Quarterly Groundwater Monitoring Report Red Hill Fuel Storage Facility Pearl Harbor, Oahu, Hawaii Latitude: 21°22'15" N Longitude: 157°53'33" W

HDOH Facility ID No. 9-102271 HDOH Release ID No. 99051, 010011, 020028

April 2010

Prepared by:

TEC Inc. 1003 Bishop St. Suite 1505 Pauahi Tower Honolulu, Hawaii 96813

Prepared for:

Commander Navy Region Hawaii Environmental Department, Code N45 850 Ticonderoga Street, Suite 110 Pearl Harbor, Hawaii 96860-5101

Table of Contents

Table	of Con	itents	i						
Execu	tive Su	ımmary	1						
1.0	0 Introduction								
	1.1	1.1 Project Objective							
	1.2	.2 Previous Reports							
	1.3	Background	9						
		1.3.1 Site Description	9						
		1.3.2 Facility Information	9						
		1.3.3 UST Information							
	1.4	Previous Environmental Investigations	9						
	1.5	5 Regulatory Updates							
	1.6	RHMW05 Installation	12						
2.0	Samp	le Collection and Analyses							
	2.1	Monitoring Well Purging							
	2.2	Groundwater Sample Collection	13						
	2.3	Groundwater Sample Analyses							
3.0	Groun	dwater Sample Analytical Results	14						
	3.1	January, February, and March 2010 Sample Analytical Results	14						
	3.2 Groundwater Contaminant Trend								
	3.3	Results of Oil/Water Interface Measurements							
	3.4	Groundwater Status	19						
4.0	.0 Summary and Conclusions								
5.0	Refere	ences	27						

List of Tables

Table 1	Analytical Results for Quarterly Groundwater Sampling Release Response	Report15
Table 2	Oil/Water Interface Measurements	19
Table 3	Action Levels for Compounds of Concern	20
Table 4	Results Categories and Responses to Groundwater Monitoring Results	20

List of Figures

Figure 1TPH Trends in Groundwater, Round 18 (Jan. 26/27, Feb. 23, and March 30, 2010)..25Figure 2PAH Trends in Groundwater, Round 18 (Jan. 26/27, Feb. 23, and March 30, 2010) .26

List of Appendices

Appendix A – Laboratory Analytical Reports Appendix B – January, February, and March 2010 TPH-DRO Results Memorandum

Executive Summary

This quarterly groundwater monitoring report presents the results of groundwater sampling conducted on January 26 and 27, 2010 and resample events at RHMW02 on February 23, 2010 and again on March 30, 2010 at the United States (US) Navy Bulk Fuel Storage Facility at Red Hill, Oahu, Hawaii (the Facility). The sampling and reporting was conducted by TEC Inc. (TEC) for the Fleet and Industrial Supply Center (FISC) at Pearl Harbor, Hawaii. This report is part of a series of quarterly groundwater monitoring reports provided by the US Navy to the State of Hawaii Department of Health (HDOH) in accordance with HDOH's release response requirements. Currently, there are 18 active and 2 inactive, 12.5 million gallon, field-constructed underground storage tanks (USTs) located at the Facility.

Background

In 2002, the US Navy installed a groundwater monitoring well (currently named RHMW01) into the basal aquifer, directly located between RHMW02 and US Navy Well 2254-01, within the lower access tunnel. Groundwater samples from this well indicated that petroleum from the Facility has migrated to the basal aquifer (AMEC, 2002). In 2005, the US Navy began quarterly monitoring of the aquifer to protect their drinking water resource associated with the US Navy Well 2254-01. US Navy Well 2254-01 is located approximately 3,000 feet down-gradient from the Facility USTs and provides approximately 24% of the potable water to the Pearl Harbor Water System (PHWS).

By September 2005, the US Navy had installed two more groundwater monitoring wells (RHMW02 and RHMW03) within the Facility UST system, a background groundwater monitoring well (RHMW04) located north of UST tank 20 and adjacent to the US Navy Firing Range, and a groundwater monitoring well within the US Navy Well 2254-01 infiltration gallery (RHMW2254-01).

All five wells were sampled twice as part of a comprehensive environmental investigation and risk assessment (TEC, 2006). For this investigation, groundwater samples were analyzed for petroleum constituents and compared against HDOH Drinking Water Environmental Action Levels (EALs) (HDOH, July 2005). In addition, a three-dimensional (3-D) groundwater model was developed to produce site-specific risk-based levels (SSRBLs) for compounds of concern. The results of this modeling effort indicated that Jet Propulsion (JP)–5 fuel presented the biggest risk to the US Navy water supply, due to its mobility and toxicity. Finally, the model determined that a non-aqueous plume (free product) of JP-5 would need to migrate to within 1,100 feet of the US Navy Well 2254-01 infiltration gallery for HDOH EALs to be exceeded within the gallery. Based on this, free-product must be observed in RHMW01 for EALs to be exceeded at the US Navy Well 2254-01.

In April 2009, another groundwater monitoring well (RHMW05) was installed within the lower access tunnel between RHMW01 and US Navy Well 2254-01. It was installed to identify the extent of contaminant migration before it reaches US Navy Well 2254-01 (see Figure 1).

During the summer and fall of 2008, HDOH updated their EALs, which resulted in significant changes to the action levels associated with methylnaphthalenes. The HDOH Drinking Water toxicity EAL for these compounds was 240 micrograms per liter (μ g/L). This concentration assumed that methylnaphthalenes were not human carcinogens. Once evidence emerged and was accepted by the US Environmental Protection Agency (USEPA) that methylnaphthalenes are carcinogenic to humans, HDOH adopted more rigorous EALs of 4.7 μ g/L for 1-methylnaphthalene and 24 μ g/L for 2-methylnaphthalene (HDOH, 2008).

The HDOH Drinking Water EAL for naphthalene was also updated during this process. Previously, HDOH based their naphthalene EAL on USEPA Region 9 Preliminary Remediation Goal (USEPA PRG) of 6.2 μ g/L, which is associated with a non-cancer Hazard Index of 1. In deference to the California Department of Public Health's Drinking Water Notification Levels, (HDOH, 2008) HDOH updated their naphthalene drinking water EAL to 17 μ g/L.

Finally, the HDOH Drinking Water EAL for TPH-DRO was increased from 100 μ g/L to 210 μ g/L, although the Groundwater Gross Contamination EAL for TPH-DRO remains 100 μ g/L.

Groundwater Protection Plan

In 2008, the US Navy completed the *Red Hill Bulk Fuel Storage Facility Final Groundwater Protection Plan* (TEC, 2008), which specified SSRBLs and various required actions based on the category status (i.e., categories 1 through 4) of each groundwater monitoring well. In 2009, the Plan was revised to account for ongoing changes, such as the installation of monitoring well RHMW05. The main objective of the Plan is to protect the groundwater quality of US Navy Well 2254-01, which provides potable water to the PHWS. This is accomplished by comparing petroleum concentrations in the Facility wells to established SSRBLs and taking appropriate action. A secondary, but important objective of the Plan is to identify leaking USTs by evaluating increasing concentration trends, or the presence of free product in one or more groundwater monitoring wells. This quarterly report compares observed water quality to these established categories and associated actions.

Current Results

On January 26 through 27, 2010, five groundwater samples (i.e., RHMW01, RHMW02, RHMW03, RHMW05 and RHMW2254-01), along with the required quality control samples (duplicate, matrix spike, spike duplicate, and trip blank) were collected for analysis. Samples were analyzed for Total Petroleum Hydrocarbons (TPH) quantified as Diesel-Range Organics (DRO) and Gasoline Range Organics (GRO), Volatile Organic Compounds (VOCs), Polynuclear Aromatic Hydrocarbons (PAHs), and dissolved lead. Due to elevated concentrations of TPH-DRO at RHMW02, additional samples were collected on February 23, 2010 and March 30, 2010 and analyzed for TPH-DRO.

<u>TPH-DRO</u>

TPH-DRO was detected at 312 (μ g/L) in RHMW01, 2,770 μ g/L (i.e., the average of normal and duplicate samples) in RHMW02, and at 2,060 μ g/L in RHMW05. TPH-DRO was not detected above the laboratory method detection limit (MDL) in RHMW03 and RHMW2254-01. The

HDOH Drinking Water EAL and SSRBL for TPH-DRO are 210 μ g/L and 4,500 μ g/L, respectively.

TPH-GRO

For TPH-GRO the HDOH Drinking Water EAL is 100 μ g/L. In samples RHMW01, RHMW03, RHMW05, and RHMW2254-01 TPH-GRO was not observed above the laboratory MDL (i.e., 30 μ g/L). In the regular and duplicate samples from RHMW02, TPH-GRO was detected at an average of 40.2F μ g/L [F indicates that the compound was identified, but the concentration was above the MDL and below the reporting limit (RL), therefore is considered an estimate].

Other Parameters above HDOH Drinking Water EALs

In RHMW02, the average concentrations between the normal and duplicate sample of naphthalene and 1-methylnaphthalene were 20.4 μ g/L and 8.65 μ g/L, respectively. This is above the HDOH Drinking Water EALs of 17 μ g/L for naphthalene, and 4.7 μ g/L for 1-methylnaphthalene.

Trend Analysis

The following is a discussion of compounds that exceeded HDOH Drinking Water EALs during two or more recent consecutive sampling events, thus establishing a trend:

<u>RHMW01</u>

At RHMW01, concentrations of TPH-DRO have been greater than the HDOH Drinking Water EAL since September 2005, but less than 25 percent of the SSRBL of 4,500 μ g/L. TPH-DRO had exhibited a decreasing trend since October 2008 with the lowest concentration (i.e., 248 μ g/L) recorded in July 2009. Since July 2009, this trend began increasing with 299F μ g/L and 312F μ g/L detected in October 2009 and January 2010, respectively.

RHMW02

From September 2005 through February 2009, TPH-DRO exceeded the HDOH Drinking Water EAL and was greater than 50 percent of the SSRBL (estimated solubility limit of 4,500 μ g/L). However, there has been a decreasing trend since the SSRBL was exceeded in October 2008 to below 50 percent of the SSRBL in May and July 2009. However, since increasing above 50 percent of the SSRBL in October 2009, TPH-DRO continued exhibiting an increasing trend through January 2010. In January 2010, TPH-DRO increased to an average of 2,770 μ g/L. This prompted resample events in February 2010 when TPH-DRO increased to an average of 7,780 μ g/L, above the SSRBL and again in March 2010 when TPH-DRO averaged 2,490 μ g/L. It is important to note that in January and February 2010 tentatively identified compounds (TICs) apparently not associated with petroleum from the Facility were detected at significant concentrations in RHMW02. However, TICs were not observed at significant concentrations for the March 2010 sampling event. After subtracting the TICs from the January and February 2010 results, TPH-DRO was detected at an average of 1,925 μ g/L and 3,200 μ g/L, respectively (see Appendix B).

For other parameters, 1-methylnaphthalene and 2-methylnaphthalene have almost consistently averaged concentrations above HDOH Drinking Water EALs (i.e., 4.7 μ g/L and 24 μ g/L, respectively) since September 2005. However, a significantly decreasing trend since October

2008 has since brought these concentrations below the HDOH Drinking Water EALs. In January 2010, 1-methylnaphthalene increased above the HDOH Drinking Water EAL to an average concentration of 8.645 μ g/L, after decreasing to the lowest concentration of any round in October 2009 (i.e., 3.245 μ g/L). In January 2010, although not exceeding the HDOH Drinking Water EAL, 2-methylnaphthalene increased to an average concentration of 3.25 μ g/L after decreasing in October 2009. Naphthalene has exhibited a historical trend similar to 2-methylnaphthalene at RHMW02. However, in October 2009 and January 2010, naphthalene increased to an averaged 21.65 μ g/L and 20.4 μ g/L, respectively, greater than the HDOH Drinking Water EAL of 17 μ g/L.

<u>RHMW03</u>

At RHMW03, historically, concentrations of TPH-DRO have fluctuated around the HDOH Drinking Water EAL, but have been significantly lower than corresponding values observed at RHMW01 and RHMW02. However, during the last four sampling events (i.e., May 2009, July 2009, October 2009, and January 2010), TPH-DRO was not detected above the laboratory MDL. These results represent a continuing decreasing trend for TPH-DRO that has existed since October 2008.

<u>RHMW05</u>

At RHMW05 there is an increasing trend for TPH-DRO. The January 2010 concentration was 2,060 μ g/L, a significant increase as compared with the October 2009 concentration of 673 μ g/L. The January 2010 concentration is greater than the HDOH EAL, but less than 50 percent of the SSRBL for TPH-DRO. However, as with RHMW02, TICs apparently not associated with petroleum from the Facility were detected at significant concentrations in RHMW05. After subtracting the TICs from the January 2010 results, TPH-DRO was estimated at a concentration of 541 μ g/L (see Appendix B).

<u>US Navy Well 2254-01</u>

At RHMW2254-01, no compounds have been detected above the laboratory MDLs since trace concentrations of TPH-GRO and 2-methylnaphthalene were observed in the February and May 2009 events. However, in January 2010 naphthalene was detected at 0.0375F μ g/L via EPA Method 8270C SIM, just above the laboratory MDL (i.e., 0.0326 μ g/L) and below the HDOH EAL (i.e., 17 μ g/L).

Current Groundwater Status

To date, there is no observation of a trend (i.e., two or more consecutive events) of light-non aqueous phased liquids (LNAPL), otherwise known as free product, on groundwater in any of the Facility monitoring wells.

US Navy Well 2254-01

Although a trace concentration of naphthalene was detected at RHMW2254-01 during the January 2010 sampling event, it does not place the well into the Category 1 status. Because no contamination trend (i.e., two or more consecutive events of detectable concentrations) has been established, RHMW2254-01 located at US Navy Well 2254-01, does not meet the Category 1 definition.

<u>RHMW03</u>

Based upon the January 2010 sampling event, RHMW03 is not eligible for any category status change since no compounds were detected above the laboratory MDLs.

Category 1 Status Locations

There are no Category 1 status locations based upon the January 2010 event.

Category 2 Status Locations

RHMW01

The January 2010 sampling event indicates that RHMW01 should remain in Category 2 status. This is because the TPH-DRO concentration increased to 312F μ g/L and is greater than the HDOH Drinking Water EAL (210 μ g/L), but less than half the SSRBL of 4,500 μ g/L (estimated solubility limit of JP-5).

RHMW05

Based upon the January 2010 sampling event, RHMW05 should remain in a Category 2 status. TPH-DRO in RHMW05 (i.e., 2,060 μ g/L) is above the drinking water EAL of 210 μ g/L and has been showing an increasing trend over the last four rounds. However, TICs apparently not associated with petroleum from the Facility were detected at significant concentrations in RHMW05. After subtracting the TICs, TPH-DRO was estimated at a concentration of 541 μ g/L (see Appendix B).

Category 2 for RHMW01 and RHMW05 requires:

- 1. Quarterly reports to be sent to HDOH; and
- 2. Initiation of a leak determination program to identify if tanks are leaking.

