES005)				
CDA 9015D (Detrelaum)	TPH-DRO			Result Q ND U		LOD 80.8	DI 40.4		LOQ	LOD 80.8	DL 40.4	Result Q 1,700	LOQ	LOD 80.8	DL 40.4	Result Q 330	LOQ	LOD 80.8	DL 40.4	Result Q ND U	~	LOD 80.8	DL 40.4
EPA 8015B (Petroleum) EPA 8260 B (Petroleum)	TPH-DRO TPH-GRO	210	100	ND U	150 ^b 20.0	80.8	6.00		150 ^b 20.0	12.12	40.4 6.06	1,700	150 ^b 20.0	80.8	6.06	330 ND U	150 ^b 20.0	12.12	40.4 6.06	ND U	150 ^b 20.0	80.8	6.06
SIA 8200 B (I etroleulli)	Acenaphthene	370	20	ND U	0.2	0.12	0.0		0.2	0.12	0.06	0.28	0.2	0.12	0.06	ND U	0.2	0.12	0.06	ND U	0.2	0.12	0.06
	Acenaphthylene	240	2,000	ND U	0.2	0.12	0.0		0.2	0.12	0.06	0.14 J	0.2	0.12	0.06	ND U	0.2	0.12	0.06	ND U	0.2	0.12	0.06
	Anthracene	1,800	22	ND U	0.2	0.10	0.0		0.2	0.10	0.05	ND U	0.2	0.10	0.05	ND U	0.2	0.10	0.05	ND U	0.2	0.10	0.05
	Benzo(a)anthracene	0.092	4.7	ND U	0.2 ^b	0.14	0.0		0.2 ^b	0.14	0.07	ND U	0.2 ^b	0.14	0.07	ND U	0.2 ^b	0.14	0.07	ND U	0.2 ^b	0.14	0.07
	Benzo(g,h,i)perylene	1,500	0.13	ND U	0.2 ^b	0.16	0.0		0.2 ^b	0.16	0.08	ND U	0.2 ^b	0.16	0.08	ND U	0.2 ^b	0.16	0.08	ND U	0.2 ^b	0.16	0.08
	Benzo(a)pyrene	0.2	0.81	ND U	0.2	0.14	0.0		0.2	0.14	0.07	ND U	0.2	0.14	0.07	ND U	0.2	0.14	0.07	ND U	0.2	0.14	0.07
	Benzo(b)fluoranthene	0.092	0.75	ND U	0.2 ^b	0.12	0.0		0.2 ^b	0.12	0.06	ND U	0.2 ^b	0.12	0.06	ND U	0.2 ^b	0.12	0.06	ND U	0.2 ^b	0.12	0.06
	Benzo(k)fluoranthene Chrysene	0.92	0.4	ND U ND U	0.2	0.14 0.10	0.0		0.2	0.14 0.10	0.07	ND U ND U	0.2	0.14 0.10	0.07	ND U ND U	0.2	0.14 0.10	0.07	ND U ND U	0.2	0.14	0.07
EPA 8270D SIM (PAHs)	Dibenzo(a,h)anthracene	0.0092	0.52	ND U	0.2 ^b	0.10	0.0		0.2 ^b	0.10	0.05	ND U	0.2 ^b	0.10	0.05	ND U	0.2 ^b	0.10	0.05	ND U	0.2 ^b	0.10	0.05
	Fluoranthene	1,500	130	ND U	0.2	0.16	0.0		0.2	0.16	0.08	ND U	0.2	0.16	0.08	ND U	0.2	0.16	0.08	ND U	0.2	0.16	0.08
	Fluorene	240	950	ND U	0.2	0.12	0.0		0.2	0.12	0.06	0.16 J	0.2	0.12	0.06	ND U	0.2	0.12	0.06	ND U	0.2	0.12	0.06
	Ideno(1,2,3-cd)pyrene	0.092	0.095	ND U	0.2 ^b	0.14	0.0	07 ND U	0.2 ^b	0.14	0.07	ND U	0.2 ^b	0.14	0.07	ND U	0.2 ^b	0.14	0.07	ND U	0.2 ^b	0.14	0.07
	1-Methylnaphthalene	4.7	10	ND U	0.2	0.12	0.0		0.2	0.12	0.06	15	0.2	0.12	0.06	ND U	0.2	0.12	0.06	ND U	0.2	0.12	0.06
	2-Methylnaphthalene	24	10	ND U	0.2	0.12	0.0		0.2	0.12	0.06	5.0	0.2	0.12	0.06	ND U	0.2	0.12	0.06	ND U	0.2	0.12	0.06
	Naphthalene Phenanthrene	17 240	21 410	ND U ND U	0.2	0.10 0.14	0.0		0.2	0.10 0.14	0.05	59 ND U	0.2	0.10 0.14	0.05	ND U ND U	0.2	0.10 0.14	0.05	ND U ND U	0.2	0.10 0.14	0.05
	Pyrene	180	68	ND U	0.2	0.14	0.0		0.2	0.14	0.07	ND U	0.2	0.14	0.07	ND U	0.2	0.14	0.07	ND U	0.2	0.14	0.07
	1,1,1-Trichloroethane	200	970	ND U	1.0	0.28	0.14		1.0	0.28	0.14	ND U	1.0	0.28	0.14	ND U	1.0	0.28	0.14	ND U	1.0	0.28	0.14
	1,1,2-Trichloroethane	5	50,000	ND U	1.0	0.40	0.20		1.0	0.40	0.20	ND U	1.0	0.40	0.20	ND U	1.0	0.40	0.20	ND U	1.0	0.40	0.20
	1,1-Dichloroethane	2.4	50,000	ND U	1.0	0.38	0.19		1.0	0.38	0.19	ND U	1.0	0.38	0.19	ND U	1.0	0.38	0.19	ND U	1.0	0.38	0.19
	1,1-Dichloroethylene (1,1-Dichloroethene)	7	1,500	ND U ND U	1.0	0.60	0.30		1.0	0.60	0.30	ND U	1.0	0.60	0.30	ND U	1.0	0.60	0.30	ND U ND U	1.0	0.60	0.30
	1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	0.6	50,000 3,000	ND U ND U	2.0 ^b 1.0	0.78	0.39		2.0 ^b 1.0	0.78	0.39 0.21	ND U ND U	2.0 ^b 1.0	0.78	0.39	ND U ND U	2.0 ^b	0.78	0.39	ND U	2.0 ^b 1.0	0.78	0.39
	1,2-Dibromo-3-chloropropane	0.04	10	ND U	2.0 ^b	1.52	0.2		2.0 ^b	1.52	0.21	ND U	2.0 ^b	1.52	0.21	ND U	2.0 ^b	1.52	0.21	ND U	2.0 ^b	1.52	0.21
	1,2-Dibromoethane	0.004	50,000	ND U	1.0 ^b	0.40	0.20		1.0 ^b	0.40	0.20	ND U	1.0 ^b	0.40	0.20	ND U	1.0 ^b	0.40	0.20	ND U	1.0 ^b	0.40	0.20
	1,2-Dichlorobenzene	600	10	ND U	1.0	0.40	0.1		1.0	0.40	0.20	ND U	1.0	0.40	0.20	ND U	1.0	0.40	0.20	ND U	1.0	0.40	0.20
	1,2-Dichloroethane	0.15	7.000	ND U	1.0 ^b	0.28	0.14		1.0 ^b	0.28	0.14	ND U	1.0 ^b	0.28	0.14	ND U	1.0 ^b	0.28	0.14	ND U	1.0 ^b	0.28	0.17
	1,2-Dichloropropane	5	10	ND U	1.0	0.34	0.1		1.0	0.34	0.17	ND U	1.0	0.34	0.17	ND U	1.0	0.34	0.17	ND U	1.0	0.34	0.17
	1,3-Dichlorobenzene	180	50,000	ND U	1.0	0.22	0.1	1 ND U	1.0	0.22	0.11	ND U	1.0	0.22	0.11	ND U	1.0	0.22	0.11	ND U	1.0	0.22	0.11
	1,3-Dichloropropene (total of cis/trans)	0.43	50,000	ND U	1.0 ^b	0.36	0.1		1.0 ^b	0.36	0.18	ND U	1.0 ^b	0.36	0.18	ND U	1.0 ^b	0.36	0.18	ND U	1.0 ^b	0.36	0.18
	1,4-Dichlorobenzene	75	5	ND U	1.0	0.38	0.19		1.0	0.38	0.19	ND U	1.0	0.38	0.19	ND U	1.0	0.38	0.19	ND U	1.0	0.38	0.19
	Acetone	22,000	20,000	ND U ND U	10.0	1.90 0.32	0.9		10.0	1.90 0.32	0.95	ND U ND U	10.0	1.90 0.32	0.95	ND U ND U	10.0	1.90 0.32	0.95	ND U ND U	10.0	1.90 0.32	0.95
	Benzene Bromodichloromethane	0.22	170 50.000	ND U	1.0 ^b	0.32	0.14		1.0 ^b	0.32	0.16	ND U ND U	1.0 ^b	0.32	0.16	ND U ND U	1.0 ^b	0.32	0.16	ND U	1.0 ^b	0.32	0.16
	Bromoform	100	510	ND U	1.0	0.28	0.14		1.0	0.28	0.14	ND U	1.0	0.28	0.14	ND U	1.0	0.28	0.14	ND U	1.0	0.28	0.14
	Bromomethane	8.7	50,000	ND U	2.0	0.48	0.24		2.0	0.48	0.24	ND U	2.0	0.48	0.24	ND U	2.0	0.48	0.24	ND U	2.0	0.48	0.24
	Carbon Tetrachloride	5	520	ND U	1.0	0.20	0.10		1.0	0.20	0.10	ND U	1.0	0.20	0.10	ND U	1.0	0.20	0.10	ND U	1.0	0.20	0.10
EPA 8260 B (VOCs)	Chlorobenzene	100	50	ND U	1.0	0.42	0.2		1.0	0.42	0.21	ND U	1.0	0.42	0.21	ND U	1.0	0.42	0.21	ND U	1.0	0.42	0.21
	Chloroethane Chloroform	8,600	16 2.400	ND U ND U	1.0	0.42 0.14	0.2		1.0	0.42	0.21	ND U ND U	1.0	0.42 0.14	0.21	ND U ND U	1.0	0.42 0.14	0.21	ND U ND U	1.0	0.42	0.21
	Chloromethane	1.8	50,000	ND U	1.0	0.62	0.3		1.0	0.62	0.31	ND U	1.0	0.62	0.31	ND U	1.0	0.62	0.07	ND U	1.0	0.62	0.31
	cis-1,2-Dichloroethylene	70	50,000	ND U	1.0	0.32	0.1		1.0	0.32	0.16	ND U	1.0	0.32	0.16	ND U	1.0	0.32	0.16	ND U	1.0	0.32	0.16
	Dibromochloromethane (Chlorodibromomethane)	0.16	50,000	ND U	1.0 ^b	0.38	0.19	9 ND U	1.0 ^b	0.38	0.19	ND U	1.0 ^b	0.38	0.19	ND U	1.0 ^b	0.38	0.19	ND U	1.0 ^b	0.38	0.19
	Ethylbenzene	700	30	ND U	1.0	0.46	0.2	ND U	1.0	0.46	0.23	0.25 J	1.0	0.46	0.23	ND U	1.0	0.46	0.23	ND U	1.0	0.46	0.23
	Hexachlorobutadiene	0.86	6	ND U	1.0 ^b	0.38	0.19		1.0 ^b	0.38	0.19	ND U	1.0 ^b	0.38	0.19	ND U	1.0 ^b	0.38	0.19	ND U	1.0 ^b	0.38	0.19
	Methyl ethyl ketone (2-Butanone)	7,100	8,400	ND U	10.0	1.20	0.6		10.0	1.20	0.60	ND U	10.0	1.20	0.60	ND U	10.0	1.20	0.60	ND U	10.0	1.20	0.60
	Methyl isobutyl ketone (4-Methyl-2-pentanone) Methyl tert-butyl Ether	2,000	1,300 5	ND U ND U	10.0 1.0	3.80 0.38	1.9	-	10.0	3.80 0.38	1.90 0.19	ND U ND U	10.0	3.80 0.38	1.90 0.19	ND U ND U	10.0	3.80 0.38	1.90 0.19	ND U ND U	10.0	3.80 0.38	1.90 0.19
	Methylene chloride	12 4.8	9,100	ND U ND U	5.0 ^b	0.38	0.1		5.0 ^b	0.38	0.19	ND U ND U	5.0 ^b	0.38	0.19	ND U ND U	5.0 ^b	0.38	0.19	ND U	5.0 ^b	0.38	0.19
	Styrene	100	10	ND U	1.0	0.70	0.2		1.0	0.50	0.35	ND U	1.0	0.70	0.35	ND U	1.0	0.70	0.35	ND U	1.0	0.50	0.35
	Tetrachloroethane, 1,1,1,2-	0.52	50,000	ND U	1.0 ^b	0.26	0.13		1.0 ^b	0.26	0.13	ND U	1.0 ^b	0.26	0.13	ND U	1.0 ^b	0.26	0.13	ND U	1.0 ^b	0.26	0.13
	Tetrachloroethane, 1,1,2,2-	0.067	500	ND U	1.0 ^b	0.20	0.10		1.0 ^b	0.20	0.10	ND U	1.0 ^b	0.20	0.10	ND U	1.0 ^b	0.20	0.10	ND U	1.0 ^b	0.20	0.10
	Tetrachloroethylene (Tetrachloroethene)	5	170	ND U	1.0	0.30	0.1		1.0	0.30	0.15	ND U	1.0	0.30	0.15	ND U	1.0	0.30	0.15	ND U	1.0	0.30	0.15
	Toluene	1,000	40	ND U	1.0	0.34	0.1	7 ND U	1.0	0.34	0.17	ND U	1.0	0.34	0.17	ND U	1.0	0.34	0.17	ND U	1.0	0.34	0.17
	trans-1,2-Dichloroethylene	100	260	ND U	1.0	0.38	0.19		1.0	0.38	0.19	ND U	1.0	0.38	0.19	ND U	1.0	0.38	0.19	ND U	1.0	0.38	0.19
	Trichloroethylene (Trichloroethene)	5	310	ND U	1.0	0.32	0.10		1.0	0.32	0.16	ND U	1.0	0.32	0.16	ND U	1.0	0.32	0.16	ND U	1.0	0.32	0.16
	Vinyl chloride Xylenes	2 10,000	3,400 20	ND U ND U	1.0	0.46	0.2		1.0	0.46	0.23 0.19	ND U 0.60 J	1.0	0.46	0.23	ND U ND U	1.0	0.46	0.23	ND U ND U	1.0	0.46	0.23
		10.000	20		1.0	1 0.00											1 1.0					0.00	0.17