Category 3 Status Locations

RHMW02

Results from the January 2010 sampling event and the resample events in February and March 2010 indicate that RHMW02 is in Category 3 status. This is because TPH-DRO, after subtracting the TICs apparently not associated with petroleum from the Facility, is greater than the HDOH Drinking Water EAL (210 μ g/L), and is between one half and the established SSRBL value of 4,500 μ g/L (estimated solubility limit of JP-5). Specifically, the maximum observed TPH-DRO concentration among the January 2010 and February 2010 sampling efforts occurred during the re-sampling of RHMW02 on Feburary 23, 2010 with concentrations of 3,470 μ g/L and 2,930 μ g/L (duplicate). These concentrations were corrected by removing apparently nonfuel related compounds from the TPH-DRO total concentration (see Appendix B). The March 2010 re-sampling results did not contain large concentrations of 2,630 μ g/L and 2,350 μ g/L (duplicate) provide an average TPH-DRO concentration 2,490 μ g/L (Appendix B).

In addition, the HDOH Drinking Water EAL of 17 μ g/L for naphthalene was exceeded in January 2010 [i.e., 20.4 μ g/L (the average of normal and duplicate samples)].

Category 3 response at RHMW02 requires:

- 1. Send quarterly reports to HDOH;
- 2. Initiation of a leak determination program to identify if tanks are leaking;
- 3. Increase free product monitoring frequency to once per month (if concentrations increasing);
- 4. Notify HDOH verbally within 7 days and follow with written notification in 30 days;
- 5. Remove sampling pumps, measure product in pertinent wells with interface probe, reinstall pumps if product is not detected; and
- 6. Immediately evaluate tanks for leaks.

Category 4 Status Locations

There are no Category 4 status locations.

Conclusions and Recommendations

There is no indication of an immediate threat of disruption to drinking water resources of the US Navy Well 2254-01 as a result of the January and February 2010 data. However, a trace concentration of naphthalene was detected just above the laboratory MDL, but significantly less than the HDOH drinking water EAL at RHMW2254-01. The increasing TPH-DRO concentrations at RHMW05 are of significant concern. This well is less than 700 feet from the east end of the US Navy Well 2254-01 infiltration gallery. The TPH-DRO concentration in this well was nearly 50 percent of the SSRBL prior to a re-quantification that adjusted the concentration by removing apparently non-fuel related TIC compounds from the TPH-DRO total concentration (Appendix B). If the total TPH-DRO concentration at RHMW05 had been from fuel-related compounds, there could be a high probability of contamination at some point entering the infiltration gallery. It is recommended that future quarterly analytical results be closely assessed at RHMW05, since its non-TIC adjusted concentrations exhibit an increasing contaminant trend for TPH-DRO (i.e., 200 µg/L in May 2009, 491µg/L in July 2009, 673 µg/L in October 2009, and 2,060 µg/L in January 2010). In addition, consideration should be given to performing a more detailed analytical assessment of the contamination found in this well (and other wells) such as having future samples analyzed using the Massachusetts Department of Environmental Protection (MADEP) analytical methods in addition to TPH-GRO and TPH-DRO analytical methods.

With the exception of RHMW03 and RHMW2254-01, compound concentrations for all the other monitoring wells (i.e., RHMW01, RHMW02, and RHMW05) are exhibiting increasing contaminant trends for TPH-DRO relative to the concentrations observed in October 2009. Current results from RHMW01 are still at concentration levels within the historical range. However, results from RHMW02 and RHMW05 have been exhibiting significant increases (i.e., for the non-TIC adjusted concentrations). After a thorough analysis of the analytical results from RHMW05, TICs apparently not attributed to petroleum from the Facility contributed to a significant increase of TPH-DRO during January and February 2010 (see Appendix B). After subtracting these TICs, the estimated TPH-DRO concentrations in RHMW02 and RHMW05 remain within the historical range.

Quarterly groundwater sampling for TPH-DRO, TPH-GRO, VOCs, PAHs, and dissolved lead should continue at the Facility until such time that data indicates that a different monitoring plan is warranted.

1.0 Introduction

This report presents the results of the 18th groundwater sampling event, conducted in January 2010 and resample events at RHMW02 in February and March 2010 at the Red Hill Fuel Storage Facility, Oahu, Hawaii (hereafter referred to as "the Facility"). The Facility consists of 18 active and two inactive underground storage tanks (USTs) operated by the Fleet and Industrial Supply Center (FISC), Pearl Harbor. The groundwater sampling and analysis event is part of a groundwater monitoring program for the UST site in response to past UST releases, previous environmental investigations, and recommendations from the State of Hawaii Department of Health (HDOH).

1.1 Project Objective

This groundwater sampling project was performed to evaluate the presence of chemicals of potential concern in groundwater underlying the Facility. The project was conducted to ensure the Navy remains in compliance with HDOH UST release response requirements as described in Hawaii Administrative Rules (HAR) 11-281 Subchapter 7, Release Response Action. The groundwater sampling program followed the procedures described in *Red Hill Bulk Fuel Storage Facility Groundwater Protection Plan* [TEC Inc. (TEC), 2008 updated in 2009], also referred to as "the Plan".

This groundwater sampling event was conducted by TEC under United States (US) Navy Contract Number N47408-04-D-8514, Task Order No. 54.

1.2 Previous Reports

The following groundwater monitoring reports were previously submitted to the HDOH:

- 1. Groundwater Sampling Report, First Quarter 2005 (submitted April 2005);
- 2. Groundwater Sampling Report, Second Quarter 2005 (submitted August 2005);
- 3. Groundwater Sampling Report, Third Quarter 2005 (submitted November 2005);
- 4. Groundwater Sampling Report, Fourth Quarter 2005 (submitted February 2006);
- 5. Groundwater Monitoring Results, July 2006 (submitted September 2006);
- 6. Groundwater Monitoring Results, December 2006 (submitted January 2007);
- 7. Groundwater Monitoring Results, March 2007 (submitted May 2007);
- 8. Groundwater Monitoring Results, June 2007 (submitted August 2007);
- 9. Groundwater Monitoring Results, September 2007 (submitted October 2007);
- 10. Groundwater Monitoring Results, January 2008 (submitted March 2008);
- 11. Groundwater Monitoring Results, April 2008 (submitted May 2008);
- 12. Groundwater Monitoring Results, July 2008 (submitted October 2008);
- 13. Groundwater Monitoring Results, October and December 2008 (submitted February 2009);

- 14. Groundwater Monitoring Results, February 2009 (submitted May 2009);
- 15. Groundwater Monitoring Results, May 2009 (submitted July 2009);
- 16. Groundwater Monitoring Results, July 2009 (submitted September 2009); and
- 17. Groundwater Monitoring Results, October 2009 (submitted December 2009).

1.3 Background

The following sections provide a description of the site and information on the Facility and USTs.

1.3.1 Site Description

The Facility is located in Red Hill, Oahu, Hawaii. Land adjacent to the north of the Facility is occupied by Halawa Correctional Facility and private businesses. Land to the south and west of the Facility includes the Coast Guard Reservation. Moanalua Valley is located east of the Facility (Dawson, 2006).

The Navy Public Works Department operates a potable water infiltration tunnel approximately 1,550 feet hydraulically down-gradient from the Facility (Dawson, 2006). The US Navy Well 2254-01 is located approximately 3,000 feet down-gradient (west) of the Facility and provides approximately 24% of the potable water to the Pearl Harbor Water System (PHWS), which serves approximately 52,200 military consumers (TEC, 2008).

1.3.2 Facility Information

The Facility consists of 18 active and two inactive USTs operated by Navy FISC Pearl Harbor. Each UST has a capacity of 12.5 million gallons. The bottom of the USTs is located approximately 100 feet above the basal aquifer (Dawson, 2006).

1.3.3 UST Information

The USTs were constructed in the early 1940s. The tanks were fabricated from steel and currently contain Jet Propulsion (JP)–5 fuel, JP-8, and F-76 (diesel marine fuel). Previously, several tanks stored Navy Special Fuel Oil, Navy Distillate, aviation gasoline, and motor gasoline. Each tank measures approximately 245 feet in height and 100 feet in diameter. The upper domes of the tanks lie at depths varying between approximately 100 feet and 200 feet below the existing ground surface (TEC, 2006).

1.4 Previous Environmental Investigations

1998 to 2001: From 1998 to 2001, the Navy conducted an investigation at the Facility to assess potential releases from the fuel storage USTs and piping systems. In February 2001, the Navy installed a one-inch diameter RHMW01 (previously known as MW-V1D) to monitor for contamination of the basal aquifer underlying the Facility. The well was installed and completed at approximately 100 feet below grade within the lower access tunnel. At the time of well completion, depth to water in RHMW01 was measured at 86 feet below grade (Dawson, 2006).

In February 2001, groundwater samples collected from RHMW01 contained total petroleum hydrocarbons (TPH) concentrations ranging from 883 micrograms per liter (μ g/L) to 1,050 μ g/L and total lead ranging from 10.4 μ g/L to 15 μ g/L. The maximum total lead concentration in the

samples was equal to the primary drinking water standard of 15 μ g/L for lead and exceeded the HDOH Tier 1 groundwater action level of 5.6 μ g/L (Dawson, 2006).

2005 – **Groundwater Sampling:** The Navy began quarterly groundwater sampling at existing monitoring wells in 2005. Dawson Group, Inc. collected groundwater samples from RHMW01 and the Red Hill Navy Pump Station (US Navy Well 2254-01) in February, June, September, and December 2005.

Samples collected in February and June 2005 were not filtered in the field prior to analysis for lead. Analytical results for samples collected from RHMW01 indicated concentrations of total lead were above the HDOH Tier 1 action level of 5.6 μ g/L. The results were not considered appropriate for risk assessment since the sample had not been filtered. In addition, lead was not a component of fuels from the tanks near RHMW01. Lead may have been part of the Facility construction material (TEC, 2007). Previous sampling efforts showed elevated lead when analyzed as unfiltered samples. Subsequent efforts where the lead samples were filtered has resolved this issue.

Samples were filtered in September and December 2005, and dissolved lead concentrations were below the HDOH Tier 1 action level. Concentrations of all other contaminants of potential concern were below HDOH Tier 1 action levels.

2005 – **Site Investigation:** As part of a site investigation, TEC installed three groundwater monitoring wells at the Facility between June and September 2005. Well RHMW02 was installed in the lower access tunnel near Tanks 5 and 6. Well RHMW03 was installed in the lower access tunnel near Tanks 13 and 14. Well RHMW04 was installed north of UST tank 20 to provide geochemistry for water moving through the basal aquifer beneath the Facility. Wells RHMW02 and RHMW03 were completed to depths of approximately 125 feet below the tunnel floor, and well RHMW04 was completed to a depth of approximately 300 feet below ground surface outside the tunnel. Groundwater samples were collected from the three newly installed wells and two existing wells (RHMW01 and RHMW2254-01) in September 2005.

Naphthalene and trichloroethylene were detected in samples collected from RHMW02 at concentrations greater than the HDOH Tier 1 action levels. Lead was detected in the sample collected from RHMW01 at a concentration greater than the HDOH Tier 1 action level; however, the sample was not filtered in the field prior to analysis. Analytical results for filtered samples obtained by Dawson during the same period indicated concentrations of dissolved lead were below the HDOH Tier 1 action level.

2006 – **Site Investigation:** Dedicated sampling pumps were installed in five wells (RHMW01, RHMW02, RHMW03, RHMW04, and US Navy Well 2254-01). TEC collected groundwater samples from the wells in July 2006. The groundwater samples were analyzed for petroleum constituents. Naphthalene was detected in samples collected from RHMW02 at concentrations above the HDOH Tier 1 action level.

In September 2005, with concurrence from the HDOH, the Navy decided to use the newer HDOH Environmental Action Levels (EALs) for the Red Hill Site Investigation and Risk

Assessment project. The EALs provide action levels for more chemicals, and are more useful for conducting screening risk assessments. Since the HDOH (HDOH May 2005) Policy Letter stated that the two sets of action levels should not be mixed, the Tier 1 screening levels presented in HAR Section 11-281-78 would no longer be used to evaluate environmental impact at the Facility.

2006 – Groundwater Sampling: Groundwater samples were collected in December 2006. Analytical results indicated the following:

- No chemicals were detected in groundwater from US Navy Well 2254-01 or RHMW03;
- TPH as diesel range organics (TPH-DRO) was detected in groundwater above the HDOH Drinking Water EALs in RHMW01; and
- TPH as gasoline range organics (TPH-GRO), TPH-DRO, and naphthalene were detected in groundwater above the HDOH Drinking Water EALs in RHMW02.

2007 – **Groundwater Sampling:** Groundwater samples were collected in March, June, and September 2007. Analytical results indicated the following:

- No chemicals were detected above HDOH Drinking Water EALs at US Navy Well 2254-01;
- TPH-DRO exceeded HDOH Drinking Water EALs at RHMW01 during all three sampling events;
- TPH-GRO exceeded HDOH Drinking Water EALs at RHMW02 in March;
- TPH-DRO and naphthalene exceeded HDOH Drinking Water EALs at RHMW02 during all three sampling events;
- 1-methylnaphthalene and 2-methylnaphthalene exceeded the HDOH Groundwater Gross Contamination EAL at RHMW02 during all three sampling events; and
- TPH-DRO exceeded HDOH Drinking Water EALs at RHMW03 in June.

2008 – **Groundwater Sampling:** Groundwater samples were collected in January, April, July, and October 2008. Analytical results indicated the following:

- No chemicals were detected above HDOH Drinking Water EALs at US Navy Well 2254-01;
- Trace detections of 1-methylnaphthalene and naphthalene prompted a resample event in December at US Navy Well 2254-01, no chemicals were detected above the MDL;
- TPH-DRO exceeded HDOH Drinking Water EALs at RHMW01 during all four sampling events;
- TPH-GRO did not exceed HDOH Drinking Water EALs at RHMW02;
- TPH-DRO, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene exceeded HDOH Drinking Water EALs at RHMW02. Additionally, the SSRBL of 4,500 μg/L for TPH-DRO was exceed in the October sampling event; and
- TPH-DRO exceeded HDOH Drinking Water EALs at RHMW03 during all four sampling events.

2009 – **Groundwater Sampling:** Groundwater samples were collected in February, May, July, and October 2009. Analytical results indicated the following:

- No chemicals have been detected above HDOH Drinking Water EALs at US Navy Well 2254-01;
- Trace TPH-GRO at US Navy Well 2254-01 was detected above the laboratory MDL and significantly below the laboratory reporting limit and HDOH EAL, in February and May 2009;
- TPH-DRO exceeded HDOH Drinking Water EALs at RHMW01 during all four sampling events;
- TPH-GRO has not exceed HDOH Drinking Water EALs at RHMW02;
- TPH-DRO exceeded HDOH Drinking Water EALs at RHMW02 during all four sampling events;
- Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene exceeded HDOH Drinking Water EALs at RHMW02 in February 2009, however only 1-methylnaphthalene exceeded the HDOH Drinking Water EALs in May and July 2009 and only naphthalene exceeded the HDOH Drinking Water EAL in October 2009;
- TPH-DRO exceeded HDOH Drinking Water EALs at RHMW03 in February, but not in May, July, or October; and
- TPH-DRO exceeded HDOH Drinking Water EAL at RHMW05 during the July and October 2009 sampling events.