Notes:

All units are in micrograms per liter (µg/L).

^aDOH EALs (DOH, 2009): Table D-1b. Groundwater Action Levels (Groundwater is a current or potential drinking water resource; surface water body is not located within 150 meters of release site).

^b In the case where an EAL for a specific chemical is less than the LOQ for a commercial laboratory, it is generally acceptable to consider the LOQ in place of the action level (DOH, Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater 2008, updated March 2009). DL - detection limit or method detection limit (MDL)

DRO - diesel range organics

GRO - gasoline range organics

J - Estimated result. Indicates that the compound was identified but the concentration was above the DL and below the LOQ.

LOD - limit of detection

LOQ - limit of quantitation or reporting limit (RL). ND - not detected

PAHs - polynuclear aromatic hydrocarbons

Q - data qualifier TPH - total petroleum hydrocarbons

U - Indicates the compound or analyte was analyzed for but not detected. The result is reported as ND. VOC - volatile organic compound

Bold - Result exceeds one or both DOH EALs.

decreased in July 2010 (228F μ g/L); and was not detected at or above the LOD and LOQ in October-November 2010. TPH-GRO has remained below the EAL or has not been detected (Appendix A).

<u>RHMW02</u>

The averages of primary and duplicate samples were used for determining contaminant trends. From September 2005 through February 2009, TPH-DRO exceeded the DOH Drinking Water EAL of 210 μ g/L and was greater than 50 percent of the SSRBL (estimated solubility limit of 4,500 μ g/L). The concentration of TPH-DRO was relatively stable until July 2008 and October 2008 when the concentrations increased, with the October 2008 average also exceeding the SSRBL of 4,500 μ g/L (Appendix A).

However, TPH-DRO concentrations decreased from October 2008 through July 2009. In May 2009 and July 2009, TPH-DRO remained above the DOH Drinking Water EAL, but was below 50 percent of the SSRBL of 4,500 μ g/L. In October 2009, TPH-DRO began an increasing trend greater than 50 percent of the SSRBL which continued through February 2010 when it exceeded the SSRBL due to TICs apparently not associated with petroleum from the RHSF (TEC, 2010). In March 2010 (2,490 μ g/L) and April 2010 (2,215 μ g/L), TPH-DRO exhibited a decreasing trend and the TICs detected in the two previous monitoring events were not observed. During July 2010, TPH-DRO concentrations at RHMW02 increased to an averaged concentration of 3,085 μ g/L, above 50 percent of the SSRBL of 4,500 μ g/L. During October-November 2010, TPH-DRO concentrations decreased to 1,700 μ g/L, below 50 percent of the SSRBL (Appendix A).

Since September 2005, TPH-GRO concentrations have remained below the EAL, except in July 2006, December 2006, March 2007, and October-November 2010 (Appendix A).

From September 2005 through October 2008, naphthalene concentrations remained above the EAL and were relatively stable. In February 2009, naphthalene concentrations began decreasing and reached its lowest average concentration in May 2009 (2 μ g/L) which was below the EAL. From July 2009 through July 2010, concentrations increased above the EAL. Then in October-November 2010, naphthalene concentrations decreased slightly to a concentration which was still above the EAL (Appendix A).

Similar to the naphthalene concentration trend, 1-methylnaphthalene concentrations remained relatively stable from September 2005 through October 2008. In February 2009, 1-methylnapthalene concentrations began decreasing and reached its lowest average concentration in October 2009 ($3.2 \mu g/L$) which was below the EAL. In January 2010, 1-methylnaphthalene concentrations increased above the EAL; then decreased in April 2010; and increased in July and October-November 2010 (Appendix A).

The average concentration in October-November 2010 for 1-methylnaphthalene (15.0 μ g/L) exhibited an increase, after decreasing in April 2010 (to 6.3 μ g/L) from the January 2010 average concentration (8.7 μ g/L). Consequently, the October-November 2010 1-methylnaphthalene concentration remains above the DOH Drinking Water EAL of 4.7 μ g/L. Since October 2008, the concentration of 2-methylnaphthalene has remained below the EAL (Appendix A).

<u>RHMW03</u>

Historically, concentrations of TPH-DRO have fluctuated around the DOH Drinking Water EAL, but have been significantly lower than corresponding values observed at RHMW01 and RHMW02. TPH-DRO concentrations have decreased since October 2008 dropping below the DLs in May 2009 through July 2010. However, during this October-November 2010 groundwater monitoring event, TPH-DRO was detected at the highest concentration to date (330 μ g/L) which was above the EAL. TPH-GRO has remained below the EAL or has not been detected (Appendix A).

<u>RHMW05</u>

There had been an increasing trend for TPH-DRO since it was first sampled in May 2009. Starting with the July 2009 monitoring event, TPH-DRO concentrations were greater than the DOH Drinking Water EAL (210 μ g/L) with the highest concentration of 2,060 μ g/L being observed in January 2010. It is important to note that the January 2010 concentration contained TICs apparently not associated with petroleum from the RHSF. However, in April 2010, July 2010, and October-November 2010, TPH-DRO concentrations exhibited a significant decrease and were not detected at or above the LODs and LOQs. TPH-GRO has remained below the EAL or has not been detected (Appendix A).

3.4 Groundwater Status

Facility-specific contaminants of concern are defined as petroleum-related chemicals that have been observed in the groundwater samples above the DOH Drinking Water EALs. In accordance with the Red Hill Bulk Fuel Storage Facility Final Groundwater Protection Plan (TEC, 2008), Table 3-3 defines these RHSF-specific compounds and their associated SSRBLs and updated EALs (DOH, 2009).

In addition, the Groundwater Protection Plan defines four Results Categories of groundwater status for the RHSF, based on concentrations of COPCs detected in samples collected from RHMW2254-01, RHMW01, RHMW02, RHMW03, and RHMW05, and requires specific responses when these categories are observed during quarterly groundwater sampling (Table 3-4). The current Results Categories for the monitoring wells were determined using the October-November 2010 analytical data (Table 3-5).

Chemical	DOH Drinking Water EAL	SSRBL		
	(µg/L)	(µg/L)		
Petroleum Mixtures				
TPH-DRO	210	4,500		
TPH-GRO	100	4,500		
Semi-Volatile Compounds	· · ·			
1-Methylnaphthalene	4.7	N/A		
2-Methylnaphthalene	24	N/A		
Naphthalene	17	N/A		

 Table 3-3: Action Levels for Contaminants of Concern

Notes:

SSRBLs are applicable at RHMW01, RHMW02, RHMW03, and RHMW05

EALs are applicable at RHMW2254-01

N/A – not applicable

Table 3-4: Results Categories and Response Actions to Changes in Groundwater Status

Results Category	RHMW02, RHMW03, or RHMW05*	RHMW01	RHMW2254-01
Results Category 1: Result above detection limit but below drinking water EAL and trend for all compounds stable or decreasing	А	А	A, D, M, E
Results Category 2: Trend for any compound increasing or drinking water EAL exceeded	Α, Β	Α, Β	A, B, C, D, E, F, G, K, L, O
Results Category 3: Result Between 1/10X SSRBL and SSRBL for benzene, or between 1/2X SSRBL and SSRBL for TPH	A, B, G, H, I, J	A, B, E, G, H, I, J	A, B, C, D, E, F, G, I, J, K, L, O
Results Category 4: Result Exceeding any SSRBL or petroleum product observed	A, C, D, E, F, I, J, K, M, N	A, C, D, E, F, I, J, K, M, N, O	A, C, D, E, F, G, I, J, K, L, O

Notes:

*RHMW05 was installed in April 2009 and has been subsequently been added to this table.

Specific Responses:

A. Send quarterly reports to DOH.

B. Begin program to determine the source of leak.

C. Notify DOH verbally within one day and follow with written notification in 30 days.

D. Notify FISC Chain of Command within one day. E. Send Type 1 Report (see box below) to DOH

F. Send Type 2 Report (see box below) to DOH

G. Increase monitoring frequency to once per month (if concentrations increasing). H. Notify DOH verbally within seven days and follow with written notification in 30 days.