1.5 Regulatory Updates

During the summer and fall of 2008, HDOH updated their EALs, which resulted in significant changes to the action levels associated with methylnaphthalenes. The drinking water toxicity EAL for these compounds was 240 μ g/L. This concentration presumed that methylnaphthalenes were non-carcinogenic. Evidence that they are human carcinogens has now been accepted by the US Environmental Protection Agency (USEPA). As a result, HDOH adopted more rigorous EALs of 4.7 μ g/L for 1-methylnaphthalene and 24 μ g/L for 2-methylnaphthalene, corresponding to a residential tap water scenario, and a 1 in a million cancer risk (HDOH, 2008).

The drinking water EAL for naphthalene has also been updated during this process. Previously, HDOH based their naphthalene EAL on USEPA Region 9 Preliminary Remediation Goal (USEPA PRG) of 6.2 μ g/L, which is associated with a non-cancer Hazard index (HI) of 1. The US Environmental Protection Agency (USEPA) generally considers a Hazard quotient (HQ) of 1.0 or less to be acceptable. For multiple chemicals or fractions at an exposure point (e.g. for a monitoring well) a HI is calculated by summing the HQs. HDOH has updated their naphthalene drinking water EAL to 17 μ g/L, in deference to the California Department of Public Health's Drinking Water Notification Levels, a Hazard Index of 2.7 (HDOH, 2008).

Finally, the HDOH Drinking Water EAL for TPH-DRO was increased from 100 μ g/L to 210 μ g/L, although the HDOH Groundwater Gross Contamination EAL for TPH-DRO remains 100 μ g/L.

1.6 RHMW05 Installation

In April 2009, a new groundwater monitoring well, RHMW05, was installed by TEC under US Navy Contract Number N47408-04-D-8514, Task Order No. 54. RHMW05 is located within the

lower access tunnel between RHMW01 and RHMW2254-01(located at the US Navy Well 2254-01). It was installed to identify the extent of contaminant migration prior to contaminants reaching the infiltration gallery at the US Navy Well 2254-01.

2.0 Sample Collection and Analyses

Field activities relating to groundwater sample collection were conducted on January 26 and 27, 2010. Groundwater samples were collected from four monitoring wells located inside the Facility lower access tunnel and one monitoring well located at the Red Hill Navy Pump Station. Sampling and analysis were conducted according to *Red Hill Bulk Fuel Storage Facility Groundwater Protection Plan* (TEC, 2009). A total of eight samples were collected as follows:

- one environmental sample from RHMW2254-01 (i.e., located at the US Navy Well 2254-01), RHMW01, RHMW02, RHMW03, and RHMW05;
- one duplicate sample from RHMW02 (sampled as RHMWA01 and reported as RHMW02D); and
- one matrix spike and matrix spike duplicate from RHMW2254-01.

Due to elevated TPH-DRO concentrations in RHMW02, additional samples were collected on February 23, 2010 and March 30, 2010. During February and March, two samples were collected for TPH-DRO as follows:

- one environmental sample from RHMW02; and
- one duplicate sample from RHMW02 (sampled as RHMWA01 and reported as RHMW02D).

2.1 Monitoring Well Purging

All monitoring wells were purged prior to sampling. Well purging was considered complete when no less than three successive water quality parameter measurements had stabilized within approximately 10 percent. Field parameters were measured at regular intervals during well purging and included pH, temperature, specific conductivity, dissolved oxygen, and turbidity. During the February 2010 resample of RHMW02, the field parameters measured were limited to pH and turbidity as a result of a faulty water quality analyzer. Well purging was considered complete when greater than three well volumes had been purged. Purge water was collected and disposed in the Facility oil/water separator system.

2.2 Groundwater Sample Collection

Each monitoring well was sampled immediately following purging. All wells were sampled directly from their dedicated bladder pump system, except for RHMW02 and RHMW05. RHMW02 and RHMW05 were sampled using disposable bailers. Samples were placed into sampling containers with appropriate preservatives [i.e., hydrochloric acid (HCl) for volatile organic analysis, nitric acid (HNO₃) for dissolved lead]. Dissolved lead samples were filtered in the field and placed in preserved bottles. Sample containers were labeled with the date, sample identification number, type of analysis, and sampler's name. The containers were placed on ice in sample coolers and transported under chain-of-custody procedures to the certified laboratory for analysis.

2.3 Groundwater Sample Analyses

Groundwater samples were analyzed by SGS Environmental Service, Inc. in Anchorage, Alaska for TPH-DRO and TPH-GRO by EPA Method 8015B, VOCs by EPA Method 8260B, PAHs by EPA Method 8270C SIM, and dissolved lead by EPA Method 6020.

3.0 Groundwater Sample Analytical Results

This section provides a summary of analytical results for groundwater samples collected from four monitoring wells located in the lower access tunnel of the Facility and one monitoring well located at the Red Hill Navy Pump Station. Duplicate sample results from monitoring well RHMW02 are reported in this document as RHMW02D. A summary of groundwater analytical results for TPH-DRO, TPH-GRO, VOCs, PAHs, and dissolved lead is included in Table 1. Complete analytical laboratory reports are provided in Appendix A.

3.1 January, February, and March 2010 Sample Analytical Results

Groundwater samples were analyzed for TPH-DRO, TPH-GRO, VOCs, PAHs, and dissolved lead, with the exception of the February and March 2010 re-sampling efforts at RHMW02 where only TPH-DRO was analyzed. The results for each groundwater monitoring well are discussed below.

<u>RHMW01</u>

TPH-DRO at 312F μ g/L exceeded the HDOH Drinking Water EALs of 210 μ g/L. Concentrations of 2-methylnaphthalene, acenaphthene, flourene, naphthalene, and phenanthrene were detected at 0.0559 μ g/L, 0.0372F μ g/L, 0.0384F μ g/L, 0.33 μ g/L, and 0.0204F μ g/L, respectfully (Table 1). All of these concentrations are below the HDOH EALs for each constituent. No other constituents were detected above the laboratory MDL.

<u>RHMW02</u>

TPH-DRO, TPH-GRO, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluoranthene, flourene, and naphthalene were detected in RHMW02. In January 2010, TPH-DRO was detected at RHMW02 in the normal and duplicate samples at 2,130 µg/L and 3,410 µg/L, respectively. During the resample event in February 2010, TPH-DRO was detected in the normal and duplicate samples at 8,650 μ g/L and 6,910 μ g/L, respectively. These results exceeded the HDOH EAL of 210 µg/L, and the site-specific risk based level (SSRBL) of 4,500 μg/L. However, after a thorough analysis of the analytical data, tentatively identified compounds (TICs) that are apparently not attributed to fuel from the Facility were contributing to elevated TPH-DRO concentrations. Adjusted concentrations (i.e., not including increases from TICs) for TPH-DRO are estimated at 1,740 µg/L and 2,110 µg/L, from the normal and duplicate samples from January 2010, respectively; and 3,470 µg/L and 2,930 µg/L, from the normal and duplicate samples from February 2010, respectively (see Appendix B). The March 2010 resampling results did not contain large concentrations of apparently non-fuel related TIC The March 2010 TPH-DRO concentrations of 2,630 µg/L and 2,350 µg/L compounds. (duplicate) provide an average TPH-DRO concentration of 2,490 µg/L (Appendix B).

Table 1. Analytical Results for Quarterly Groundwater Monitoring Release Response Report (January 26 - 27, February 23, and March 31, 2010) Red Hill Fuel Storage Facility, Pearl Harbor, Hawaii