I. Remove sampling pumps, measure product in pertinent wells with interface probe, re-install pumps if product is not detected.

J. Immediately evaluate tanks for leaks.

K. Collect samples from nearby Hālawa Deep Monitoring Well (2253-03) and OWDFMW01. For permission to sample 2253-03, call Department of Land and Natural Resources (DLNR) Commission on Water Resource Management 808-587-0214, DLNRCWR@Hawaii.gov.

L. Provide alternative water source at RHMW2254-01.

M. Prepare for alternative water source at RHMW2254-01.

N. Re-measure for product every month with reports to DOH.

O. Install additional monitoring well downgradient.

Report Types

DOH Type 1 Report

- Re-evaluate Tier 3 Risk Assessment/groundwater model results. •
- Proposal to DOH on course of action. •

DOH Type 2 Report

• Proposal for groundwater treatment.

This page is intentionally left blank.

Table 3-5: Summary of Result Categories and Response Actions, October-November 2010

Results Category	RHMW2254-01¹	RHMW01	RHMW02	RHMW03	RHMW05
<u>Results Category 1</u> : Result above detection limit but below drinking water EAL and trend for all compounds stable or decreasing	No	Yes	No	No	No
Results Category 2: Trend for any compound increasing or drinking water EAL exceeded	No	No	Yes	Yes	No
Results Category 3: Result Between 1/10X SSRBL and SSRBL for benzene, or between 1/2X SSRBL and SSRBL for TPH	No	No	No	No	No
Results Category 4: Result Exceeding any SSRBL or petroleum product observed	No	No	No	No	No
Previous Category: Category prior to October-November monitoring event	None	Category 2	Category 3	None	Category 1
<u>New Category</u> : Category assignment based on results of the October-November monitoring event	None	Category 1	Category 2	Category 2	None
<u>Response Actions</u> : Requirements of new category	None	1. Quarterly Reports to be sent to DOH	 Quarterly reports to be sent to DOH Initiation of a leak determination program to identify if tanks are leaking 	 Quarterly reports to be sent to DOH Initiation of a leak determination program to identify if tanks are leaking 	None

Notes:

¹ Although a trace concentration of lead was detected at RHMW2254-01 during the October-November 2010 monitoring event, it does not place the well into the Category 1 status.

No contamination trend (i.e., two or more consecutive events of detectable concentrations) has been established, therefore, RHMW2254-01 does not meet the Category 1 definition.

This page is intentionally left blank.

Section 4 Data Quality Assessment

Data quality assessment consists of a review of the overall groundwater sample collection and analyses process in order to determine whether the analytical data generated meets the quality objectives for the project.

The field QC program consisted of standardized sample collection and management procedures and the collection of field duplicate samples and trip blank samples.

The laboratory quality assurance program consisted of the use of standard analytical methods and the preparation and analyses of MS/MSD samples, surrogate spikes, method blanks, and laboratory control samples (LCS).

4.1 Data Validation

The usability of the data collected during this investigation depends upon its quality. A number of factors relate to the quality of data, including: sample collection methods, sample analysis methods, and adherence to established procedures for sample collection, preservation, management, shipment, and analysis. Data quality is judged in terms of its precision, accuracy, representativeness, completeness, and comparability.

4.1.1 Quality Control Program

LOQs are established by the laboratory based on the method DLs or instrument DLs, historical data, and EPA limits established for the methods. The LOQs for samples may require adjustment due to matrix interference or if high levels of target analytes necessitate dilution before analysis. Matrix interference and sample dilutions have the effect of increasing the LOQs. None of the reporting limits were adjusted for this project.

4.1.2 Data Assessment

Precision

Precision is defined as the agreement between a set of replicate measurements without assumption and knowledge of the true value. Precision limits for laboratory measurements were evaluated from the sample/sample duplicate results. Field duplicate samples were collected at a rate of approximately 10 percent of project samples. Field duplicates are duplicates of the primary samples that are sent to the primary laboratory with dummy sample numbers to serve as a check of the primary laboratory's internal precision.

Field sampling precision was evaluated from the original sample/sample duplicate results using the following criteria:

- For analytes with the sample concentration greater than five times the reporting limit, the duplicate sample results should agree within approximately 50 percent for groundwater samples.
- For analytes with either or both sample concentrations less than five times the reporting limit, duplicate groundwater sample concentrations should agree within approximately five times the reporting limit.

Precision was measured by comparing one group of samples. This group contained the primary field sample ES002 and field duplicate sample ES003 collected from RHMW02, and met the relative percent difference (RPD) precision criteria for all field duplicate analytes. Duplicate sample results from monitoring well RHMW02 are reported in this document as RHMW02D (Table 4-1).

None of the analyzed constituents were detected in any of the laboratory method blank samples. All of the LCS and surrogate spike recoveries for all analyzed constituents were within acceptable percent recovery limits. In addition, the MS/MSD and surrogate spike recoveries for all analyzed constituents were within acceptable percent recovery limits, except for 1methylnaphthalene, 2-methylnaphthalene, naphthalene, and acetone. However, since the recoveries were only slightly to moderately out of the control limits, the COPC concentrations detected in the associated groundwater sample results would not be significantly affected. Therefore, the laboratory results are precise.

Accuracy

Accuracy is defined as the degree of agreement of a measurement to an accepted reference or true value. Accuracy is measured as the percent recovery of an analyte in a reference standard or spiked sample. Accuracy limits for laboratory control spike, MS, and MSD samples are established by the individual laboratory. The acceptance criteria for accuracy are dependent on the analytical method, and are based on historical laboratory data.

Laboratory MS and MSD analysis was used to assess analytical accuracy and precision in response to potential matrix interference. All of the MS and MSD recoveries were within laboratory specified ranges, except for 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, and acetone. However, since the recoveries were only slightly to moderately out of the control limits, there would be no significant effect on the associated groundwater sample results. Therefore, all data is considered to be accurate.

Representativeness

Representativeness is the degree that data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness was achieved by conducting sampling in compliance with the sample collection procedures described in the Work Plan specifically written for this project (Environet, 2010).

Representativeness is also evaluated through the collection of trip blank samples. The trip blank samples are used to determine if offsite contamination was introduced to the sample containers during sample shipment from and to the laboratory. For this sampling event three trip blank samples were collected (Table 4-1). The trip blank samples for the October-November 2010 monitoring event were all not detected at or above the LODs and LOQs, except for acetone in the trip blank dated October 19, 2010. Acetone was detected at an estimated concentration of 1.3 $\mu g/L$, which is below both the DOH Drinking Water EAL (22,000 $\mu g/L$) and the DOH Groundwater Gross Contamination EAL (20,000 $\mu g/L$) (Table 4-1). Therefore, the data does not impact data quality and the groundwater sample data are suitable for the intended use.