March 1		HDOH Drinking Water EALs ¹	HDOH Groundwater Gross Contamination	F	RHMW01 UG/L		F	RHMW02 UG/L		RHMW0 UG/L			RHMW0 UG/L			RHMW UG/L			RHMW22 UG/L			RHMW02 UG/L			RHMW02D- UG/L	-		RHMW02 UG/L	1		1W02D- JG/L
Method	Chemical	for Human Toxicity	EALs ²		ary 27, 2010			ary 26, 2010	Burnt	January 26	6, 2010		January 27,	2010		January 26	6, 2010		anuary 27	7, 2010		ebruary 23, 2			bruary 23, 2			March 30, 20		March	30, 2010
8015B (Petroleum)	TPH as DIESEL RANGE ORGANICS	UG/L 210	UG/L 100	312 F	165	440	2130	161 430	3410	16	69 449	Result ND	U 16	5 440	2060	1	69 449	ND		60 426	Result 8650	165	RL 440	Result 6910	Q MDL 163	435	2630	Q MDL 172		2350	MDL RL 167 444
SUISE (Fell Oleulii)	TPH as GASOLINE RANGE ORGANICS	100	100	ND U	30	100	42.3 F	30 100			80 100	ND	U 30		_		30 100	ND	U 3	30 100	NA	NA NA	NA		NA NA	NA	NA	NA NA	NA	NA NA	NA NA
	1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	4.7 24	10 10	ND U 0.0559			9.03 3.85	0.165 0.54 0.165 0.54		0.0			U 0.01 U 0.01				172 0.0575 172 0.0575	ND ND	U 0.0	158 0.0526	5 NA 5 NA	NA NA NA NA	NA NA	NA NA	NA NA NA NA	NA NA		NA NA NA NA	NA NA	NA NA NA NA	NA NA NA NA
	ACENAPHTHENE	370	20	0.0372 F	0.0167	0.0556	0.247	0.0165 0.054	9 0.231	0.0	0.0568	ND	U 0.01	61 0.053	38 ND	U 0.0	172 0.0575	ND	U 0.0	158 0.0526	6 NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA
	ACENAPHTHYLENE	240	2000			0.0556	ND U	0.0165 0.054		U 0.0			U 0.01				172 0.0575			158 0.0526		NA NA	NA		NA NA	NA		NA NA	NA	NA NA	NA NA
	ANTHRACENE BENZO(a)ANTHRACENE	1800 0.092	22 4.7	ND U ND U		0.0556	ND U ND U	0.0165 0.054		U 0.0	0.0568		U 0.01 U 0.01				172 0.0575 172 0.0575	ND ND	U 0.0 U 0.0			NA NA NA NA	NA NA		NA NA NA NA	NA NA		NA NA NA NA	NA NA	NA NA NA NA	NA NA NA NA
	BENZO(a)PYRENE	0.2	0.81	ND U		0.0556	ND U	0.0165 0.054		U 0.0			U 0.01				172 0.0575	ND		158 0.0526		NA NA	NA		NA NA	NA	NA	NA NA	NA	NA NA	NA NA
	BENZO(b)FLUORANTHENE	0.092	0.75	ND U		0.0556	ND U	0.0165 0.054			0.0568		U 0.01		38 ND		172 0.0575	ND		158 0.0526		NA NA	NA		NA NA	NA	NA	NA NA	NA	NA NA	NA NA
8270C SIM (PAHs)	BENZO(g,h,i)PERYLENE BENZO(k)FLUORANTHENE	1500	0.13			0.0556	ND U ND U	0.0165 0.054			0.0568		U 0.01 U 0.01				172 0.0575 172 0.0575	ND		158 0.0526 158 0.0526		NA NA NA NA	NA NA		NA NA NA NA	NA NA		NA NA NA NA	NA NA	NA NA NA NA	NA NA NA NA
(PARS)	CHRYSENE	0.92 9.2	0.4	ND U		0.0556	ND U	0.0165 0.054			0.0568		U 0.01				172 0.0575 172 0.0575	ND ND	U 0.0			NA NA	NA		NA NA	NA		NA NA	NA	NA NA	NA NA
	DIBENZ(a,h)ANTHRACENE	0.0092	0.52	ND U	0.0167	0.0556	ND U	0.0165 0.054	9 ND	U 0.0	0.0568	ND	U 0.01	61 0.053	38 ND	U 0.0	172 0.0575	ND	U 0.0	158 0.0526	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA
	FLUORANTHENE	1500	130	ND U		0.0556	ND U	0.0165 0.054					U 0.01				172 0.0575	ND		158 0.0526		NA NA	NA		NA NA	NA		NA NA	NA	NA NA	NA NA
	FLUORENE INDENO(1,2,3-c,d)PYRENE	240 0.092	950 0.095	0.0384 F ND U		0.0556	0.144 ND U	0.0165 0.054		U 0.0	0.0568		U 0.01 U 0.01				172 0.0575 172 0.0575	ND ND	U 0.0 U 0.0	158 0.0526 158 0.0526		NA NA NA NA	NA NA		NA NA NA NA	NA NA		NA NA NA NA	NA NA	NA NA NA NA	NA NA NA NA
	NAPHTHALENE	17	21	0.33			17.3	0.341 1.1	15.7		352 1.14	ND	U 0.03				356 0.115	0.0375	F 0.0			NA NA	NA		NA NA	NA		NA NA	NA	NA NA	NA NA
	PHENANTHRENE	240	410	0.0204 F		0.0556	ND U	0.0165 0.054		U 0.0			U 0.01				172 0.0575	ND	U 0.0			NA NA	NA		NA NA	NA		NA NA	NA	NA NA	NA NA
	PYRENE 1,1,1,2-TETRACHLOROETHANE	180 0.52	68 50000	ND U ND U	0.0167	0.0556	ND U	0.0165 0.054	9 ND ND	-	0.0568	ND ND	U 0.01				172 0.0575 15 0.5	ND ND	U 0.0	158 0.0526	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA NA NA	NA NA
	1,1,1,2-TETRACHLOROETHANE	200	970	ND U	0.15	0.5	ND U	0.15 0.5	ND	U 0.3		ND	U 0.1		ND ND		31 1	ND	U 0.	.15 0.5	NA	NA NA	NA		NA NA	NA		NA NA	NA	NA NA	NA NA
	1,1,2,2-TETRACHLOROETHANE	0.067	500	ND U	0.15	0.5	ND U	0.15 0.5	ND	U 0.1	15 0.5	ND	U 0.1	5 0.5	5 ND	U 0.	15 0.5	ND	U 0.	.15 0.5	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA
	1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE	5 2.4	50000 50000	ND U ND U	0.31 0.31	1	ND U ND U	0.31 1 0.31 1	ND ND	U 0.3		ND ND	U 0.3 U 0.3		ND ND		31 1 31 1	ND ND	U 0. U 0.		NA NA	NA NA NA NA	NA NA		NA NA NA NA	NA NA		NA NA NA NA	NA NA	NA NA NA NA	NA NA NA NA
	1,2,3-TRICHLOROPROPANE (TCP)	0.6	50000	ND U	0.31	1	ND U	0.31 1	ND	U 0.3		ND	U 0.3		ND	U 0.		ND	U 0.		NA	NA NA	NA		NA NA	NA		NA NA	NA	NA NA	NA NA
	1,2,4-TRICHLOROBENZENE	70	3000	ND U	0.31	1	ND U	0.31 1	ND	U 0.3	31 1	ND	U 0.3	1 1	ND	U 0.	31 1	ND	U 0.	.31 1	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA
	1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	0.04	10	ND U	0.62	2	ND U	0.62 2	ND	U 0.6		ND	U 0.6		ND		62 2	ND		.62 2	NA	NA NA	NA		NA NA	NA	NA	NA NA	NA	NA NA	NA NA
	1,2-DIBROMOETHANE (EDB) 1,2-DICHLOROBENZENE	0.0065 600	50000 10	ND U ND U	0.31 0.31	1	ND U ND U	0.31 1 0.31 1	ND ND	U 0.3		ND ND	U 0.3 U 0.3		ND ND	U 0. U 0.		ND ND		.31 1 .31 1	NA NA	NA NA NA NA	NA NA		NA NA NA NA	NA NA	NA NA	NA NA NA NA	NA NA	NA NA NA NA	NA NA NA NA
	1,2-DICHLOROETHANE	0.15	7000	ND U	0.15	0.5	ND U	0.15 0.5	ND	U 0.1		ND	U 0.1				15 0.5	ND		15 0.5	NA	NA NA	NA		NA NA	NA	NA	NA NA	NA	NA NA	NA NA
	1,2-DICHLOROPROPANE	5	10	ND U	0.31	1	ND U	0.31 1	ND	U 0.3		ND	U 0.3		ND		31 1	ND	U 0.		NA	NA NA	NA		NA NA	NA		NA NA	NA	NA NA	NA NA
	1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE	180 75	50000	ND U ND U	0.31 0.15	1 0.5	ND U ND U	0.31 1 0.15 0.5	ND ND	U 0.3		ND ND	U 0.3 U 0.1		ND 5 ND		31 1 15 0.5	ND ND	U 0. U 0.		NA NA	NA NA NA NA	NA NA		NA NA NA NA	NA NA		NA NA NA NA	NA NA	NA NA NA NA	NA NA NA NA
	ACETONE	22000	20000	ND U	3.1	10	ND U	3.1 10	ND	U 3.		ND	U 3.1				.1 10	ND		6.1 10	NA	NA NA	NA		NA NA	NA		NA NA	NA	NA NA	NA NA
	BENZENE	5	170	ND U	0.12	0.4	ND U	0.12 0.4		U 0.1		ND	U 0.1		ND ND		12 0.4	ND		.12 0.4	NA	NA NA	NA		NA NA	NA	NA	NA NA	NA	NA NA	NA NA
	BROMODICHLOROMETHANE BROMOFORM	0.22 100	50000 510	ND U ND U	0.15 0.31	0.5	ND U ND U	0.15 0.5 0.31 1	ND ND	U 0.1		ND ND	U 0.1 U 0.3		5 ND ND		15 0.5 31 1	ND ND		.15 0.5 .31 1	NA NA	NA NA NA NA	NA NA		NA NA NA NA	NA NA	NA NA	NA NA NA NA	NA NA	NA NA NA NA	NA NA NA NA
	BROMOFORM	8.7	50000	ND U	0.94	3	ND U	0.94 3	ND	U 0.9		ND	U 0.9		ND		.94 3	ND	U 0.		NA	NA NA	NA		NA NA	NA	NA	NA NA	NA	NA NA	NA NA
8260B	CARBON TETRACHLORIDE	5	520	ND U	0.31	1	ND U	0.31 1	ND	U 0.3	31 1	ND	U 0.3	1 1	ND	U 0.	31 1	ND	U 0.	.31 1	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA
(VOCs)	CHLOROBENZENE	100	50	ND U	0.15	0.5	ND U	0.15 0.5	ND	U 0.1		ND	U 0.1				15 0.5	ND		.15 0.5	NA	NA NA NA NA	NA		NA NA NA NA	NA NA	NA NA	NA NA NA NA	NA NA	NA NA NA NA	NA NA NA NA
	CHLOROETHANE CHLOROFORM	8600 70	16 2400	ND U ND U	0.31 0.3	1	ND U ND U	0.31 1 0.3 1	ND ND	U 0.3	31 1 .3 1	ND ND	U 0.3 U 0.3		ND ND		31 1 .3 1	ND ND	U 0. U 0	.31 1	NA NA	NA NA	NA NA		NA NA	NA		NA NA NA NA	NA	NA NA	NA NA NA NA
	CHLOROMETHANE	1.8	50000	ND U	0.31	1	ND U	0.31 1	ND	U 0.3		ND	U 0.3		ND		31 1	ND		.31 1	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA
	cis-1,2-DICHLOROETHYLENE	70	50000	ND U	0.31	1	ND U	0.31 1	ND	U 0.:		ND	U 0.3		ND		31 1	ND		.31 1	NA	NA NA	NA		NA NA	NA		NA NA	NA	NA NA	NA NA
	cis-1,3-DICHLOROPROPENE DIBROMOCHLOROMETHANE	0.43 0.16	50000 50000	ND U ND U	0.15 0.15	0.5 0.5	ND U ND U	0.15 0.5 0.5 0.5	ND ND	U 0.4		ND ND	U 0.1 U 0.1				15 0.5 15 0.5	ND ND	U 0.	.15 0.5 .15 0.5	NA NA	NA NA NA NA	NA NA		NA NA NA NA	NA NA		NA NA NA NA	NA NA	NA NA NA NA	NA NA NA NA
	ETHYLBENZENE	700	30	ND U	0.31	1	ND U	0.31 1	ND	U 0.3		ND	U 0.3		ND		31 1	ND	U 0.		NA	NA NA	NA		NA NA	NA	NA	NA NA	NA	NA NA	NA NA
	HEXACHLOROBUTADIENE	0.86	6	ND U	0.31	1	ND U	0.31 1	ND	U 0.3		ND	U 0.3		ND	U 0.		ND	U 0.		NA	NA NA	NA		NA NA	NA	NA	NA NA	NA	NA NA	NA NA
	M,P-XYLENE (SUM OF ISOMERS) METHYL ETHYL KETONE (2-BUTANONE)	10000 7100	20 8400	ND U ND U	0.62 3.1	2 10	ND U ND U	0.62 2 3.1 10	ND ND	U 0.0 U 3.		ND ND	U 0.6 U 3.1		ND ND		62 2 .1 10	ND ND		.62 2 3.1 10	NA NA	NA NA NA NA	NA NA		NA NA NA NA	NA NA	NA NA	NA NA NA NA	NA NA	NA NA NA NA	NA NA NA NA
	METHYL ISOBUTYL KETONE (2-BUTANONE) METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE)	2000	1300	ND U	3.1	10	ND U	3.1 10	ND	U 3.		ND	U 3.1		ND		.1 10	ND		.1 10 5.1 10	NA	NA NA	NA		NA NA	NA		NA NA	NA	NA NA	NA NA
	METHYLENE CHLORIDE	4.8	9100	ND U	1	5	ND U	1 5	ND	U 1	1 5	ND	U 1	5	ND	U	1 5	ND	U	1 5	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA
	NAPHTHALENE STYRENE	17 100	21 10	ND U ND U	0.62 0.31	2	31.5 ND U	0.62 2 0.31 1	9.3 ND	U 0.0		ND ND	U 0.6 U 0.3		ND ND		62 2 31 1	ND ND		.62 2 .31 1	NA NA	NA NA NA NA	NA NA		NA NA NA NA	NA NA		NA NA NA NA	NA NA	NA NA NA NA	NA NA NA NA
	TETRACHLOROETHYLENE(PCE)	5	170	ND U	0.31	1	ND U	0.31 1	ND	U 0.3		ND	U 0.3		ND		31 1	ND		.31 1	NA	NA NA	NA		NA NA	NA		NA NA	NA	NA NA	NA NA
	TOLUENE	1000	40	ND U	0.31	1	ND U	0.31 1	ND	U 0.:	31 1	ND	U 0.3	1 1	ND	U 0.	.31 1	ND	U 0.	.31 1	NA	NA NA	NA	NA	NA NA	NA		NA NA	NA	NA NA	NA NA
	trans-1,2-DICHLOROETHENE TRICHLOROETHYLENE (TCE)	100	260 310	ND U ND U	0.31 0.31	1	ND U ND U	0.31 1 0.31 1	ND ND	U 0.3		ND ND	U 0.3 U 0.3		ND ND	U 0.	31 1 31 1	ND ND	U 0. U 0.		NA NA	NA NA NA NA	NA NA		NA NA NA NA	NA NA	NA NA	NA NA NA NA	NA NA	NA NA NA NA	NA NA NA NA
	VINYL CHLORIDE	2	3400	ND U	0.31	1	ND U	0.31 1	ND	U 0.3		ND	U 0.3		ND	U 0.		ND	U 0.		NA	NA NA	NA		NA NA	NA		NA NA	NA	NA NA	NA NA
	XYLENES, TOTAL	10000	20	ND U	1	2	ND U	1 2	ND	U 1	1 2	ND	U 1	2	ND	U	1 2	ND	U	1 2	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA
6020	LEAD	15	50000	ND U	0.31			0.31 1	ND	U 0.3	31 1	ND	U 0.3	1 1	ND	U 0.	31 1	ND	U 0.	.31 1	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA
	Polynuclear aromatic hydrocarbons Volatile organic compounds						Method dete Reporting lin																								
UG/L -	UG/L - Micrograms per Liter TPH - Total petroleum hydrocarbons																														
	Data qualifier		- 14						as not deter	cted above th	he stated me	thod detect	ion limit																		
	 Indicates that the compound was analyzed for but not detected a Indicates that the compound was identified but the concentration 					NA - r	not analyzed																								
	Result exceeds one or both HDOH EALs	i was above the MDL a	IN DEIDW LIE KL																												
	Final Drinking Water Action Levels for Human Toxicity, Table D-	3a, Screening for Envir	onmental Concerns at Si	es with																											
	Contaminated Soil and Groundwater, HDOH, 2009																														
	² Groundwater Gross Contamination Action Levels, Table G-1, Sc.	creening for Environmer	tal Concerns at Sites with	ר																											
	Contaminated Soil and Groundwater, HDOH, 2009																														

TPH-GRO was detected above the laboratory MDL of 30 μ g/L in the normal and duplicate samples (i.e., 42.3F μ g/L and 38.1F μ g/L, respectively). Naphthalene was analyzed by USEPA Method 8270C SIM and USEPA Method 8260B. USEPA Method 8260B produced the highest naphthalene concentrations, which averaged 20.4 μ g/L from the normal and duplicate sample (HDOH Drinking Water EAL is 17 μ g/L). In addition, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, and flourene were detected at average concentrations of 8.645 μ g/L, 3.25 μ g/L, 0.239 μ g/L, and 0.133 μ g/L, respectively (Table 1). Fluoranthene was only detected in the duplicate sample at 0.0209F μ g/L. All of these concentrations are below the HDOH EALs for each constituent, except for 1-methylnaphthalene (HDOH Drinking Water EAL is 4.7 μ g/L). The only other constituent detected above the laboratory MDL was dissolved lead in the normal sample only, at a concentration of 1.53 μ g/L (HDOH Drinking Water EAL is 15 μ g/L).

<u>RHMW03</u>

No parameters were detected above the laboratory MDLs in RHMW03 (Table 1).

<u>RHMW05</u>

TPH-DRO was detected at a concentration of 2,060 μ g/L. This concentration exceeds the HDOH Drinking Water EAL of 210 μ g/L and the HDOH Groundwater Gross Contamination EAL of 100 μ g/L. However, TICs apparently not associated with petroleum from the Facility were detected at significant concentrations in RHMW05. After subtracting the TICs, TPH-DRO was estimated at a concentration of 541 μ g/L (see Appendix B).

In addition, 1-methylnaphthalene, 2-methylnaphthalene, fluoranthene, and phenanthrene were detected above the laboratory MDL at 0.0207F μ g/L, 0.0246F μ g/L, 0.019F μ g/L, and 0.0182F μ g/L, respectively. All of these concentrations are below the HDOH EALs for each constituent (Table 1).

<u>US Navy Well 2254-01</u>

Naphthalene was detected at 0.0375F μ g/L, just above the laboratory MDL and below the HDOH drinking water EAL of 17 μ g/L (Table 1).

3.2 Groundwater Contaminant Trend

Groundwater samples have been collected and analyzed by TEC since September 2005. Figure 1 shows TPH trends in groundwater at the Facility. Figure 2 shows PAH trends in groundwater at the Facility. In these figures, open icons (without data) represent locations where the compounds being analyzed were not detected.

The following is a discussion of compounds that exceeded HDOH Drinking Water EALs during two or more recent consecutive sampling events, thus establishing a trend:

RHMW01

At RHMW01, concentrations of TPH-DRO have been greater than the HDOH Drinking Water EAL since September 2005, but less than 25 percent of the SSRBL of 4,500 μ g/L. TPH-DRO had exhibited a decreasing trend since October 2008 with the lowest concentration (i.e., 248

 μ g/L) recorded in July 2009. Since July 2009, this trend began increasing with 299F μ g/L and 312F μ g/L detected in October 2009 and January 2010, respectively.

<u>RHMW02</u>

At RHMW02, from September 2005 through March 2009, TPH-DRO exceeded the HDOH Drinking Water EAL and was greater than 50 percent of the SSRBL (estimated solubility limit of 4,500 μ g/L). Specifically, the concentration of TPH-DRO was relatively stable at RHMW02 until July 2008, ranging from 2,250 to 2,995 μ g/L. However, during the July and October 2008 sampling events, these average concentrations increased. The July 2008 average concentration was 4,055 μ g/L and the October 2008 average concentration was 5,420 μ g/L. Both of these values were significantly above the HDOH Drinking Water EAL of 210 μ g/L, with the October 2008 average also exceeding the SSRBL of 4,500 μ g/L.

However, TPH-DRO at RHMW02 has shown a decreasing trend from October 2008 through July 2009. During this period, TPH-DRO remained above the HDOH Drinking Water EAL, but was below 50 percent of the SSRBL of 4,500 μ g/L. In October 2009, TPH-DRO began an increasing trend greater than 50 percent of the SSRBL which continued through February 2010 when it exceeded the SSRBL. It is important to note that in January and February 2010, TICs apparently not associated with petroleum from the Facility were detected at significant concentrations. After subtracting the TICs from these results, the January 2010 TPH-DRO average shows a slight decrease from the October 2009 event. However, the February 2010 resampling event showed an increased average of 3,200 μ g/L (Appendix B), exceeding the HDOH Drinking Water EAL and being over 50 percent of the SSRBL. The TPH-DRO concentration averaged 2,490 μ g/L during the March 2010 re-sampling event when unlike during January and February, TICs were not observed at significant concentrations (Appendix B).

For other parameters, the average concentration for 1-methylnaphthalene (i.e., 8.645 μ g/L) exhibited an increase from an October 2009 concentration that was less than the HDOH Drinking Water EAL of 4.7 μ g/L. Naphthalene had shown an increasing trend since its lowest concentration in May 2009. In January 2010, naphthalene in RHMW02 (i.e., 20.4 μ g/L) exceeded the HDOH Drinking Water EAL of 17 μ g/L, but slightly decreased relative to the October 2009 concentration (i.e., 21.65 μ g/L).