Table 4-1: Field OC Results, October-November 2010

Mothed	Chamical	DOH Drinking Water	DOH Groundwater Gross	RHMW02 (ES002)				RHMW((ES00)			RPD Duplicato		RPDTrip BlankDuplicate(10/18/10)			Trip Blank (10/19/10)					Trip Blank (11/3/10)			
Method	Chemical	EALs for Human Toxicity ^a	Contamination EALs ^a	Result Q LOQ	1	DL	Result ((ES00.) LOO	- /	DL	Duplicate (%)	-		0) LOD	DL	Result ((10/19/ 2 LOQ		DI.	Result		LOQ		
PA 8015B (Petroleum)	TPH-DRO	210	100	1.700 150 ^b		40.4		150 ^b	80.8		0						<u>2</u> LOQ							
PA 8260 B (Petroleum)	TPH-GRO	100	100	150 20.0		-	,	20.0		6.06	6.45	ND U	20.0	12.12	6.06	ND U	20.0	12.12	6.06	ND	U	20.0	12.12	
	Acenaphthene	370	20	0.28 0.2	0.12	0.06	0.27	0.2	0.12	0.06	3.64													
	Acenaphthylene	240	2,000	0.14 J 0.2	0.12	0.06	0.13 J	0.2	0.12	0.06	7.41													
	Anthracene	1,800	22	ND U 0.2	0.10	0.05	ND U	0.2	0.10	0.05	0													
	Benzo(a)anthracene	0.092	4.7	ND U 0.2 ^b	0.14	0.07	ND U	0.2 ^b	0.14	0.07	0													
	Benzo(g,h,i)perylene	1,500	0.13	ND U 0.2 ^b	0.16	0.08	ND U		0.16	0.08	0													
	Benzo(a)pyrene	0.2	0.81	ND U 0.2	0.14	0.07	ND U	0.2	0.14	0.07	0													
	Benzo(b)fluoranthene	0.092	0.75	ND U 0.2 ^b	0.12	0.06	ND U		0.12		0													
	Benzo(k)fluoranthene	0.92	0.4	ND U 0.2	0.12	0.07	ND U	0.2	0.12	0.00	0													
	Chrysene	9.2	1	ND U 0.2	0.14	0.07	ND U	0.2	0.14	0.07	0													
EPA 8270D SIM (PAHs)	Dibenzo(a,h)anthracene	0.0092	0.52	ND U 0.2 ^b	0.10	0.05	ND U		0.10	0.05	0													
	Fluoranthene	1,500	130	ND U 0.2	0.16	0.03	ND U		0.16	0.03	0													
	Fluorene	240	950	0.16 J 0.2	0.10	0.08	0.15 J	0.2	0.10	0.08	6.45													
		0.092	0.095				ND U																	
	Ideno(1,2,3-cd)pyrene				0.14	0.07		*	0.14	0.07	0													
	1-Methylnaphthalene	4.7	10	15 0.2	0.12	0.06		0.2	0.12	-	0													
	2-Methylnaphthalene Naphthalene	24	10 21	5.0 0.2 59 0.2	0.12 0.10	0.06	6.3 54	0.2	0.12	0.06	23.01 8.85										++			
	Phenanthrene	240	410	ND U 0.2	0.10	0.05	54 ND U	0.2	0.10	0.05	8.85 0										++			
	Prenantnrene Pyrene	180	68	ND U 0.2	0.14	0.07	ND U	0.2	0.14	0.07	0										++			
	1,1,1-Trichloroethane	200	970	ND U 1.0	0.10	0.08	ND U	1.0	0.10	0.08	0	 ND U	1.0	0.28	0.14	ND U	1.0	0.28	0.14	 ND		1.0	0.28	
	1,1,2-Trichloroethane	5	50,000	ND U 1.0	0.28	0.14	ND U	1.0	0.28		0	ND U	1.0	0.28	0.14	ND U		0.28	0.14	ND		1.0	0.28	
	1.1-Dichloroethane	2.4	50,000	ND U 1.0	0.38	0.19	ND U	1.0	0.38	0.19	0	ND U	1.0	0.38	0.19	ND U		0.38	0.19	ND		1.0	0.38	
	1,1-Dichloroethylene (1,1-Dichloroethene)	7	1,500	ND U 1.0	0.60	0.30	ND U		0.60	0.30	0	ND U	1.0	0.60	0.30	ND U		0.60	0.30	ND		1.0	0.60	
	1,2,3-Trichloropropane	0.6	50,000	ND U 2.0 ^b	0.78	0.39	ND U		0.78	0.39	0	ND U	2.0 ^b	0.78	0.39	ND U		0.78	0.39	ND		2.0 ^b	0.78	
	1,2,4-Trichlorobenzene	70	3,000	ND U 1.0	0.42	0.21	ND U		0.42	0.35	0	ND U	1.0	0.42	0.21	ND U		0.42	0.37	ND		1.0	0.42	
		0.04	10	ND U 2.0 ^b	1.52	0.21	ND U	2.0 ^b	1.52		0	ND U	2.0 ^b	1.52		ND U		1.52	0.21	ND			1.52	
	1,2-Dibromo-3-chloropropane					-				0.76					0.76			-				2.0 ^b		
	1,2-Dibromoethane	0.0065	50,000	ND U 1.0 ^b	0.40	0.20	ND U		0.40	0.20	0	ND U	1.0 ^b	0.40	0.20	ND U		0.40	0.20	ND		1.0 ^b	0.40	
	1,2-Dichlorobenzene	600	10	ND U 1.0	0.34	0.17	ND U		0.34	0.17	0	ND U	1.0	0.34	0.17	ND U		0.34	0.17	ND		1.0	0.34	
	1,2-Dichloroethane	0.15	7,000	ND U 1.0 ^b	0.28	0.14	ND U		0.28	0.14	0	ND U	1.0 ^b	0.28	0.14	ND U		0.28	0.14	ND		1.0 ^b	0.28	
	1,2-Dichloropropane	5	10	ND U 1.0	0.34	0.17	ND U		0.34	0.17	0	ND U	1.0	0.34	0.17	ND U		0.34	0.17	ND		1.0	0.34	
	1,3-Dichlorobenzene	180	50,000	ND U 1.0	0.22	0.11	ND U		0.22	0.11	0	ND U	1.0	0.22	0.11	ND U		0.22	0.11	ND		1.0	0.22	
	1,3-Dichloropropene (total of cis/trans)	0.43	50,000	ND U 1.0 ^b	0.36	0.18	ND U	1.0 ^b	0.36	0.18	0	ND U	1.0^{b}	0.36	0.18	ND U		0.36	0.18	ND		1.0^{b}	0.36	
	1,4-Dichlorobenzene	75	5	ND U 1.0	0.38	0.19	ND U	1.0	0.38	0.19	0	ND U	1.0	0.38	0.19	ND U		0.38	0.19	ND		1.0	0.38	
	Acetone	22,000	20,000	ND U 10.0	1.90	0.95	ND U		1.90	0.95	0	ND U	10.0	1.90	0.95	1.3 J	10.0	1.90	0.95	ND		10.0	1.90	
	Benzene	5	170	ND U 1.0	0.32	0.16	ND U		0.32	0.16	0	ND U	1.0	0.32	0.16	ND U		0.32	0.16	ND	_	1.0	0.32	
	Bromodichloromethane	0.22	50,000	ND U 1.0 ^b	0.28	0.14	ND U	1.0 ^b	0.28	0.14	0	ND U	1.0 ^b	0.28	0.14	ND U	1.0 ^b	0.28	0.14	ND	U	1.0 ^b	0.28	
	Bromoform	100	510	ND U 1.0	0.28	0.14	ND U	1.0	0.28	0.14	0	ND U	1.0	0.28	0.14	ND U	1.0	0.28	0.14	ND	U	1.0	0.28	
	Bromomethane	8.7	50,000	ND U 2.0	0.48	0.24	ND U	2.0	0.48	0.24	0	ND U	2.0	0.48	0.24	ND U	2.0	0.48	0.24	ND	U	2.0	0.48	
	Carbon Tetrachloride	5	520	ND U 1.0	0.20	0.10	ND U	1.0	0.20	0.10	0	ND U	1.0	0.20	0.10	ND U	1.0	0.20	0.10	ND	U	1.0	0.20	
EPA 8260 B (VOCs)	Chlorobenzene	100	50	ND U 1.0	0.42	0.21	ND U	1.0	0.42	0.21	0	ND U	1.0	0.42	0.21	ND U		0.42	0.21	ND		1.0	0.42	
	Chloroethane	8,600	16	ND U 1.0	0.42	0.21	ND U	1.0	0.42	0.21	0	ND U	1.0	0.42	0.21	ND U		0.42	0.21	ND		1.0	0.42	
	Chloroform	70	2,400	ND U 1.0	0.14	0.07	ND U	1.0	0.14	0.07	0	ND U	1.0	0.14	0.07	ND U		0.14	0.07	ND		1.0	0.14	
	Chloromethane	1.8	50,000	ND U 1.0	0.62	0.31	ND U		0.62	0.31	0	ND U	1.0	0.62	0.31	ND U		0.62	0.31	ND	_	1.0	0.62	
	cis-1,2-Dichloroethylene	70	50,000	ND U 1.0		0.16			0.32	0.16	0	ND U	1.0	0.32	0.16	ND U		0.32	0.16	ND		1.0	0.32	
	Dibromochloromethane (Chlorodibromomethane)	0.16	50,000	ND U 1.0 ^b	0.38	0.19	ND U	1.0 ^b	0.38	0.19	0	ND U	1.0 ^b	0.38	0.19	ND U	1.0 ^b	0.38	0.19	ND		1.0 ^b	0.38	
	Ethylbenzene	700	30	0.25 J 1.0	0.46	0.23	0.32 J	1.0	0.46	0.23	24.56	ND U	1.0	0.46	0.23	ND U	1.0	0.46	0.23	ND	U	1.0	0.46	
	Hexachlorobutadiene	0.86	6	ND U 1.0 ^b	0.38	0.19	ND U	1.0 ^b	0.38	0.19	0	ND U	1.0^{b}	0.38	0.19	ND U	1.0 ^b	0.38	0.19	ND	U	1.0 ^b	0.38	
	Methyl ethyl ketone (2-Butanone)	7,100	8,400	ND U 10.0	1.20	0.60	ND U	10.0	1.20	0.60	0	ND U	10.0	1.20	0.60	ND U	10.0	1.20	0.60	ND	U	10.0	1.20	
	Methyl isobutyl ketone (4-Methyl-2-pentanone)	2,000	1,300	ND U 10.0	3.80			10.0	3.80	1.90	0	ND U	10.0	3.80	1.90	ND U	10.0	3.80	1.90	ND	U	10.0	3.80	
	Methyl tert-butyl Ether	12	5	ND U 1.0	0.38	0.19	ND U	1.0	0.38	0.19	0	ND U	1.0	0.38	0.19	ND U	1.0	0.38	0.19	ND	U	1.0	0.38	
	Methylene chloride	4.8	9,100	ND U 5.0 ^b	0.70	0.35	ND U	5.0 ^b	0.70	0.35	0	ND U	5.0 ^b	0.70	0.35	ND U	5.0 ^b	0.70	0.35	ND	U	5.0 ^b	0.70	
	Styrene	100	10	ND U 1.0	0.50	0.25	ND U			0.25	0	ND U	1.0	0.50	0.25	ND U			0.25	ND	U	1.0	0.50	
	Tetrachloroethane, 1,1,1,2-	0.52	50,000	ND U 1.0 ^b		0.13			0.26	0.13	0	ND U	1.0 ^b	0.26	0.13	ND U	1.0 ^b	0.26	0.13	ND		1.0 ^b	0.26	
	Tetrachloroethane, 1,1,2,2-	0.067	500	ND U 1.0 ^b		0.10				0.10	0	ND U	1.0 ^b	0.20		ND U			0.10	ND	_		0.20	
	Tetrachloroethylene (Tetrachloroethene)	5	170	ND U 1.0		0.15				0.15	0	ND U	1.0	0.20	0.15	ND U			0.10	ND			0.20	
	Toluene	1,000	40	ND U 1.0						0.13	0	ND U	1.0		0.13	ND U		0.30	0.13	ND			0.30	
	trans-1,2-Dichloroethylene	1,000	260	ND U 1.0		0.17				0.17	0	ND U	1.0	0.34	0.19	ND U		0.34	0.17	ND			0.34	
	Trichloroethylene (Trichloroethene)	5	310	ND U 1.0		0.15				0.15	0	ND U	1.0			ND U		0.38		ND			0.38	
	Vinyl chloride	2	3,400	ND U 1.0		0.10			0.46		0	ND U	1.0	0.32	0.10	ND U		0.46	-	ND			0.32	
			,					1.0		0.25	16.22	ND U	1.0	0.38		ND U			0.19		U		0.38	
	Xylenes	10,000	20	0.60 J 1.0	0.38																			

Notes:

All units are in micrograms per liter (µg/L). RHMW02D is a duplicate sample of RHMW02.

^a DOH EALs (DOH, 2009): Table D-1b. Groundwater Action Levels (Groundwater is a current or potential drinking water resource; surface water body is not located within 150 meters of release site).

^b In the case where an EAL for a specific chemical is less than the LOQ for a commercial laboratory, it is generally acceptable to consider the LOQ in place of the action level (DOH, Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater 2008, updated March 2009). DL - detection limit or method detection limit (MDL)

DRO - diesel range organics

GRO - gasoline range organics J - Estimated result. Indicates that the compound was identified but the concentration was above the DL and below the LOQ.

LOD - limit of detection

LOQ - limit of quantitaion or reporting limit (RL) ND - not detected

PAHs - polynuclear aromatic hydrocarbons

Q - data qualifier

RPD - relative percent difference

TPH - total petroleum hydrocarbons

U - Indicates the compound or analyte was analyzed for but not detected. The result is reported as ND.

VOC - volatile organic compound

-- not analyzed

Bold - Result exceeds one or both DOH EALs.

Completeness

Completeness is defined as the overall percentage of valid analytical results (including estimated values) compared to the total number of analytical results reported by the laboratory. The completeness goal for this project is 90 percent, which was successfully met. Successful completion of data acquisition can only be accomplished if both the field and laboratory portions of the project are performed according to the procedures described in the Work Plan (Environet, 2010).

Comparability

Comparability expresses the confidence with which one data set can be compared to another. Comparability can be related to accuracy and precision because these quantities are measures of data reliability. Data are considered comparable if collection techniques, measurement procedures, methods and reporting are equivalent for the samples within a sample set. Comparability for sampling was determined to be acceptable based on the following criteria:

- A consistent approach to sampling was applied throughout the program.
- Samples were consistently preserved.
- All sampling was performed during the same time of year and under similar physical conditions.

The above criteria were met throughout the course of this event and therefore comparability of the data set is acceptable.

The precision, accuracy, representativeness, completeness, and comparability criteria were met. Therefore, the data assessment concludes that all data generated during this event are suitable for the intended use. This page is intentionally left blank.

Section 5 Summary, Conclusions, and Recommendations

5.1 Summary

There is no indication of an immediate threat of disruption to drinking water resources of RHMW2254-01 as a result of the October-November 2010 data. Based on the October-November 2010 groundwater monitoring event, RHMW2254-01 does not fall into any Results Category of the Groundwater Protection Plan (TEC, 2008).

5.1.1 Results of Oil/Water Interface Measurements

Free product was not measured at RHMW01, RHMW02, RHMW03, and RHMW05 during the October-November 2010 sampling event. The trend of free product measurements over time shows that in January 2008, fuel was measured in monitoring wells RHMW01 and RHMW02 at a thickness of <0.01 feet, but was not observed in other monitoring wells. Since the trace amounts observed in January 2008, no free product has been observed in any of these RHSF monitoring wells (Table 3-1).