<u>RHMW03</u>

At RHMW03, historically, concentrations of TPH-DRO have fluctuated around the HDOH Drinking Water EAL, but have been significantly lower than corresponding values observed at RHMW01 and RHMW02. However, during the last four sampling events (i.e., May 2009, July 2009, October 2009, and January 2010), TPH-DRO was not detected above the laboratory MDL. These results represent a continuing decreasing trend for TPH-DRO that has existed since October 2008.

<u>RHMW05</u>

At RHMW05 there is an increasing trend for TPH-DRO over the last four sampling rounds. The January 2010 concentration was 2,060 μ g/L, an increase as compared with the October 2009 concentration of 673 μ g/L. The January 2010 concentration is greater than the HDOH EAL, but less than 50 percent of the SSRBL for TPH-DRO. However, as with RHMW02, TICs apparently

not associated with petroleum from the Facility were detected at significant concentrations in RHMW05. After subtracting the TICs from the January 2010 results, TPH-DRO was estimated at a concentration of $541 \mu g/L$ (see Appendix B).

US Navy Well 2254-01

At US Navy Well 2254-01, no compounds have been detected above the laboratory MDLs since trace concentrations of TPH-GRO and 2-methylnaphthalene that were observed in the February and May 2009. However, in January 2010, naphthalene was detected at 0.0375F μ g/L via EPA Method 8270C SIM, just above the laboratory MDL (i.e., 0.0326 μ g/L) and below the HDOH EAL (i.e., 17 μ g/L).

3.3 Results of Oil/Water Interface Measurements

The presence and thickness of light-non aqueous phased liquids (LNAPL), otherwise known as free product, released from the USTs is monitored at the Facility (see Table 2). Static water levels and fuel thickness is measured to a precision of ± 0.01 feet.

In January 2008, fuel was measured in monitoring wells RHMW01 and RHMW02 at a thickness of < 0.01 ft, but has not been observed in other monitoring wells. Measurements to determine the presence and thickness of fuel were conducted at RHMW01, RHMW02, RHMW03, and RHMW05 prior to the January 2010 sampling round. At the end of February and March, subsequent rounds of oil/water interface measurements were conducted. Since January 2008, no free product has been observed in any of these wells.

	RHM	W01	RHM	W02	RHM	IW03	RHMW05		
	SWL	LNAPL	SWL	LNAPL	SWL	LNAPL	SWL ⁶	LNAPL	
Date	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
January 2008	17.74	< 0.01	18.78	< 0.01	NT^1	NT^1			
July 2008	19.04	0.00	18.91	0.00	18.86	0.00			
October 2008	18.61	0.00	18.56	0.00	18.82	0.00			
November 2008	18.50	0.00	18.45	0.00	18.51	0.00			
January 2009	19.28	0.00	19.22	0.00	19.27	0.00			
February 2009	NT^2	NT^2	18.66	0.00	18.75	0.00			
March 2009	18.59	0.00	18.57	0.00	18.67	0.00			
May 2009 ³	18.69	0.00	18.64	0.00	18.72	0.00	NT ⁵	NT^5	
May 2009	18.91	0.00	18.86	0.00	18.90	0.00	NT ⁵	NT ⁵	
July 20094	18.66	0.00	18.59	0.00	18.64	0.00	18.63	0.00	
August 2009	18.37	0.00	18.30	0.00	18.47	0.00	18.21	0.00	
September 2009	18.20	0.00	18.17	0.00	18.24	0.00	18.11	0.00	
October 2009	18.17	0.00	18.14	0.00	18.24	0.00	18.10	0.00	
November 2009	18.50	0.00	18.45	0.00	18.50	0.00	18.47	0.00	
December 2009	18.29	0.00	18.26	0.00	18.31	0.00	18.19	0.00	
January 2010	18.05	0.00	18.01	0.00	18.09	0.00	17.97	0.00	
February 2010	18.17	0.00	18.12	0.00	18.17	0.00	18.12	0.00	
March 2010	17.88	0.00	17.86	0.00	17.93	0.00	17.76	0.00	

Table 2. Oil/Water Interface Measurements

SWL - Static water level, elevation above mean sea level

LNAPL - Light Non-Aqueous Phased Liquid, fuel product on groundwater attributed to the Facility

ft - Feet

NT - Not Taken

¹ - The January 2008 measurement at RHMW03 was not taken due to equipment malfunction

² - During the February 2009 measurements, RHMW01 was inaccessible due to extensive work being conducted at Tank 02

³ - The measurements scheduled for April 2009 were postponed until May 6, 2009 due to RHMW05 drilling activities

⁴ – The June 2009 measurements were skipped due to the installation of dedicated oil/water interface probes

⁵ - Oil/water interface measurements were not taken at RHMW05 until the installation of the oil/water interface probe was completed

⁶ – Elevation at RHMW05 is estimated from the difference between RHMW01 and RHMW05 during a survey conducted in January 2010 ----- - Time period prior to the installation of RHMW05

Oil/water interface measurements were not taken in April 2008

3.4 Groundwater Status

Constituents of concern are defined as petroleum-related chemicals that have been observed in the groundwater samples above the HDOH EALs. In accordance with the *Red Hill Bulk Fuel Storage Facility Final Groundwater Protection Plan* (TEC, 2008), Table 3 defines the constituents of concern in groundwater at the Facility and the SSRBLs and updated EALs for each (HDOH 2008).

Chemical	EAL (µg/L)	SSRBL (µg/L)				
Petroleum Mixtures						
TPH-DRO	210	4,500				
TPH-GRO	100	4,500				
Semi-Volatile Compounds						
1-Methylnaphthalene	4.7	NA				
2-Methylnaphthalene	24	NA				
Naphthalene	17	NA				

Table 3. Action Levels for Constituents of Concern

NA – Not applicable or not determined

SSRBLs are applicable at RHMW01, RHMW02, RHMW03, and RHMW05 EALs are applicable at US Navy Well 2254-01

In addition, the Plan defines four results categories of groundwater status for the Facility, based on concentrations of constituents of concern in RHMW01, RHMW02, RHMW03, RHMW05 and the US Navy Well 2254-01, and requires specific responses when these categories are observed during quarterly groundwater sampling. Table 4 describes each of the four results categories and identifies response actions to be taken in accordance with the Plan.

Results Category	RHMW02 RHMW03 or RHMW05*	RHMW01	US Navy Pumping Well 2254-01
Pagulta Catagory 1: Pagult above	A	A	A,D,M,E
Results Category 1: Result above detection limit but below drinking	A	A	A,D,MI,E
water EAL and trend for all			
compounds stable or decreasing			
Results Category 2: Trend for any	A, B	A, B	A,B,C,D,E,F,G,K,
compound increasing or drinking			L,O
water EAL exceeded			
Results Category 3: Result	A,B,G,H,I,J	A,B,E,G,H,I,J	A,B,C,D,E,F,G,I,J,
Between 1/10X SSRBL and			K,L,O
SSRBL for benzene, or between			
1/2X SSRBL and SSRBL for TPH			
Results Category 4: Result	A,C,D,E,F,I,J,	A,C,D,E,F,I,	A,C,D,E,F,G,I,J,K,
Exceeding any SSRBL or	K,M,N	J,K,M,N,O	L,O
petroleum product observed			

 Table 4. Results Categories and Response Actions to Changes in Groundwater Status

*RHMW05 was installed in April 2009 and has been subsequently been added to this Table. Specific Responses:

A. Send quarterly reports to HDOH

B. Begin program to determine the source of leak

C. Notify HDOH verbally within 1 day and follow with written notification in 30 days

D. Notify FISC Chain of Command within 1 day

E. Send Type 1 Report (see box below) to HDOH

F. Send Type 2 Report (see box below) to HDOH

- G. Increase monitoring frequency to once per month (if concentrations increasing)
- H. Notify HDOH verbally within 7 days and follow with written notification in 30 days
- I. Remove sampling pumps, measure product in pertinent wells with interface probe, re-install pumps if product is not detected.
- J. Immediately determine leaking tank
- K. Collect samples from nearby Halawa Deep Monitoring Well (2253-03) and OWDF MW01
- L. Provide alternative water source at 2254-01
- M. Prepare for alternative water source at US Navy Well 2254-01
- N. Re-measure for product every month with reports to HDOH
- O. Install additional monitoring well downgradient

Report Types

HDOH Type 1 Report

- Re-evaluate Tier 3 Risk Assessment/groundwater model results
- Proposal to HDOH on a course of action

HDOH Type 2 Report

• Proposal for groundwater treatment

Free Product Measurements

In response to the previous Category 3 status at RHMW02, free product measurements have been collected at the Facility monitoring wells (Table 2). To date, there is no trend (i.e., two or more consecutive events) of fuel presence on groundwater at any of these wells.

US Navy Well 2254-01

Although a trace concentration of naphthalene was detected at US Navy Well 2254-01 during the January 2010 sampling event, it does not place the well into the Category 1 status. Because no contamination trend (i.e., two or more consecutive events of detectable concentrations) has been established, US Navy Well 2254-01 does not meet the Category 1 definition.

<u>RHMW03</u>

Based upon the January 2010 sampling event, RHMW03 is not eligible for any category status change since no compounds were detected above the laboratory MDLs.

Category 1 Status Locations

There are no Category 1 status locations based upon the January 2010 event.

Category 2 Status Locations

RHMW01

The January 2010 sampling event indicates that RHMW01 should remain in Category 2 status. This is because the TPH-DRO concentration of 312F μ g/L is greater than the HDOH Drinking

Water EAL (210 μ g/L), but less than half the SSRBL of 4,500 μ g/L (estimated solubility limit of JP-5).

RHMW05

Based upon the January 2010 sampling event RHMW05 should remain in a Category 2 status. TPH-DRO in RHMW05 (i.e., 2,060 μ g/L) is above the drinking water EAL of 210 μ g/L and has been showing an increasing trend over the last four rounds. However, as with RHMW02, TICs apparently not associated with petroleum from the Facility were detected at significant concentrations in RHMW05. After subtracting the TICs from the January 2010 results, TPH-DRO was estimated at a concentration of 541 μ g/L which still exceeds the drinking water EAL (Appendix B).

Category 2 for RHMW01 and RHMW05 requires:

- 1. Quarterly reports to be sent to HDOH; and
- 2. Initiation of a leak determination program to identify if tanks are leaking.

Category 3 Status Locations

RHMW02

Results from the January 2010 sampling event and the resample event in February 2010 indicate that RHMW02 remains in Category 3 status. This is because TPH-DRO, after subtracting the TICs apparently not associated with petroleum from the Facility, is greater than the HDOH Drinking Water EAL (210 μ g/L), and is between one half and the established SSRBL value of 4,500 μ g/L (estimated solubility limit of JP-5). Specifically, the maximum observed TPH-DRO TICs adjusted concentration among the January 2010 and February 2010 sampling efforts occurred during the February 2010 effort with adjusted concentrations of 3,470 μ g/L and 2,930 μ g/L (duplicate) (Appendix B). However, TPH-DRO averaged 2,490 μ g/L during the March 2010 re-sampling event when unlike during January and February, TICs were not observed at significant concentrations (Appendix B).

In addition, the HDOH Drinking Water EAL of 17 μ g/L for naphthalene was exceeded in January 2010 [i.e., 20.4 μ g/L (the average of normal and duplicate samples)].

Category 3 response at RHMW02 requires:

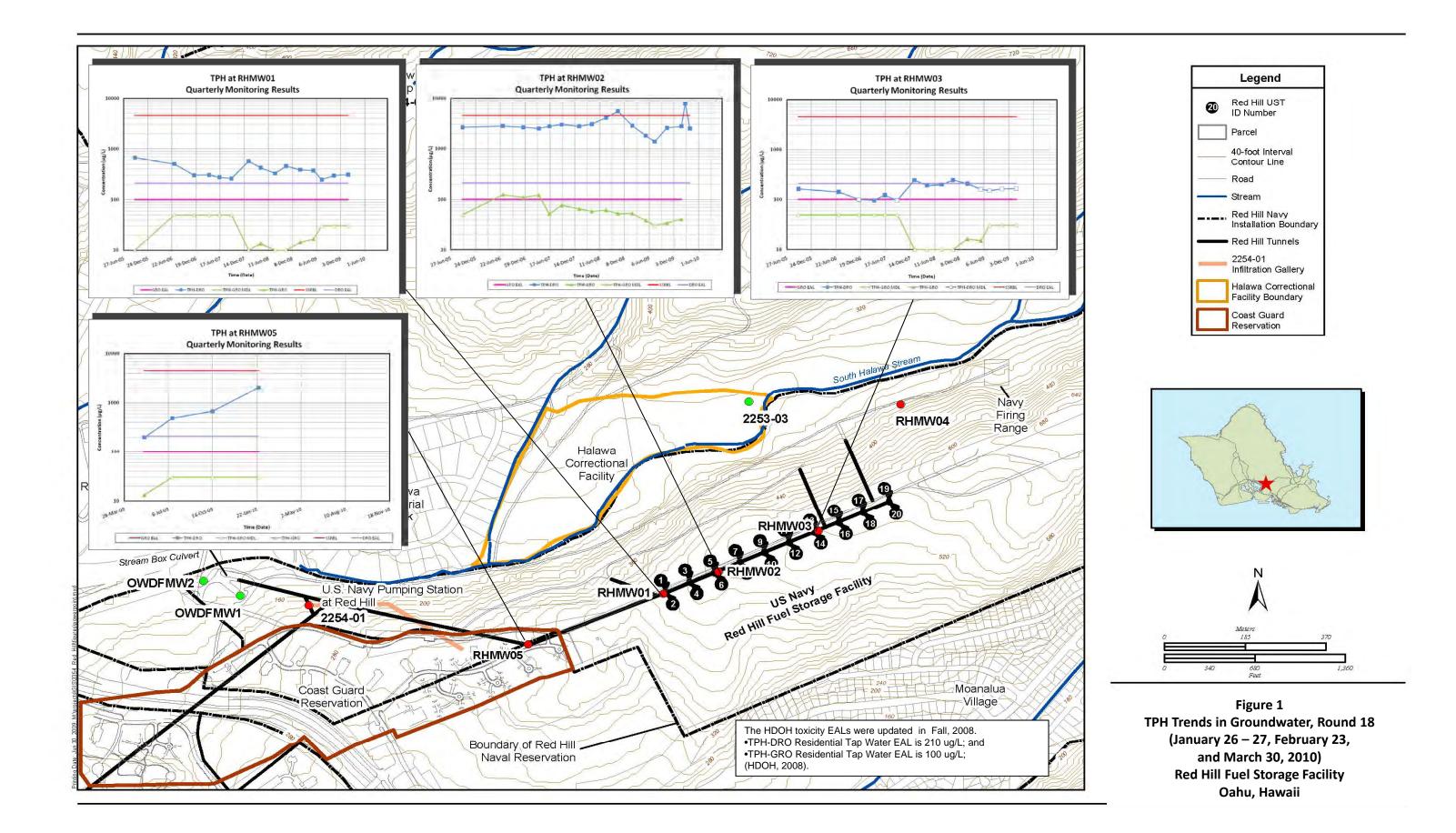
- 1. Send quarterly reports to HDOH;
- 2. Initiation of a leak determination program to identify if tanks are leaking;
- 3. Increase free product monitoring frequency to once per month (if concentrations increasing);
- 4. Notify HDOH verbally within 7 days and follow with written notification in 30 days;
- 5. Remove sampling pumps, measure product in lower access tunnel wells with interface probe, re-install pumps if product is not detected; and
- 6. Immediately evaluate tanks for leaks.

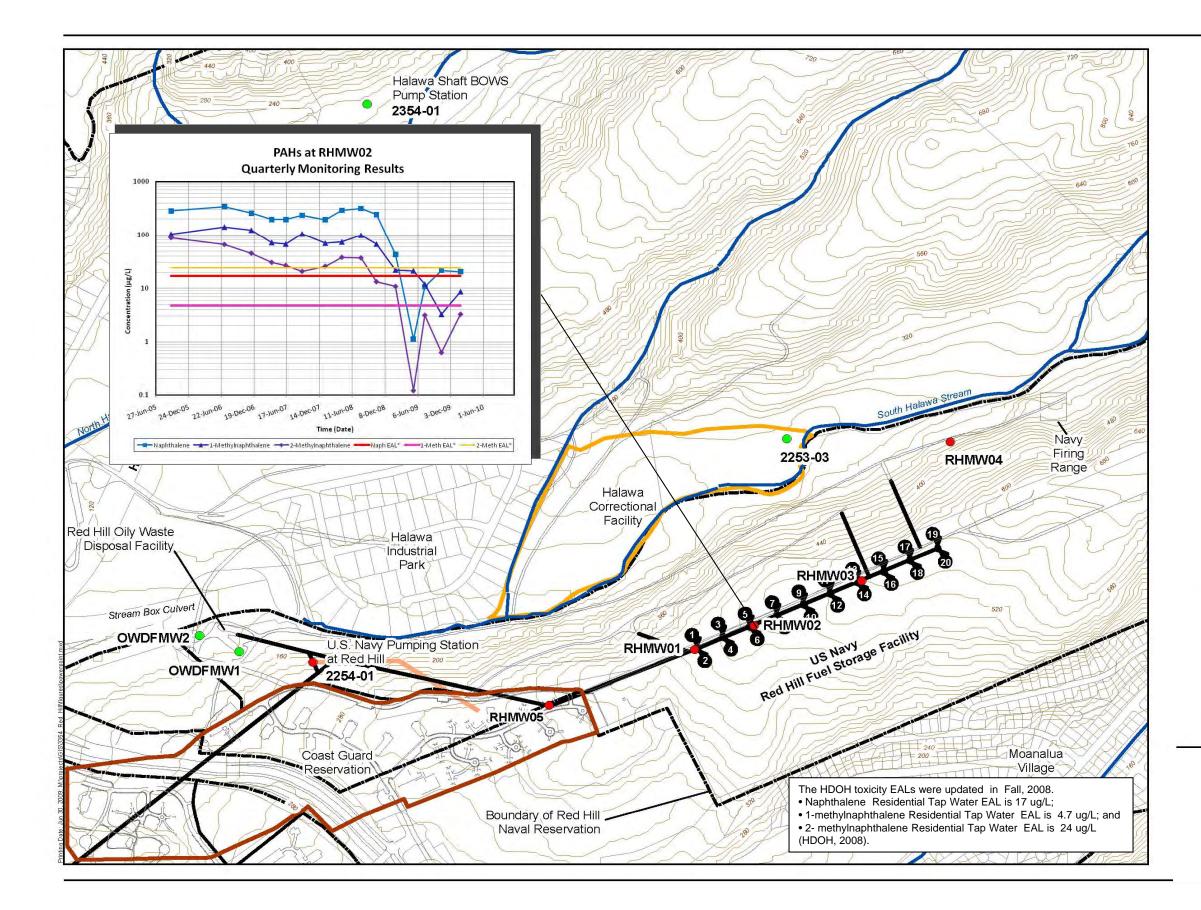
Category 4 Status Locations

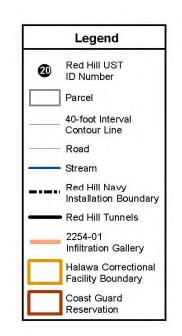
There are no Category 4 status locations.

4.0 Summary and Conclusions

<u>Summary</u>


There is no indication of an immediate threat of disruption to drinking water resources of the US Navy Well 2254-01 as a result of the January and February 2010 data. However, a trace concentration of naphthalene was detected just above the laboratory MDL, but significantly less than the HDOH drinking water EAL at RHMW2254-01. The increasing TPH-DRO concentrations at RHMW05 are of significant concern. This well is less than 700 feet from the east end of the US Navy Well 2254-01 infiltration gallery. The TPH-DRO concentration in this well was nearly 50 percent of the SSRBL prior to a re-quantification that adjusted the concentration by removing apparently non-fuel related TIC compounds from the TPH-DRO total concentration (Appendix B). If the total TPH-DRO concentration at RHMW05 had been from fuel-related compounds, there could be a high probability of contamination at some point entering the infiltration gallery.


With the exception of RHMW03 and RHMW2254-01, compound concentrations for all the other monitoring wells (i.e., RHMW01, RHMW02, and RHMW05) are exhibiting increasing contaminant trends for TPH-DRO relative to the concentrations observed in October 2009. Current results from RHMW01 are still at concentration levels within the historical range. However, results from RHMW02 and RHMW05 have been exhibiting significant increases (i.e., for the non-TIC adjusted concentrations). After a thorough analysis of the analytical results from RHMW05, TICs apparently not attributed to petroleum from the Facility contributed to a significant increase of TPH-DRO during January and February 2010 (see Appendix B). After subtracting these TICs, the estimated TPH-DRO concentrations in RHMW02 and RHMW05 remain within the historical range.


Conclusions/Recommendations

- To date, there is no trend (i.e., two or more consecutive events) of fuel presence on groundwater at the Facility wells (Table 2). In fact, fuel on the groundwater has been observed only once (i.e., in January 2008 in RHMW01 and RHMW02 at less than 0.01 ft.). It is recommended that the Facility continue regular monitoring of Facility wells for the presence of fuel on groundwater.
- The concentration of TPH-DRO measured in the newest monitoring well, RHMW05, in January 2010 (i.e., 2,060 µg/L) exceeded the HDOH Drinking Water EAL, but was less than half of the SSRBL. RHMW05 is located between RHMW01 and the US Navy Well 2254-01. It is recommended that future quarterly analytical results be closely assessed at RHMW05, since its non-TIC adjusted concentrations exhibit an increasing contaminant trend for TPH-DRO (i.e., 200 µg/L in May 2009, 491µg/L in July 2009, 673 µg/L in October 2009, and 2,060 µg/L in January 2010).
- RHMW01 and RHMW02 are exhibiting increasing contaminant trends, however, when adjusted for apparently non-fuel related TICs are still at concentration levels within the historical range. It is recommended that quarterly monitoring of the Facility wells continue so that overall groundwater quality trends may be established/observed and proactive action taken if the groundwater quality shows greater evidence of deterioration.

- The US Navy Well 2254-01 is not imminently threatened at this time; however, monitoring should continue to evaluate the extent of contaminant migration from upgradient locations.
- Do a more detailed analytical assessment of the contamination found in RHMW05 (and other wells) such as having future samples analyzed using the MADEP analytical methods in addition to TPH-GRO and TPH-DRO analytical methods.
- The following activities are in process to monitor and/or clarify the groundwater contamination situation at the Facility:
 - 1. Re-evaluate risk assessment and groundwater model (TEC, 2007) to ensure both are valid and protective of human health and the environment under the existing conditions;
 - 2. Continue monthly free product measurements at RHMW01, RHMW02, RHMW03, and RHMW05;
 - 3. Continue to collect samples from nearby Halawa Deep Monitoring Well (2253-03), OWDF MW01, and RHMW04 to assess regional groundwater trends;
 - 4. Prepare for alternative water source at US Navy Well 2254-01, if appropriate.
 - 5. Continue quarterly groundwater monitoring of Facility wells for TPH-DRO, TPH-GRO, VOCs, PAHs, and lead until such time that new data indicates that a different monitoring program is warranted.

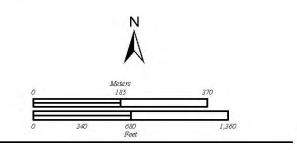


Figure 2 PAH Trends in Groundwater, Round 18 (January 26 – 27, February 23, and March 30, 2010) Red Hill Fuel Storage Facility Oahu, Hawaii

5.0 References

AMEC. *Red Hill Bulk Fuel Storage Facility Investigation Report*, Prepared for NAVFAC Pacific, August 2002.

Dawson Group, Inc. Fourth Quarter 2005 Groundwater Sampling Report, Red Hill Fuel Storage Facility, Hawaii. February 2006.

Hawaii Administrative Rules, Title 11, Chapter 281, Subchapter 7.

HDOH. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Summary Lookup Tables. March 2009.

HDOH. Use of May 2005 Environmental Action Levels ("EALs") at Leaking Underground Storage Tank Sites. Memo. July 2005.

HDOH. Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater. Summer 2008 (updated October 2008).

Massachusetts Department of Environmental Protection (MADEP). Implementation of the MADEP VPH/EPH Approach. Final Policy, October 2002

The Environmental Company, Inc. and AMEC. *Red Hill Bulk Fuel Storage Facility Work Plan, Pearl Harbor, Hawaii.* June 2005.

TEC, Inc. Red Hill Bulk Fuel Storage Facility, Final – Addendum Planning Documents, Pearl Harbor, Hawaii. May 2006.

TEC, Inc. *Red Hill Bulk Fuel Storage Facility, Final Technical Report, Pearl Harbor, Hawaii.* August 2007.

TEC, Inc. *Red Hill Bulk Fuel Storage Facility, Final Groundwater Protection Plan, Pearl Harbor, Hawaii.* January 2008 revised in December 2009.

Appendix A

Laboratory Analytical Reports

APPENDIX A-1

Laboratory Analytical Results January 26 - 27, 2010

SGS North America Inc. Alaska Division Level II Laboratory Data Report

Project: Client: SGS Work Order: 3354-003 Red Hill BFSF The Environmental Company, Inc. (TEC) 1100328

Released by:

Contents:

Cover Page Case Narrative Final Report Pages Quality Control Summary Forms Chain of Custody/Sample Receipt Forms

Note:

Unless otherwise noted, all quality assurance/quality control criteria is in compliance with the standards set forth by the proper regulatory authority, the SGS Quality Assurance Program Plan, and the National Environmental Accreditation Conference.

Case Narrative

Customer: THEENVCThe Environmental Company, Inc. (TEC)Project:11003283354-003 Red Hill BFSF

Refer to the sample receipt form for information on sample condition.

1100328005 PS RHMW02-WG18

DRO by 8015C - Unknown hydrocarbon with several peaks is present.

1100328006 PS RHMWA01-WG18

DRO by 8015C - Unknown hydrocarbon with several peaks is present.

1100328008 PS RHMW05-WG18

DRO by 8015C - Unknown hydrocarbon with several peaks is present.

1100328003 BMSD RHMW2254-WG18 MSD

8270D SIM - MS recovery is outside of QC criteria for fluoranthene (biased high). Refer to LCS for accuracy.

947960 LCS VXX/20449]

8260B - LCS recovery for 1,1-dichloroethane does not meet QC criteria (biased high). This analyte was not detected above the PQL in the associated samples.

947961 LCSD VXX/20449

8260B - LCSD recovery for 1,1-dichloroethane, cis-1,3-dichloropropene and methyl-t-butyl ether does not meet QC criteria (biased high). These analytes were not detected above the PQL in the associated samples.

947963 CCV VMS/11094]

8260B - CCV recovery for 1,1-dichloroethane does not meet QC criteria (biased high). This analyte was not detected above the PQL in the associated samples.

Laboratory Analytical Report

Client: The Environmental Company, Inc. 1003 Bishop Street, Pauahi Tower Suite 1550 Honolulu, HI 96813

> Attn: Rick Adkisson T: (808)528-1445 F:(808)528-0768

Project: 3354-003 Red Hill BFSF

Workorder No.: 1100328

Certification:

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, other than the conditions noted on the sample data sheet(s) and/or the case narrative. This certification applies only to the tested parameters and the specific sample(s) received at the laboratory.

If you have any questions regarding this report, or if we can be of further assistance, please contact your SGS Project Manager.

Jennifer Serna

Project Manager

*

Enclosed are the analytical results associated with the above work order. If you have any questions regarding this report, or if we can be of any other assistance, please contact your SGS Project Manager at 907-562-2343. All work is provided under SGS general terms and conditions (<<u>http://www.sgs.com/terms_and_conditions.htm</u>>), unless other written agreements have been accepted by both parties.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and AK100001 for NELAP (RCRA methods: 1020A, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035B, 6010B, 6020, 7470A, 7471B, 8021B, 8081B, 8082A, 8260B, 8270D, 8270D-SIM, 9040B, 9045C, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, the National Environmental Laboratory Accreditation Program and other regulatory authorities. The following descriptors or qualifiers may be found in your report:

!Surrogate out of control limits.BIndicates the analyte is found in a blank associated with the sample.CCVContinuing Calibration VerificationCLControl LimitDThe analyte concentration is the result of a dilution.DFDilution FactorDLDetection Limit (i.e., maximum method detection limit)

The analyte has exceeded allowable regulatory or control limits.