5.1.2 Summary of Groundwater Analytical Results

Laboratory analytical results from the October-November 2010 groundwater monitoring event indicated that TPH-DRO, TPH-GRO, and PAHs, specifically 1-methylnaphthalene and naphthalene, were present in the groundwater beneath the RHSF at concentrations that exceeded the EALs. All other COPCs concentrations were below the EALs. All laboratory DLs, LODs and LOQs were generally below the EALs. In the case where an EAL for a specific COPC is less than the LOQ, it is generally acceptable to consider the LOQs in place of the EAL (DOH, 2009).

In RHMW2254-01, lead $(3.3 \ \mu g/L)$ was detected at a concentration which was below the EAL. All other COPC concentrations were not detected at or above the LODs and LOQs.

In monitoring well RHMW01, naphthalene (0.17 μ g/L), acetone (2.4 μ g/L), and lead (0.47 μ g/L) were detected at estimated concentrations which were below the EALs. All other COPCs in RHMW01 were not detected at or above the LODs and LOQs.

In monitoring well RHMW02, TPH-DRO (1,700 μ g/L), TPH-GRO (150 μ g/L), 1methylnaphthalene (15 μ g/L), and naphthalene (59 μ g/L) were detected at concentrations which exceeded the EALs. Acenaphthene (0.28 μ g/L) and 2-methylnaphthalene (5.0 μ g/L) were detected at concentrations which were below the EALs. Acenaphthylene (0.14 μ g/L), fluorene (0.16 μ g/L), ethylbenzene (0.25 μ g/L), xylenes (0.60 μ g/L), and lead (0.32 μ g/L) were detected at estimated concentrations which were below the EALs. All other COPCs in RHMW02 were not detected at or above the LODs and LOQs.

In monitoring well RHMW03, TPH-DRO (330 μ g/L) was detected at a concentration which exceeded the EAL. Lead (0.28 μ g/L) was detected at an estimated concentration which was

below the EAL. All other COPCs in RHMW03 were not detected at or above the LODs and LOQs.

In RHMW05, all COPC concentrations were not detected at or above the LODs and LOQs.

5.2 Conclusions

To date, the presence of LNAPL has been observed only once (i.e., in January 2008 in RHMW01 and RHMW02 at less than 0.01 feet). This indicates a significant release from one or more of the USTs at the RHSF has not occurred at this time.

COPC concentrations in samples collected from the U.S. Navy Well 2254-01 have not been detected at or above the LODs and LOQs or are below the EALs. This indicates that elevated COPC concentrations detected in samples collected from monitoring wells within the RHSF are not migrating and impacting the Navy's potable water source.

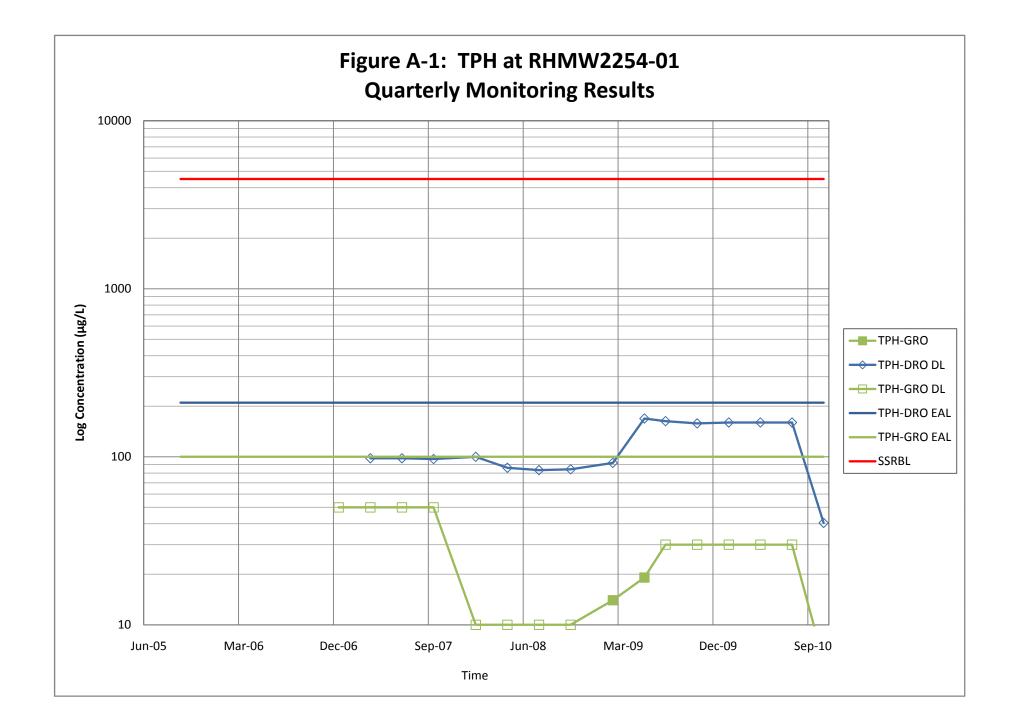
COPC concentrations detected in samples collected from monitoring well RHMW05 have decreased to below the EALs for at least three consecutive monitoring events. The data suggest that elevated COPC concentrations detected in samples collected from monitoring wells located adjacent to the USTs are not migrating in the downgradient direction. RHMW05 is an intermediate monitoring point between the USTs and the U.S. Navy Well 22554-01. At this time, there is no indication that COPCs are migrating in a downgradient direction towards the Navy's potable water source.

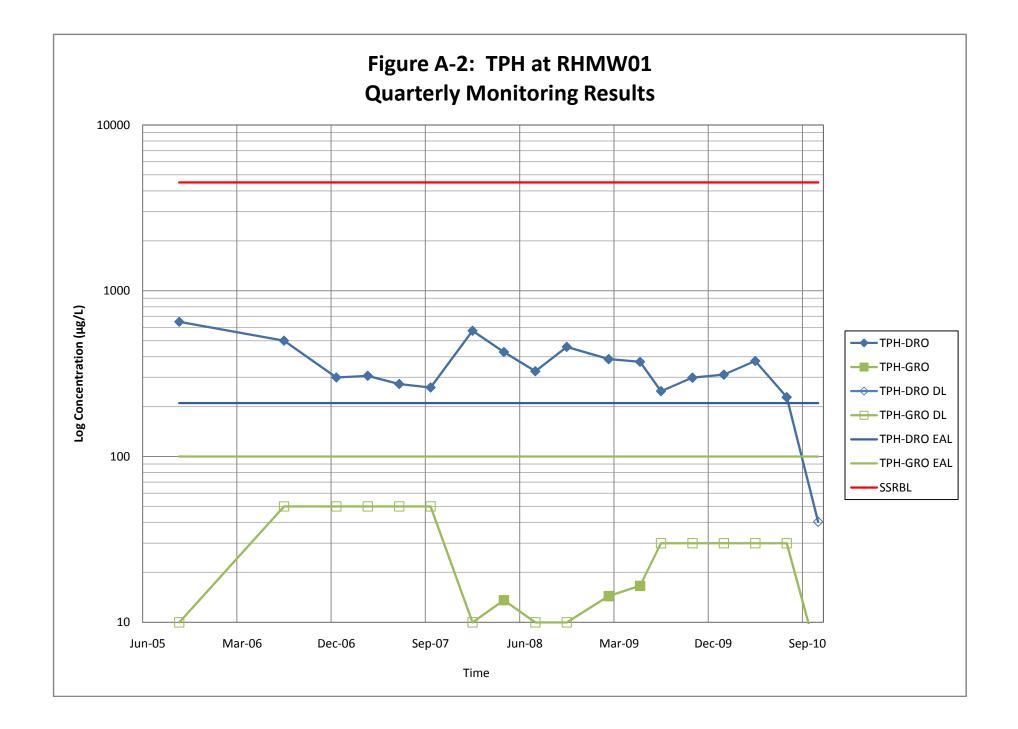
COPC concentrations detected in samples collected from monitoring wells adjacent to the USTs (i.e., RHMW01, RHMW02, and RHMW03) are not steadily increasing for more than one consecutive sampling event. The data suggest that the concentrations are relatively stable over time. It is likely that the COPCs are associated with a previous release from the USTs and not a current or active release.

5.3 Recommendations

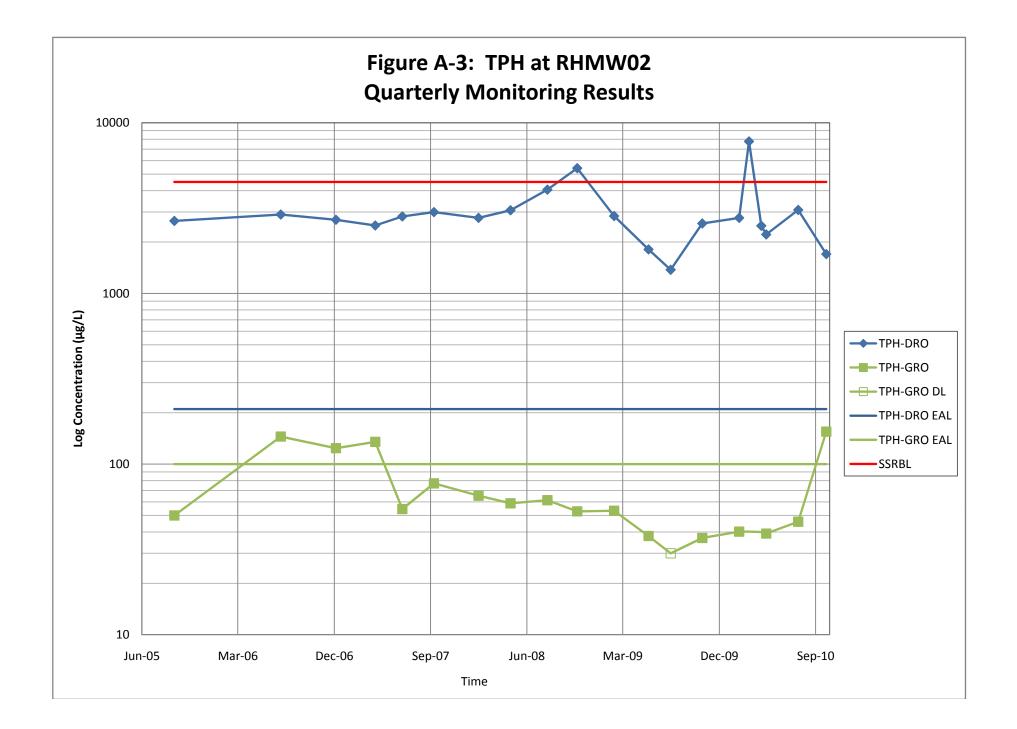
Based on the results of this monitoring event, continuation of the quarterly groundwater monitoring program at the RHSF is recommended. In addition, continuation of monthly free product measurements at RHMW01, RHMW02, RHMW03, and RHMW05; and monthly soil vapor monitoring is also recommended. In response to the Category 2 status of RHMW02, submission of this quarterly report to DOH and initiation of a leak determination program to identify if tanks are leaking are recommended.

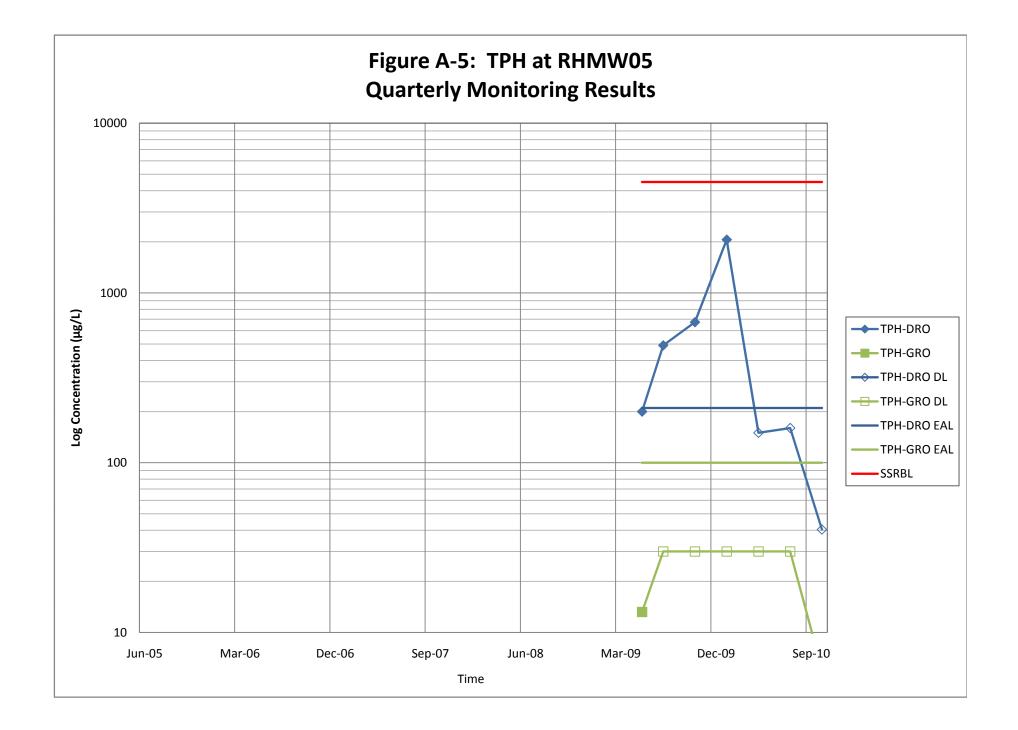
Section 6 References

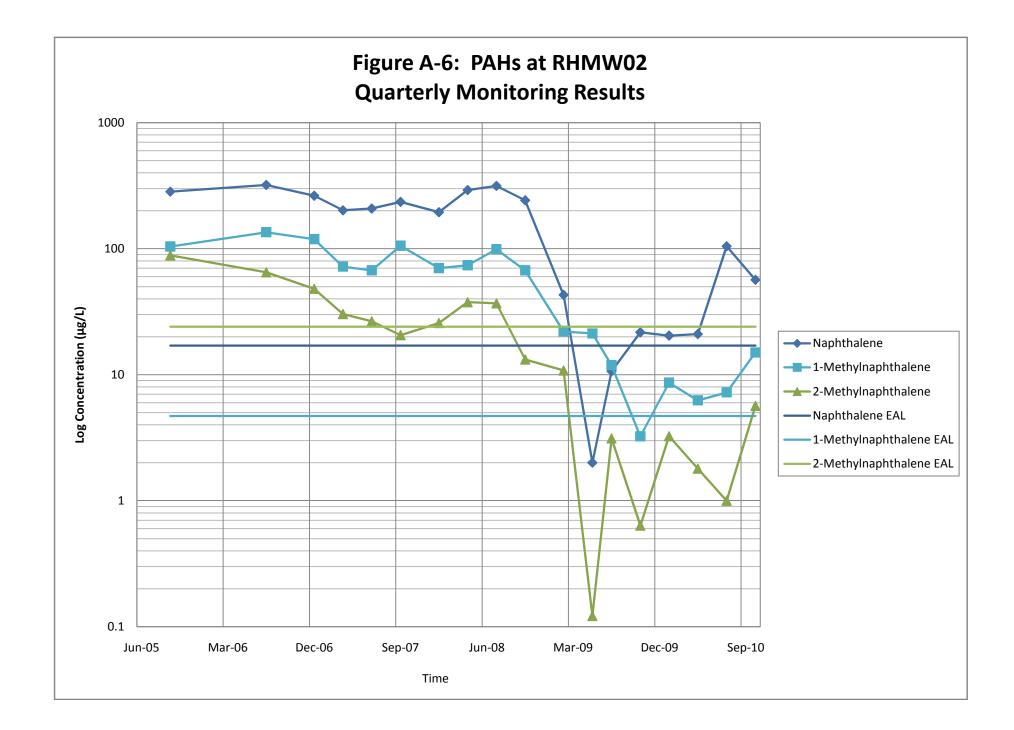

- Dawson Group, Inc., 2006. Fourth Quarter 2005 Groundwater Sampling Report, Red Hill Fuel Storage Facility, Hawaii. February.
- DOH, 2009. Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater. Updated March 2009.
- DON, 2007. Project Procedures Manual, U.S. Navy Environmental Restoration Program, NAVFAC Pacific. February.
- Environet, 2010. Work Plan, Long-Term Monitoring, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, O'ahu, Hawai'i. September.


Hawai'i Administrative Rules, Title 11, Chapter 281, Subchapter 7.


- TEC, 2006. Red Hill Bulk Fuel Storage Facility, Final Addendum Planning Documents, Pearl Harbor, Hawaii. May.
 - _____, 2007. Red Hill Bulk Fuel Storage Facility, Final Technical Report, Pearl Harbor, Hawaii. August.
 - _____, 2008. *Red Hill Bulk Fuel Storage Facility, Final Groundwater Protection Plan, Pearl Harbor, Hawaii.* January 2008 revised in December 2009.
 - _____, 2010. Quarterly Groundwater Monitoring Report, Red Hill Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii. August.
- U.S. Geological Survey (USGS), 2005. Aerial Image. http://hawaii.wr.usgs.gov/index.html.


This page is intentionally left blank.


Appendix A Quarterly Groundwater Monitoring Results for TPH and PAHs, September 2005 through October-November 2010



Appendix B Field Notebook, October-November 2010

OCTODEN 18, 2010	1022-01	5 LTM Red Hill Bulk Stotrage 19 Focility
	0900	Horiba 1122 calibrated
Task: Quarter by GW moniforing + Monthly Personnel: foring VD, SF, M3, & MC		Readings. PH = 3.945/m DO = 8.209
Weather: Outside the tunnel Sunny		Word = 0.452 Temp= 20.0
PPF: Level D. heaving publicition		7445 = 0.0 NTM Sal = 0.2
Equipment: Horiba U22, ppbRae Plus,		ORP = 304 mV
Minippo Rie 2000, pump controller,	0920	Arrive at RilMWOI Backgrand level
vacuum chamber, compressor,		at MW is0.4ppm
eler parma		Os3ppm inside well.
Safely Meeting: Conducted by MS		Well Diameter is L. Sinches.
0645 MS+ MC left Dole Office	0925	8529 Ft. No product.
to pick up key prom	_	2 extension cords were not
Vegel Maria Bland VIDJ (FISON		able to reach the art let we
0700 VD + SF Left Dole office,		were not able to sample RHMW al
		today.
Stop by Storage unit and buy ice + drinks		
0800 Annived at Adit 3 ment		Office: 471-0630 Train
for the safety meeting		
1820 MS+MC left Adits to		Sump Tanks 1- 9: 474-6683 Tanks 9-16: 474-3711
Adit 5 to conduct soil	I call to	Sch [10 01 0
100 por monitoriny		Schodule Pick ups.
*ppb Rae calibrated outside	1100	Left Mugi
the funnel		Arrive MW 03 via Train
* minipae calibrased at the	Care Care Care Care Care Care Care Care	Background & O. 8 ppm
office		Inside vell 0. Oppm
0830 Weinted for the tunnel train		The to the state of the state o

20 1022-015 LTM Roll Hill Bulk Fuel Storage 20	1022-015 LTAN RED HITI Bulk Fuel Storage Facility 21
20 october 18,2010	October 18, 2010
1115 Roduct monitoriki B' product	Activity: Soil vapor Monitoring
1137 Started purging	Personnel: MS, MC
1150 - Took Sample at MW3 ESOOJ.	Personnel: MS; MC Equipment: PPD Rose, Vacanon, Rump,
104.81 ft after punge	dectan beas
1235 Depth to. bottom of well is	08:40 - Calibrate PPb Rae, set up, Hrs enter Adit 5
greater than 110 fr. Extension	enter Adit 5. meeting.
card reaches.	19:03- mire at SVMP15, purge.
1325 Arrive at RHMW2	Substitute Yellow type for orange
Backgrand level from PID Jam	(Shallow SVMP). Missing tube. meet
Inside nell: 1. Oppm	Ground motes team to retreave part.
1400 Collected Sample 25002 + E5003	10:39: Battery low, take lunch to
Rate is good at TOpsi	vecharge battery
1440 Finisted and took train to Ad73.	11:40- Back to SVMP15, purge.
Tomorray call number in Adit 3 when	12:30 - Collect sample at sympis
ready for pickup.	12:40 - purge svmpisp ambible
1700 Filed out COC for todays samples.	12:45 - Sample SVMP15D
annined at the office.	12:53 - anire at smp16 - shallow + V
	mid depth tupes missing. purge symplop
	Sympiles-obstructed, could not sample.
In X	13:06 - anive at Svmp 17, under
1 NCC trank.	Construction, mobilize to sympis.
Nº Gow ;	13:AR + DU DO CICHO AND
	13:11 - Sample SVmp 185 13:15 - punge SVmp 18 13
	13:15 - punger Svorp 1813
	"Rite in the Rain"
	Tute in the flam

2. --

1022-0	015 LTM Red Hill Bulk Fuel Storage Facility 26	10-19-10 1022-015 LTM RHSF 27
Octo	ber 19, 2010	
re son	et Quarterly blond vatu monitoring inside vells continued	0946 begin purging 0950 Stopped purp p and get bottlep
weather	· outside the tunnel - mostly sunny	1010 Collect Sample = ES004
PPE:	Level D, gloves, fall protection	1035 disconnect and cleanup.
Equipme	ent: Huriba UZZ, ppmRdE, put p controller,	1052 more and of pump stin and
	pump compressor, solinst oil mater interface	wait for train
6735	Leare Pole office	Scheduled to have met at 11:15 and
0749	Arrive @ Home Depot to purchase	1145 train arrive, go to RH Mavol
2	extension cord	1152 arrive at RHMWOI, drop off
0801	Leave Home Depos	
0820	pick up the from 7.11 in Alea	1208 Exit ADITS, Lunch break
0837	Arrive at APIT3 neet Durren uchima	1227 Enter ADITS and valle to RHX(WOI, need
	(Navy) and Tony, un pack.	1277 ATTIVE OLT KAMWOT
0845	conduct sofety meching	D 1246 PID= 0.0ppm
0850	Miya and Max go to ADITS for	1223 Orally win on 10 fl
	Soil Vapor monitority; SK, SF, and	tyto attach fittings, missing air
	Varien wait for train	hose fifting pulled up pump to
0901	take train to pump Stn.	Check hose (tryto determine air live and
0914	Arrive @ pump stn.	mater (ve).
0928	sk enter vell with fall protection	1339 Document fitting (takep returnes), MS I And Cleane
	m place.	1300 Creck expression cord length for Atthices
	-PID@RHMW225401=0.0 ppm	1419 Gatch train
	- Depth to water from platform hole	1443 Leave ADIT3
k	2 84.85 ft	1502 Leave peor Harbor End of "A. RA"
		1535 Arrive at Pole office they have