- E The analyte result is above the calibrated range.
- F Indicates value that is greater than or equal to the DL
- GT Greater Than
- ICV Initial Calibration Verification
- J The quantitation is an estimation.
- JL The analyte was positively identified, but the quantitation is a low estimation.
- LCS(D) Laboratory Control Spike (Duplicate)
- LOD Limit of Detection (i.e., 2xDL)
- LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)
- LT Less Than
- M A matrix effect was present.
- MB Method Blank
- MS(D) Matrix Spike (Duplicate)
- ND Indicates the analyte is not detected.
- Q QC parameter out of acceptance range.
- R Rejected
- RPD Relative Percent Difference
- U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

SAMPLE SUMMARY

Print Date: 2/10/2010 8:51 am

Client Name: The Environmental Company, Inc. (TEC) Project Name: 3354-003 Red Hill BFSF Workorder No.: 1100328

Analytical Methods

Method Description	Analytical Method
8270 PAH SIM Semi-Vol GC/MS Liq/Liq ext.	8270D SIMS
AFCEE 3.1 8260 (W)	SW8260B
Dissolved Metals by ICP-MS	SW6020
DRO by 8015C (W)	SW8015C
GRO (W)	SW8015C

Sample ID Cross Reference

Lab Sample ID	Client Sample ID
1100328001	RHMW2254-WG18
1100328002	RHMW2254-WG18 MS
1100328003	RHMW2254-WG18 MSD
1100328004	RHMW03-WG18
1100328005	RHMW02-WG18
1100328006	RHMWA01-WG18
1100328007	RHMW01-WG18
1100328008	RHMW05-WG18
1100328009	TB01-WG18

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW2254-WG18** SGS Ref. #: 1100328001 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 09:20 Receipt Date/Time: 01/29/10 11:45

Dissolved Metals by ICP/MS

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	0.620 U	1.00	0.310	ug/L	5	MMS6300	MXX22713	
Batch Information								
Analytical Batch: MMS6300		Prep Batch:	: MXX22713			Initial Prep	Nt./Vol.: 50 m	L
Analytical Method: SW6020		Prep Metho	d: SW3010A			Prep Extrac	t Vol.: 50 mL	
Analysis Date/Time: 02/02/10 16:21		Prep Date/	Time: 02/01/10 1	4:00		Container II	D:1100328001	1-G
Dilution Factor: 5						Analyst: NF	RB	

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW2254-WG18** SGS Ref. #: 1100328001 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 09:20 Receipt Date/Time: 01/29/10 11:45

Volatile Fuels Department

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Gasoline Range Organics	60.0 U	100	30.0	ug/L	1	VFC9854	VXX20443
4-Bromofluorobenzene <surr></surr>	95.2	50-150		%	1	VFC9854	VXX20443
Batch Information							
Analytical Batch: VFC9854		Prep Batch:	VXX20443			Initial Prep	Wt./Vol.: 5 mL
Analytical Method: SW8015C		Prep Metho	d: SW5030B			Prep Extrac	ct Vol.: 5 mL
Analysis Date/Time: 02/01/10 11:28		Prep Date/T	ime: 02/01/10 (09:00		Container I	D:1100328001-A
Dilution Factor: 1						Analyst: Hl	N

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW2254-WG18** SGS Ref. #: 1100328001 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 09:20 Receipt Date/Time: 01/29/10 11:45

Semivolatile Organic Fuels Department

Parameter_	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Diesel Range Organics	0.320 U	0.426	0.160	mg/L	1	XFC9100	XXX2224	8
5a Androstane <surr></surr>	87.1	50-150		%	1	XFC9100	XXX2224	8
Batch Information								
Analytical Batch: XFC9100		Prep Batch	: XXX22248			Initial Prep	Wt./Vol.: 940	0 mL
Analytical Method: SW8015C		Prep Metho	od: SW3520C			Prep Extra	ct Vol.: 1 mL	
Analysis Date/Time: 02/02/10 19:56		Prep Date/	Time: 02/01/10 1	0:20		Container I	D:11003280	01-J
Dilution Factor: 1						Analyst: LC	E	

Print Date: 2/10/2010 8:51 am

Prep

Analytical

Client Sample ID: **RHMW2254-WG18** SGS Ref. #: 1100328001 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 09:20 Receipt Date/Time: 01/29/10 11:45

Volatile Gas Chromatography/Mass Spectroscopy

Demonstern	Booult	LOQ/CL	DI DI	Unite		Analytical Detek	Prep Datak	Overlifieren
Parameter	<u>Result</u>		<u>DL</u>	<u>Units</u>	DF	<u>Batch</u>	<u>Batch</u>	<u>Qualifiers</u>
Benzene	0.240 U	0.400	0.120	ug/L	1	VMS11094	VXX20449	
Toluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
Ethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
n-Butylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
1,4-Dichlorobenzene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449	
1,2-Dichloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449	
1,3,5-Trimethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
4-Chlorotoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
Chlorobenzene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449	
4-Methyl-2-pentanone (MIBK)	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449	
cis-1,2-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
4-Isopropyltoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
cis-1,3-Dichloropropene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449	
n-Propylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
Styrene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
Dibromomethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
trans-1,3-Dichloropropene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
1,2,4-Trichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
Acetone	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449	
1,1,2,2-Tetrachloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449	
1,2-Dibromo-3-chloropropane	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449	
Methyl-t-butyl ether	3.00 U	5.00	1.50	ug/L	1	VMS11094	VXX20449	
Tetrachloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
Dibromochloromethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449	
1,3-Dichloropropane	0.240 U	0.400	0.120	ug/L	1	VMS11094	VXX20449	
1,2-Dibromoethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
Carbon tetrachloride	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
1,1,1,2-Tetrachloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449	
Chloroform	0.600 U	1.00	0.300	ug/L	1	VMS11094	VXX20449	
Bromobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
1,2,3-Trichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
Chloromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
Bromomethane	1.88 U	3.00	0.940	ug/L	1	VMS11094	VXX20449	
Bromochloromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
Vinyl chloride	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
Dichlorodifluoromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449	
		200 W. (D. ()	D	A 17 00 510 ((00 5)				

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW2254-WG18** SGS Ref. #: 1100328001 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 09:20 Receipt Date/Time: 01/29/10 11:45

0 1 9	,					Analytical	Prep
Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	Batch	Batch Qualifiers
Chloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
sec-Butylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromodichloromethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,1-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2-Butanone (MEK)	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
Methylene chloride	2.00 U	5.00	1.00	ug/L	1	VMS11094	VXX20449
Trichlorofluoromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
P & M -Xylene	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449
Naphthalene	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449
o-Xylene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromoform	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1-Chlorohexane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,4-Trimethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
tert-Butylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,1-Trichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1-Dichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2-Chlorotoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Trichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
trans-1,2-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2-Dichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2,2-Dichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Hexachlorobutadiene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Isopropylbenzene (Cumene)	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2-Dichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1-Dichloropropene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,2-Trichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,3-Dichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,3-Trichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Xylenes (total)	2.00 U	2.00	1.00	ug/L	1	VMS11094	VXX20449
1,2-Dichloroethane-D4 <surr></surr>	101	73-120		%	1	VMS11094	VXX20449
Toluene-d8 <surr></surr>	99.7	80-120		%	1	VMS11094	VXX20449
4-Bromofluorobenzene <surr></surr>	103	76-120		%	1	VMS11094	VXX20449

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW2254-WG18** SGS Ref. #: 1100328001 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 09:20 Receipt Date/Time: 01/29/10 11:45

<u>Parameter</u> Batch Information	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Analytical Batch: VMS11094 Analytical Method: SW8260B		•	: VXX20449 od: SW5030B			•	Wt./Vol.: 5 ct Vol.: 5 ml	
Analysis Date/Time: 02/02/10 17:00 Dilution Factor: 1		Prep Date/	Time: 02/02/10	11:17		Container Analyst: D	ID:1100328 SH	001-D

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW2254-WG18** SGS Ref. #: 1100328001 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 09:20 Receipt Date/Time: 01/29/10 11:45

Polynuclear Aromatics GC/MS

<u>Parameter</u>	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Acenaphthylene	0.0316 U	0.0526	0.0158	ug/L	1	XMS5285	XXX22249
Acenaphthene	0.0316 U	0.0526	0.0158	ug/L	1	XMS5285	XXX22249
Fluorene	0.0316 U	0.0526	0.0158	ug/L	1	XMS5285	XXX22249
Phenanthrene	0.0316 U	0.0526	0.0158	ug/L	1	XMS5285	XXX22249
Anthracene	0.0316 U	0.0526	0.0158	ug/L	1	XMS5285	XXX22249
Fluoranthene	0.0316 U	0.0526	0.0158	ug/L	1	XMS5285	XXX22249
Pyrene	0.0316 U	0.0526	0.0158	ug/L	1	XMS5285	XXX22249
Benzo(a)Anthracene	0.0316 U	0.0526	0.0158	ug/L	1	XMS5285	XXX22249
Chrysene	0.0316 U	0.0526	0.0158	ug/L	1	XMS5285	XXX22249
Benzo[b]Fluoranthene	0.0316 U	0.0526	0.0158	ug/L	1	XMS5285	XXX22249
Benzo[k]fluoranthene	0.0316 U	0.0526	0.0158	ug/L	1	XMS5285	XXX22249
Benzo[a]pyrene	0.0316 U	0.0526	0.0158	ug/L	1	XMS5285	XXX22249
Indeno[1,2,3-c,d] pyrene	0.0316 U	0.0526	0.0158	ug/L	1	XMS5285	XXX22249
Dibenzo[a,h]anthracene	0.0316 U	0.0526	0.0158	ug/L	1	XMS5285	XXX22249
Benzo[g,h,i]perylene	0.0316 U	0.0526	0.0158	ug/L	1	XMS5285	XXX22249
Naphthalene	0.0375 J	0.105	0.0326	ug/L	1	XMS5285	XXX22249
1-Methylnaphthalene	0.0316 U	0.0526	0.0158	ug/L	1	XMS5285	XXX22249
2-Methylnaphthalene	0.0316 U	0.0526	0.0158	ug/L	1	XMS5285	XXX22249
Terphenyl-d14 <surr></surr>	115	50-126		%	1	XMS5285	XXX22249
Batch Information							
Analytical Batch: XMS5285	Prep Batch: XXX22249					Initial Prep	Nt./Vol.: 950 mL
Analytical Method: 8270D SIMS	Prep Method: SW3520C					Prep Extrac	t Vol.: 1 mL
Analysis Date/Time: 02/02/10 13:56 Dilution Factor: 1	Prep Date/Time: 02/01/10 11:20					Container II Analyst: JD	D:1100328001-H H

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW03-WG18** SGS Ref. #: 1100328004 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 11:00 Receipt Date/Time: 01/29/10 11:45

Dissolved Metals by ICP/MS

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	0.620 U	1.00	0.310	ug/L	5	MMS6300	MXX22713	
Batch Information								
Analytical Batch: MMS6300		Prep Batch:	MXX22713			Initial Prep	Nt./Vol.: 50 m	nL
Analytical Method: SW6020		Prep Method	1: SW3010A			Prep Extrac	t Vol.: 50 mL	
Analysis Date/Time: 02/02/10 16:43		Prep Date/T	ime: 02/01/10 1	4:00		Container II	D:110032800	4-G
Dilution Factor: 5						Analyst: NF	RB	

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW03-WG18** SGS Ref. #: 1100328004 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 11:00 Receipt Date/Time: 01/29/10 11:45

Volatile Fuels Department

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Gasoline Range Organics	60.0 U	100	30.0	ug/L	1	VFC9854	VXX20443
4-Bromofluorobenzene <surr></surr>	95.3	50-150		%	1	VFC9854	VXX20443
Batch Information							
Analytical Batch: VFC9854		Prep Batch:	VXX20443			Initial Prep	Wt./Vol.: 5 mL
Analytical Method: SW8015C		Prep Metho	d: SW5030B			Prep Extrac	ct Vol.: 5 mL
Analysis Date/Time: 02/01/10 12:41		Prep Date/	ime: 02/01/10	09:00		Container I	D:1100328004-A
Dilution Factor: 1						Analyst: Hl	N

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW03-WG18** SGS Ref. #: 1100328004 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 11:00 Receipt Date/Time: 01/29/10 11:45

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Diesel Range Organics	0.330 U	0.440	0.165	mg/L	1	XFC9100	XXX22248
5a Androstane <surr></surr>	92.6	50-150		%	1	XFC9100	XXX22248
Batch Information							
Analytical Batch: XFC9100		Prep Batch:	XXX22248			Initial Prep	Wt./Vol.: 910 mL
Analytical Method: SW8015C		Prep Metho	d: SW3520C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 02/02/10 20:59		Prep Date/	ime: 02/01/10 1	0:20		Container I	D:1100328004-J
Dilution Factor: 1						Analyst: LC	E

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW03-WG18** SGS Ref. #: 1100328004 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 11:00 Receipt Date/Time: 01/29/10 11:45

Volatile Gas Chromatography/Mass Spectroscopy

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Benzene	0.240 U	0.400	0.120	ug/L	1	VMS11094	VXX20449
Toluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Ethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
n-Butylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,4-Dichlorobenzene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,2-Dichloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,3,5-Trimethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
4-Chlorotoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Chlorobenzene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
4-Methyl-2-pentanone (MIBK)	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
cis-1,2-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
4-Isopropyltoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
cis-1,3-Dichloropropene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
n-Propylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Styrene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Dibromomethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
trans-1,3-Dichloropropene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,4-Trichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Acetone	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
1,1,2,2-Tetrachloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,2-Dibromo-3-chloropropane	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449
Methyl-t-butyl ether	3.00 U	5.00	1.50	ug/L	1	VMS11094	VXX20449
Tetrachloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Dibromochloromethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,3-Dichloropropane	0.240 U	0.400	0.120	ug/L	1	VMS11094	VXX20449
1,2-Dibromoethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Carbon tetrachloride	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,1,2-Tetrachloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
Chloroform	0.600 U	1.00	0.300	ug/L	1	VMS11094	VXX20449
Bromobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,3-Trichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Chloromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromomethane	1.88 U	3.00	0.940	ug/L	1	VMS11094	VXX20449
Bromochloromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Vinyl chloride	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Dichlorodifluoromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
	E in the second state is the		D	AT 00510 (007)	5 (2 2 2 4 2 8	007)5(1,5201	

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW03-WG18** SGS Ref. #: 1100328004 Project ID: 3354-003 Red Hill BFSF

Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 11:00 Receipt Date/Time: 01/29/10 11:45

0.1.7	,					Analytical	Prep
Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	Batch	Batch Qualifiers
Chloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
sec-Butylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromodichloromethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,1-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2-Butanone (MEK)	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
Methylene chloride	2.00 U	5.00	1.00	ug/L	1	VMS11094	VXX20449
Trichlorofluoromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
P & M -Xylene	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449
Naphthalene	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449
o-Xylene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromoform	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1-Chlorohexane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,4-Trimethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
tert-Butylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,1-Trichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1-Dichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2-Chlorotoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Trichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
trans-1,2-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2-Dichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2,2-Dichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Hexachlorobutadiene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Isopropylbenzene (Cumene)	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2-Dichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1-Dichloropropene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,2-Trichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,3-Dichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,3-Trichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Xylenes (total)	2.00 U	2.00	1.00	ug/L	1	VMS11094	VXX20449
1,2-Dichloroethane-D4 <surr></surr>	101	73-120		%	1	VMS11094	VXX20449
Toluene-d8 <surr></surr>	99.1	80-120		%	1	VMS11094	VXX20449
4-Bromofluorobenzene <surr></surr>	102	76-120		%	1	VMS11094	VXX20449

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW03-WG18** SGS Ref. #: 1100328004 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 11:00 Receipt Date/Time: 01/29/10 11:45

Parameter Batch Information	<u>Result</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Analytical Batch: VMS11094 Analytical Method: SW8260B		•	: VXX20449 od: SW5030B			•	Wt./Vol.: 5 ct Vol.: 5 m	
Analysis Date/Time: 02/02/10 17:31 Dilution Factor: 1		Prep Date/	Time: 02/02/10	11:17		Container Analyst: D	ID:1100328 SH	004-D