1022-015 LTAN Rod Hill Bulk Fuel Storage Facility 28	10-20-10 1022-015 LTM KHOF 29
October 20,200	
Task: Quarterly Growd water Montering, inside cuells	0939 Begin purgines at RHMWOS
confinued .	0943 The pump compressor likeeps stopping
parsonnel S. Koide, S. Finelan	Tit runs if you purge the line.
weather: outside the tunnel: mostly sunny	09-18 PUMP COMPRESSER Steps Completely
PPE: Level D w/glaves	traubleshoot
Equipment! Horba U22, PPMRAE, pump controller	0956 Try increasing flow rate.
pump compressor, Solirst 07/ crasts	Suspect that compresser is too Strong
mfr-fale probe	1003 Punp died, start again, purge line Cair)
	uten pumping.
0735 Leave Able office and pick up The	1016 Stop purging vater
0815 Pickup FISC Key	1020 pepth to water offer purging = 84.24th
0834 Annue at ADIT3	1025 Collect Sample = ESOOS
0836 call train and arrange pictup	1052 Load train
0838 Conduct Safely meeting	1057 Drop off supplies at RHMWOI, take break.
0844 Load train call and wait for train	1109 Setupat RHMWOI
0901 Calibrate Hariba	1121 Ambient air = 0. 0ppm
PH = 400 10 = 8.12	PID INSIDE RHMUrol= 0.0ppm
cond = 0.445 $tcap = 25.9$	1132 Depth to cater = 85.30 Ft
Furb= 0,1 Sal= 02	
01 P= 326	
0907 train arrive	trauble should, vill take pump to DATICE.
0912 arove at RHXXV05 and set up	1275 Cleanup
equippent.	1259 Leave RHARLOI Untrain
0924 PID = 0.0 ppm	1318 EXIT ADTT3
0930 pepth to water = 84.75 fr	"Rite in the Rein"

2. -

10-20-10	1022-015 LTM	RHSF	30	1022-015 LTM Red Him Bull Fuel Storage For Cility 31
				October 21, 2010
1327	Lunch break			Jask: Contine monthy Soil Vopor monitoring and
1343	Leave Site			Quarterly Groundwater monitory (autside cells)
1357	Prop off FISC	Key	ê	personnel: S. Korde, S. Fineran, M. Solnssen, V. Dupa.
-	- was told that	Vilma can go	to e	weather: Sunny, light to no breeze
	FISC office	and geta du	plicate	PPE: Level D an gloves
	Key.	0		Equipment: PPBRAE, Horba UZZ, PUNP, Vaccu
1419	Arrive at PLS	and pickup	0	chamber, Solinst, bailers
	55 gallon drum	for outside lell		
	Sampling			0725 Leave Dole office (SKISF) go to
1430	Arrive at 14ma	It and buy ice	chest (PICKUP FISC Key
	and blue TCC.			0747 Pickup FISC Key 16)
1455.	Leave Kmof			0808 Arrive at ABIAT 5
1515	Brek in offi	e.		0810 - Salety meeting
5				0827 Arrive at SVMP16
			6	Ambient air = 280 ppb
				0831 begin purging SV165 (purge 2min)
0	\triangleright			0834 Collect Sample
	The			0839 begin perging at SV16M
	A la	\sim	6	0841 dore purgray, collect Sample
	1 Section of the sect	24		0846 begin porgray at SV16D
	4	A Co		0848 done pirgrey, collect Sample
		and the second s	9	0857 Arrive at SVAXPOG
		ACX		0901 begin purging @ SVO65
				0903 Step purgray, Follect Sauple.
			\ I	"
				"Rite in the Rain"

2 -

-						
1022-0	15 LTAX Red Hill OWIK Fuel Storage Raily	10-28-1	0 1022-	015 4	The RHSI	35
Octobe	x 29, 2010 34	40	Sec.			A Part of the
	round value monitory RHVKvol	1324				FA F- A47-3
	SK,SF	1414	Droppe	d off	Key at	Navy (SF)
vealher	: outside mostly Sunny		Weng.	to. St	the ce	7
PPE:	Level D, glover	1500	Back	49 0	the're	
Equipmi	ent: PPIARAE Huriba compression	1 -				
	Fontolly , Samoa				and the second	
14 A			E	1895		
(0958	care Dole affire		Kan			
10908	Calibrated PPD and Herby		KG -		- <u></u>	
	pt 4.00 Temp 24.9		J.			
-	cond HJG Jal 0:2		2			
	TW6 0.0 urp 328	2	d'			
	DO 8.56			Ex.		
1015	porcoup APLIS key	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	Se la		<u> </u>
1024	pickup ru fron 7-11 (Area)	1000 1000		8		
1037	Amare @ AORT3 (- 40 -			
1048	safely neeting, vait for train	1				
1109	train arrive		19633 52			
1121	Arride@ RHMU01 (
1126	PID=0.0ppm			in survive State		
11112	Pepth to at = 85,31 ft	1				
1143	Start purging ind gaining cateris lov	15.1		12-0	0 197 N	
1218	Stop purgry set up bailer					
1225	Bailer vorking but slow. Sk Sick decide	Reading 1				
	to leave tunnels. She sich decide					"Rite in the Rain"
		Revenue -	And and a state of the second	margaria	10 - Harris	since and a second of

11-3=10 1022-015 LTM RHSF 1022-015 LTM Rad HALL RHSF November 3 2010 Tash Grondwaler Monitory at Retike 01 7 0645 Met at office & got field equipment redg 37 1430 Lunrels Robert to not fy him we are 1450 Called 0710 at Gas Pro Arrived doing gumonitring Nitrogen return + Durchased Affre after speaking with Vilma 0800 Left Aitiha a Wit Stopped by Storage 0615 photeh nitrogen tank. + hout 1757 to pick up ada3 1037 Stopped by Compressed is too heavy t air Key. Habing Gafe had somet SF Lange. 1520 terrible traffic. at Arrived Storage + unbaded 1120 at Adit 3 just as train 1345 Arrived Got back Section 1 arrived 1135 than Arrived at RHMW-01 -Calibrate, PPM PD level 130.0 ppm PD Calibrated Haripa: PH 4.01 Section. Cond 0.449 Tub 0.0 -5.43 PO lepth to GW was 85. 19ft 254 Sample fine of ES009 Air compessor needs help prograging E-main a during the discharge cycle or overhats & times off 1415 -Train picked us up Controller was working with and the second se Discharge at 5 Charge 5 60 psi "Rite in the Rain"

2

Appendix C Groundwater Sampling Logs, October-November 2010

WELL ID:	RHMW2254-01	LOCATION:	Red Hil	I Bulk Fuel Storag	e Facility	PROJECT NO:	10	22-015	
INITIAL WA	ATER LEVEL:	not appl	icable (N/A)		DATE:	10/19/2010	TIME:	0930	
TOTAL DE	PTH OF WELL:	unkn	own		PERSONNEL I	NVOLVED:	S. Fine	ran, S. Koide	
LENGTH C	F SATURATED ZON	E:	N/A		WEATHER CO	NDITIONS:		N/A	
VOLUME C	OF WATER TO BE RE	MOVED:	N/A		METHOD OF F	REMOVAL:	Low flow dedic	cated bladder pump	
WATER LE	VEL AFTER PURGIN	IG:	N/A		PUMPING RAT	Ē:	Approxin	mately 1 L/min	
WELL PUR	RGE DATA:								
TIME	VOLUME	pН	COND	TURBIDITY	DO (mg/l)	TEMP (°C)	SALINITY	REDOX (ORP)	
	REMOVED	•	(mS/m)	(NTU)		. ,	(%)	(mV)	
0946	2L	5.99	55.4	1.1	9.09	21.9	0.0	202	
0949	4L	6.19	55.4	2.1	8.51	21.7	0.0	202	
0950	6L	6.69	54.7	1.7	8.34	21.7	0.0	202	
0954	<u>8L</u>	6.72	54.8	1.7	8.37	22.2	0.0	202	
0958	<u>10 L</u>	6.77	54.6	2.0	8.50	21.8	0.0	201	
1003	12 L	6.82	54.7	2.2	8.50	21.6	0.0	201	
		<u> </u>				. <u></u>			
		<u> </u>						. <u> </u>	
		<u> </u>							
		<u> </u>						. <u> </u>	
		<u> </u>						. <u></u>	
SAMPLE R	ETRIEVAL METHOD	Low flow dedicate	ed bladder pump		E OF SAMPLE:				
			0.000	COLOR _	Clear				
SAMPLE I	· · · · · · · · · · · · · · · · · · ·	H-RHMW2254-01	· · · · ·	TURBIDITY	None				
	COLLECTION TIME:	<u>10'</u>		SEDIMENT	None				
SAMPLED	BY: <u>S.</u>	Fineran, S. Koide		OTHER _					
COMMENT	IS AND OBSERVATIO	DNS:	PID = 0.0 ppr						
			Depth to wate	er from the platfor	n hole was approx	ximately 84.85 feet	•		
				· · · · · ·					
	ORY ANALYSIS PARA (EPA8015B) & PAHs (EP			-		B) & VOCs (EPA 8260	JB) with hydrochioric	acid preservative,	
IPH-DRU	(EPA8015B) & PARS (EP	A 8270D SIM) with he	preservative, and	uissoived lead (EPA	6020) with hitric acid p	preservative			
				(4) 40 ml	(OAa (4) 11 am	borbottla (1) EQ		a hattla	
NUMBER	AND TYPES OF SAMI		S FILLED.	(4) - 40 ML	70AS, (4) - 1 L an	nber bottle, (1) - 50	o mil polyetnyler	ie bollie	
	MINATION PROCED	IRES:	Alconox triple	e rinse with distille	ad water				
	DELIVERED TO:	APPL, Inc. vi			Walei	TRANSPORTE	RS.	VD, MS	
		-					_		
SAIVIPLE D	ELIVERY DATE:	10/21/10 (to I	EUEX)			SAMPLE DELI		1345	

WELL ID:	RHMW01	LOCATION:	Red Hill E	Bulk Fuel Storag	e Facility	PROJECT NO:	10	22-015	
INITIAL WAT	ER LEVEL:	85.19 feet bT	OC (below top of casing)	<u> </u>	DATE:	11/3/2010	TIME:	1146	
TOTAL DEP	TH OF WELL:	unł	nown		PERSONNEL I	NVOLVED:	S. Finera	n, M. Solmssen	
LENGTH OF	SATURATED ZON	E: _	N/A	_	WEATHER CO	NDITIONS:	Rainy (ou	tside of tunnel)	
VOLUME OF	WATER TO BE RE	MOVED:	N/A	_	METHOD OF R	REMOVAL:	Low flow dedic	ated bladder pump	
WATER LEV	EL AFTER PURGIN	IG:	85.14 feet bTOC	_	PUMPING RAT	E:	Approximat		
WELL PURG	E DATA:								
TIME	VOLUME	pН	COND	TURBIDITY	DO (mg/l)	TEMP (°C)	SALINITY	REDOX (ORP)	
	REMOVED	•	(mS/m)	(NTU)		()	(%)	(mV)	
<u> 1214</u> 1217	8 oz (0.2L)	<u>6.74</u> 6.84	<u> </u>	<u>26.4</u> 22.1	<u>5.80</u> 3.56	<u>24.9</u> 24.9	0.0	-100 -105	
	<u>16 oz (0.5L)</u>								
<u> 1220</u> 1224	24 oz (0.7L)	<u> </u>	<u>35.1</u> 35.2	<u>20.5</u> 15.9	<u>3.42</u> 2.77	<u>24.8</u> 24.9	0.0	-108 -108	
1224	28 oz (0.8L) 36 oz (1L)	7.02	35.5	11.3	2.28	24.9	0.0	-108	
1233	44 oz (1.3L)	7.02	35.3	9.4	1.97	24.9	0.0	-108	
SAMPLE RE	TRIEVAL METHOD	: Low flow dedic	ated bladder pump	APPEARANC	e of sample:				
			· · ·	COLOR	Clear				
SAMPLE ID:	ES009	(RH-RHMW01-0	GW21)	TURBIDITY	None				
SAMPLE CO	LLECTION TIME:	1	254	SEDIMENT	None				
SAMPLED B	Y: <u>S. Fi</u>	neran, M. Solms	ssen	OTHER					
COMMENTS	S AND OBSERVATIO	ONS:	PID = 0.0 ppm Compressor is	overheating and	I keeps turning off				
	RY ANALYSIS PAR. EPA8015B) & PAHs (EF			_		B) & VOCs (EPA 8260 ative (to be filtered in th		acid preservative,	
NUMBER AN	ND TYPES OF SAM	PLE CONTAINE	ERS FILLED:	(4) - 40 mL V	/OAs, (4) - 1 L am	ber bottle, (1) - 500	0 mL polyethyler	ne bottle	
DECONTAM	INATION PROCED	URES:	Alconox, triple I	rinse with distille	ed water				
	ELIVERED TO:	APPL, Inc.				TRANSPORTE	RS:	SF	
	LIVERY DATE:	11/4/2010 (SAMPLE DELIN	-	1410	

WELL ID:	RHMW02	LOCATION:	Red Hill E	Bulk Fuel Storag	e Facility	PROJECT NO:	10	22-015	
INITIAL WAT	FER LEVEL:	87.9	1 feet bTOC	_	DATE:	10/18/2010	TIME:	1335	
TOTAL DEP	TH OF WELL:	unl	nown		PERSONNEL I	NVOLVED:	V. Dupi	ra, S. Fineran	
LENGTH OF	SATURATED ZON	E:	N/A		WEATHER CO	NDITIONS:		N/A	
VOLUME OF	WATER TO BE RE	MOVED:	N/A	_	METHOD OF F	REMOVAL:	Low flow dedic	ated bladder pump	
WATER LEV	EL AFTER PURGIN	IG:	87.90 feet bTOC	_	PUMPING RAT	MPING RATE:Approxim		nately 1 L/min	
WELL PURG	SE DATA:								
TIME	VOLUME	pН	COND	TURBIDITY	DO (mg/l)	TEMP (°C)	SALINITY	REDOX (ORP)	
	REMOVED	•	(mS/m)	(NTU)		()	(%)	(mV)	
1344	2 L	6.37	53.5	2.4	1.45	24.5	0.0	-102	
1345	3 L	6.30	52.7	2.2	0.74	24.2	0.0	-102	
1346	4 L	6.26	52.5	2.0	0.65	24.2	0.0	-103	
1347	5 L	6.28	52.8	2.1	0.71	24.3	0.0	-100	
1350	6 L	6.28	52.9	1.9	0.77	24.4	0.0	-90	
1352	7 L	6.24	53.2	1.6	0.47	24.5	0.0	-87	
1354	8 L	6.26	53.5	1.6	0.43	24.5	0.0	-88	
1355	9 L	6.21	53.7	1.6	0.48	24.5	0.0	-85	
1356	10 L	6.22	53.4	1.7	0.46	24.6	0.0	-84	
1357	11 L	6.22	53.5	1.8	0.47	24.2	0.0	-80	
1358	12 L	6.24	53.8	1.8	0.48	24.2	0.0	-79	
SAMPLE RE		: Low flow dedic	ated bladder pump	APPEARANC	E OF SAMPLE:				
				COLOR	Clear				
SAMPLE ID:	ES002 ((RH-RHMW02-	GW21)		None				
	LLECTION TIME:	1		SEDIMENT	None				
SAMPLED B	SY: V. I			OTHER					
COMMENTS	S AND OBSERVATIO	ONS:	PID = 0.0 ppm						
			Collected MS/M						
			Collected duplic	cate sample = E	S003 (RH-RHMW	02-GW21 Dup)			
	RY ANALYSIS PARA EPA8015B) & PAHs (EP					B) & VOCs (EPA 8260 preservative	B) with hydrochloric	acid preservative,	
NUMBER AN	ND TYPES OF SAMI	PLE CONTAINE	ERS FILLED:			s, (4) - 1 L amber bottle, nber bottle, (2) - 500 mL		hylene bottle	
DECONTAM	IINATION PROCEDU	URES:	Alconox, triple	rinse with distille	ed water				
SAMPLES D	ELIVERED TO:	APPL, Inc.	via FedEx			TRANSPORTE	RS:	VD, SF	
SAMPLE DE	LIVERY DATE:	10/19/10 (to	o FedEx)			SAMPLE DELI	/ERY TIME:	1200	

WELL ID:	RHMW03	LOCATION:	Red Hill E	Bulk Fuel Storag	ge Facility	PROJECT NO:	10	22-015		
INITIAL WAT	ER LEVEL:	104.1	13 feet bTOC	_	DATE:	10/18/2010	TIME:	1141		
TOTAL DEP	TH OF WELL:	un	known		PERSONNEL I	NVOLVED:	V. Dupr	a, S. Fineran		
LENGTH OF	SATURATED ZO	NE:	N/A		WEATHER CO	NDITIONS:		N/A		
VOLUME OF	WATER TO BE R	REMOVED:	N/A	_	METHOD OF R	REMOVAL:	Low flow dedic	ated bladder pump		
WATER LEV	EL AFTER PURG	ING:	104.81 feet bTOC	_	PUMPING RAT	E:	Approxin	oproximately 1 L/min		
WELL PURG										
	VOLUME		COND	TURBIDITY			SALINITY	REDOX (ORP)		
TIME	REMOVED	рН	(mS/m)	(NTU)	DO (mg/l)	TEMP (°C)	(%)	(mV)		
1141	4 L	6.39	90.5	6.2	0.65	26.9	0.0	219		
1142	5 L	6.43	93.6	1.5	0.49	26.9	0.0	169		
1143	6 L	6.40	88.0	0.1	0.50	26.8	0.0	129		
1144	7 L	6.41	92.1	0.5	0.54	26.8	0.0	104		
1145	8 L	6.47	90.4	0.0	0.66	26.8	0.0	85		
1146	9 L	6.45	85.9	0.1	0.67	26.8	0.0	78		
1147	11 L	6.50	90.7	0.1	0.61	26.8	0.0	74		
1148	12 L	6.47	87.5	1.7	0.59	26.8	0.0	69		
			. <u></u>							
SAMPLE RE	TRIEVAL METHO	D: Low flow dedic	ated bladder pump	APPEARANC	E OF SAMPLE:					
				COLOR	Clear					
SAMPLE ID:	ES001	1 (RH-RHMW03-	GW21)	TURBIDITY	None					
SAMPLE CO	LLECTION TIME:	1	150	SEDIMENT	None					
SAMPLED B	Y:	V. Dupra		OTHER						
		-1	<u> </u>	_						
COMMENTS	AND OBSERVAT	IONS	PID = 0.0 ppm							
COMMENTO	Contraction of the second seco		<u> </u>							
			PRESERVATIVES							
						B) & VOCs (EPA 8260	B) with hydrochlorid	acid preservative,		
TPH-DRU (E	PA8015B) & PAHS (E	PA 8270D SIM) With	no preservative, and dis	ssolved lead (EPA	6020) with hitric acid	preservative				
	ID TYPES OF SAM			(4) = 40 mL	$\sqrt{0} \Delta c_{1}(4) = 1 + 2m$	ber bottle, (1) - 500) ml. polyothylor	o bottlo		
				<u>(+) - +0 IIIE</u>	VOA3, (4) - 1 L an	iber bottle, (1) - 500				
DECONTAM	INATION PROCE	DURES:	Alconox, triple r	rinse with distille	ed water					
SAMPLES D	ELIVERED TO:	APPL, Inc.	via FedEx			TRANSPORTE	RS:	VD, SF		
SAMPLE DE	LIVERY DATE:	10/19/10 (t	o FedEx)			SAMPLE DELIV	/ERY TIME:	1200		

WELL ID:	RHMW05	LOCATION:	Red Hill I	Bulk Fuel Storag	e Facility	PROJECT NO:	10	022-015
INITIAL WAT	ER LEVEL:	84.7	5 feet bTOC	_	DATE:	10/20/2010	TIME:	0939
TOTAL DEPTH OF WELL: un		nown		PERSONNEL INVOLVED:		S. Fineran, S. Koide		
LENGTH OF SATURATED ZONE:			N/A	WEATHER CONDITIONS:		NDITIONS:	N/A	
VOLUME OF WATER TO BE REMOVED:			N/A	_	METHOD OF R	EMOVAL:	Low flow dedicated bladder pump	
WATER LEVEL AFTER PURGING:			84.74 feet bTOC	_	PUMPING RATE:		Approximately 0.25 L/min	
WELL PURG	E DATA:							
TIME	VOLUME REMOVED	pН	COND (mS/m)		DO (mg/l)	TEMP (°C)	SALINITY (%)	REDOX (ORP)
0942	2 L	6.11	27.9	(NTU) 125.0	7.73	22.7	0.0	(mV) 216
0958	3 L	6.77	27.8	40.2	7.44	23.5	0.0	212
1001	4 L	6.84	28.5	27.8	7.30	23.0	0.0	208
1012	6 L	6.85	29.3	14.6	7.29	22.8	0.0	213
1014	7 L	6.87	29.6	34.1	7.30	22.3	0.0	212
1016	8 L	6.86	29.9	27.1	7.29	22.3	0.0	212
		. <u> </u>	<u> </u>					
SAMPLE RE	TRIEVAL METHOD	D: Low flow dedic	ated bladder pump	COLOR	E OF SAMPLE: Clear			
SAMPLE ID: ES005 (RH-RHMW05-GW21)			C1W/21)	TURBIDITY	None			
	AMPLE ID:ES005 (RH-RHMW05-GW21) AMPLE COLLECTION TIME: 1025			SEDIMENT	None			
SAMPLED BY: S. Fineran, S. Koide				OTHER	None			
-								
COMMENTS	AND OBSERVATI	IONS:	PID = 0.0 ppm					
			PRESERVATIVES				D)ith hundre shleri	
			no preservative, and di	_		B) & VOCs (EPA 8260 preservative	B) with hydrochionic	ació preservative,
NUMBER AN	ID TYPES OF SAM	IPLE CONTAINE	ERS FILLED:	(4) - 40 mL \	/OAs, (4) - 1 L am	ber bottle, (1) - 500	0 mL polyethyle	ne bottle
DECONTAM	INATION PROCED	URES:	Alconox, triple	rinse with distille	ed water			
SAMPLES DELIVERED TO:APPL, Inc. via FedEx			via FedEx			TRANSPORTE	RS:	MS, VD
SAMPLE DE	LIVERY DATE:	10/21/2010	(to FedEx)			SAMPLE DELIV	1345	

Appendix D Laboratory Analytical Results, October-November 2010 (on CD-ROM)