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW03-WG18** SGS Ref. #: 1100328004 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 11:00 Receipt Date/Time: 01/29/10 11:45

Polynuclear Aromatics GC/MS

Parameter	<u>Result</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> <u>Batch Qua</u>	<u>lifiers</u>
Acenaphthylene	0.0322 U	0.0538	0.0161	ug/L	1	XMS5285	XXX22249	
Acenaphthene	0.0322 U	0.0538	0.0161	ug/L	1	XMS5285	XXX22249	
Fluorene	0.0322 U	0.0538	0.0161	ug/L	1	XMS5285	XXX22249	
Phenanthrene	0.0322 U	0.0538	0.0161	ug/L	1	XMS5285	XXX22249	
Anthracene	0.0322 U	0.0538	0.0161	ug/L	1	XMS5285	XXX22249	
Fluoranthene	0.0322 U	0.0538	0.0161	ug/L	1	XMS5285	XXX22249	
Pyrene	0.0322 U	0.0538	0.0161	ug/L	1	XMS5285	XXX22249	
Benzo(a)Anthracene	0.0322 U	0.0538	0.0161	ug/L	1	XMS5285	XXX22249	
Chrysene	0.0322 U	0.0538	0.0161	ug/L	1	XMS5285	XXX22249	
Benzo[b]Fluoranthene	0.0322 U	0.0538	0.0161	ug/L	1	XMS5285	XXX22249	
Benzo[k]fluoranthene	0.0322 U	0.0538	0.0161	ug/L	1	XMS5285	XXX22249	
Benzo[a]pyrene	0.0322 U	0.0538	0.0161	ug/L	1	XMS5285	XXX22249	
Indeno[1,2,3-c,d] pyrene	0.0322 U	0.0538	0.0161	ug/L	1	XMS5285	XXX22249	
Dibenzo[a,h]anthracene	0.0322 U	0.0538	0.0161	ug/L	1	XMS5285	XXX22249	
Benzo[g,h,i]perylene	0.0322 U	0.0538	0.0161	ug/L	1	XMS5285	XXX22249	
Naphthalene	0.0666 U	0.108	0.0333	ug/L	1	XMS5285	XXX22249	
1-Methylnaphthalene	0.0322 U	0.0538	0.0161	ug/L	1	XMS5285	XXX22249	
2-Methylnaphthalene	0.0322 U	0.0538	0.0161	ug/L	1	XMS5285	XXX22249	
Terphenyl-d14 <surr></surr>	110	50-126		%	1	XMS5285	XXX22249	
Batch Information								
Analytical Batch: XMS5285		Prep Batch:	XXX22249			Initial Prep	Vt./Vol.: 930 mL	
Analytical Method: 8270D SIMS	Prep Method: SW3520C					Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 02/02/10 15:34 Dilution Factor: 1		Prep Date/7	Time: 02/01/10 1	1:20		Container II Analyst: JD	D:1100328004-H H	

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW02-WG18** SGS Ref. #: 1100328005 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/26/10 16:30 Receipt Date/Time: 01/29/10 11:45

Dissolved Metals by ICP/MS

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	1.53	1.00	0.310	ug/L	5	MMS6300	MXX22713	3
Batch Information								
Analytical Batch: MMS6300		Prep Batch:	MXX22713			Initial Prep	Wt./Vol.: 50 n	nL
Analytical Method: SW6020		Prep Metho	d: SW3010A			Prep Extrac	t Vol.: 50 mL	
Analysis Date/Time: 02/02/10 16:45		Prep Date/	Fime: 02/01/10 1	4:00		Container II	D:110032800)5-G
Dilution Factor: 5						Analyst: NF	RB	

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW02-WG18** SGS Ref. #: 1100328005 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/26/10 16:30 Receipt Date/Time: 01/29/10 11:45

Volatile Fuels Department

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Gasoline Range Organics	42.3 J	100	30.0	ug/L	1	VFC9854	VXX2044	3
4-Bromofluorobenzene <surr></surr>	111	50-150		%	1	VFC9854	VXX2044	3
Batch Information								
Analytical Batch: VFC9854		Prep Batch	: VXX20443			Initial Prep	Wt./Vol.: 5 n	nL
Analytical Method: SW8015C		Prep Metho	d: SW5030B			Prep Extrac	ct Vol.: 5 mL	
Analysis Date/Time: 02/01/10 13:19		Prep Date/	Time: 02/01/10	09:00		Container I	D:11003280	05-A
Dilution Factor: 1						Analyst: HI	N	

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW02-WG18** SGS Ref. #: 1100328005 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/26/10 16:30 Receipt Date/Time: 01/29/10 11:45

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Diesel Range Organics	2.13	0.430	0.161	mg/L	1	XFC9100	XXX22248
5a Androstane <surr></surr>	90.8	50-150		%	1	XFC9100	XXX22248
Batch Information							
Analytical Batch: XFC9100		Prep Batch:	XXX22248			Initial Prep	Wt./Vol.: 930 mL
Analytical Method: SW8015C		Prep Metho	d: SW3520C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 02/02/10 21:20		Prep Date/1	ime: 02/01/10 1	0:20		Container I	D:1100328005-J
Dilution Factor: 1						Analyst: LC	E

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW02-WG18** SGS Ref. #: 1100328005 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/26/10 16:30 Receipt Date/Time: 01/29/10 11:45

Volatile Gas Chromatography/Mass Spectroscopy

						Analytical	<u>Prep</u>
<u>Parameter</u>	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	Batch	Batch Qualifiers
Benzene	0.240 U	0.400	0.120	ug/L	1	VMS11094	VXX20449
Toluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Ethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
n-Butylbenzene	3.49	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,4-Dichlorobenzene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,2-Dichloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,3,5-Trimethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
4-Chlorotoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Chlorobenzene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
4-Methyl-2-pentanone (MIBK)	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
cis-1,2-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
4-Isopropyltoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
cis-1,3-Dichloropropene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
n-Propylbenzene	5.48	1.00	0.310	ug/L	1	VMS11094	VXX20449
Styrene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Dibromomethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
trans-1,3-Dichloropropene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,4-Trichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Acetone	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
1,1,2,2-Tetrachloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,2-Dibromo-3-chloropropane	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449
Methyl-t-butyl ether	3.00 U	5.00	1.50	ug/L	1	VMS11094	VXX20449
Tetrachloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Dibromochloromethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,3-Dichloropropane	0.240 U	0.400	0.120	ug/L	1	VMS11094	VXX20449
1,2-Dibromoethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Carbon tetrachloride	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,1,2-Tetrachloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
Chloroform	0.600 U	1.00	0.300	ug/L	1	VMS11094	VXX20449
Bromobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Chloromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,3-Trichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromomethane	1.88 U	3.00	0.940	ug/L	1	VMS11094	VXX20449
Bromochloromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Vinyl chloride	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Dichlorodifluoromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
				AV 00510 ((007)	5(2,2242,0	007)5(1,5201	

Print Date: 2/10/2010 8:51 am

Prep

Analytical

Client Sample ID: **RHMW02-WG18** SGS Ref. #: 1100328005 Project ID: 3354-003 Red Hill BFSF

Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/26/10 16:30 Receipt Date/Time: 01/29/10 11:45

Parameter	Result	LOQ/CL	<u>DL</u>	Units	DF	Analytical Batch	<u>Prep</u> Batch Qualifiers
Chloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
sec-Butylbenzene	5.10	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromodichloromethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,1-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2-Butanone (MEK)	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
Methylene chloride	2.00 U	5.00	1.00	ug/L	1	VMS11094	VXX20449
Trichlorofluoromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
P & M -Xylene	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449
Naphthalene	31.5	2.00	0.620	ug/L	1	VMS11094	VXX20449
o-Xylene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromoform	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1-Chlorohexane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,4-Trimethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
tert-Butylbenzene	0.920 J	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,1-Trichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1-Dichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2-Chlorotoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Trichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
trans-1,2-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2-Dichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2,2-Dichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Hexachlorobutadiene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Isopropylbenzene (Cumene)	3.73	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2-Dichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1-Dichloropropene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,2-Trichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,3-Dichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,3-Trichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Xylenes (total)	2.00 U	2.00	1.00	ug/L	1	VMS11094	VXX20449
1,2-Dichloroethane-D4 <surr></surr>	101	73-120		%	1	VMS11094	VXX20449
Toluene-d8 <surr></surr>	98.1	80-120		%	1	VMS11094	VXX20449
4-Bromofluorobenzene <surr></surr>	104	76-120		%	1	VMS11094	VXX20449

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW02-WG18** SGS Ref. #: 1100328005 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/26/10 16:30 Receipt Date/Time: 01/29/10 11:45

Parameter	Result	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	Qualifiers
Batch Information								
Analytical Batch: VMS11094		Prep Batch	: VXX20449			Initial Prep	Wt./Vol.: 5 i	mL
Analytical Method: SW8260B		Prep Metho	d: SW5030B			Prep Extra	ct Vol.: 5 ml	_
Analysis Date/Time: 02/02/10 18:02		Prep Date/	Time: 02/02/10	11:17		Container I	D:11003280	005-D
Dilution Factor: 1						Analyst: D	SH	

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW02-WG18** SGS Ref. #: 1100328005 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/26/10 16:30 Receipt Date/Time: 01/29/10 11:45

Polynuclear Aromatics GC/MS

Parameter	<u>Result</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Analytical</u> <u>Batch</u>	<u>Prep</u> Batch <u>Qualifiers</u>	
Acenaphthylene	0.0330 U	0.0549	0.0165	ug/L	1	XMS5285	XXX22249	
Acenaphthene	0.247	0.0549	0.0165	ug/L	1	XMS5285	XXX22249	
Fluorene	0.144	0.0549	0.0165	ug/L	1	XMS5285	XXX22249	
Phenanthrene	0.0330 U	0.0549	0.0165	ug/L	1	XMS5285	XXX22249	
Anthracene	0.0330 U	0.0549	0.0165	ug/L	1	XMS5285	XXX22249	
Fluoranthene	0.0330 U	0.0549	0.0165	ug/L	1	XMS5285	XXX22249	
Pyrene	0.0330 U	0.0549	0.0165	ug/L	1	XMS5285	XXX22249	
Benzo(a)Anthracene	0.0330 U	0.0549	0.0165	ug/L	1	XMS5285	XXX22249	
Chrysene	0.0330 U	0.0549	0.0165	ug/L	1	XMS5285	XXX22249	
Benzo[b]Fluoranthene	0.0330 U	0.0549	0.0165	ug/L	1	XMS5285	XXX22249	
Benzo[k]fluoranthene	0.0330 U	0.0549	0.0165	ug/L	1	XMS5285	XXX22249	
Benzo[a]pyrene	0.0330 U	0.0549	0.0165	ug/L	1	XMS5285	XXX22249	
Indeno[1,2,3-c,d] pyrene	0.0330 U	0.0549	0.0165	ug/L	1	XMS5285	XXX22249	
Dibenzo[a,h]anthracene	0.0330 U	0.0549	0.0165	ug/L	1	XMS5285	XXX22249	
Benzo[g,h,i]perylene	0.0330 U	0.0549	0.0165	ug/L	1	XMS5285	XXX22249	
Naphthalene	17.3	1.10	0.341	ug/L	10	XMS5287	XXX22249	
1-Methylnaphthalene	9.03	0.549	0.165	ug/L	10	XMS5287	XXX22249	
2-Methylnaphthalene	3.85	0.549	0.165	ug/L	10	XMS5287	XXX22249	
Terphenyl-d14 <surr></surr>	111	50-126		%	1	XMS5285	XXX22249	
Batch Information								
Analytical Batch: XMS5285		Prep Batch	: XXX22249			Initial Prep	Wt./Vol.: 910 mL	
Analytical Method: 8270D SIMS		Prep Metho	od: SW3520C			Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 02/02/10 16:07		Prep Date/	Time: 02/01/10 1	1:20		Container I	D:1100328005-H	
Dilution Factor: 1						Analyst: JD	Н	
Analytical Batch: XMS5287	Prep Batch: XXX22249					Initial Prep	Wt./Vol.: 910 mL	
Analytical Method: 8270D SIMS	Prep Method: SW3520C					Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 02/03/10 12:45		Prep Date/	Time: 02/01/10 1	1:20		Container ID:1100328005-H		
Dilution Factor: 10						Analyst: JD	H	

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMWA01-WG18** SGS Ref. #: 1100328006 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 12:05 Receipt Date/Time: 01/29/10 11:45

Dissolved Metals by ICP/MS

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	0.620 U	1.00	0.310	ug/L	5	MMS6300	MXX22713	3
Batch Information								
Analytical Batch: MMS6300		Prep Batch: N	/IXX22713			Initial Prep	Nt./Vol.: 50 n	nL
Analytical Method: SW6020		Prep Method:	SW3010A			Prep Extrac	t Vol.: 50 mL	
Analysis Date/Time: 02/02/10 16:47		Prep Date/Tir	ne: 02/01/10 14	1:00		Container II	D:110032800)6-G
Dilution Factor: 5						Analyst: NF	RB	

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMWA01-WG18** SGS Ref. #: 1100328006 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 12:05 Receipt Date/Time: 01/29/10 11:45

Volatile Fuels Department

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Gasoline Range Organics	38.1 J	100	30.0	ug/L	1	VFC9854	VXX20443
4-Bromofluorobenzene <surr></surr>	112	50-150		%	1	VFC9854	VXX20443
Batch Information							
Analytical Batch: VFC9854		Prep Batch:	VXX20443			Initial Prep	Wt./Vol.: 5 mL
Analytical Method: SW8015C		Prep Metho	d: SW5030B			Prep Extrac	ct Vol.: 5 mL
Analysis Date/Time: 02/01/10 13:38		Prep Date/T	ime: 02/01/10 (09:00		Container I	D:1100328006-A
Dilution Factor: 1						Analyst: HN	N

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMWA01-WG18** SGS Ref. #: 1100328006 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 12:05 Receipt Date/Time: 01/29/10 11:45

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	Prep Batch Qualifiers
Diesel Range Organics	3.41	0.449	0.169	mg/L	1	XFC9100	XXX22248
5a Androstane <surr></surr>	83.1	50-150		%	1	XFC9100	XXX22248
Batch Information							
Analytical Batch: XFC9100		Prep Batch:	XXX22248			Initial Prep	Wt./Vol.: 890 mL
Analytical Method: SW8015C		Prep Metho	d: SW3520C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 02/02/10 21:41		Prep Date/	Time: 02/01/10 1	10:20		Container I	D:1100328006-J
Dilution Factor: 1						Analyst: LC	E

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMWA01-WG18** SGS Ref. #: 1100328006 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 12:05 Receipt Date/Time: 01/29/10 11:45

Volatile Gas Chromatography/Mass Spectroscopy

						Analytical	Prep
<u>Parameter</u>	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	Batch	Batch Qualifiers
Benzene	0.240 U	0.400	0.120	ug/L	1	VMS11094	VXX20449
Toluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Ethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
n-Butylbenzene	4.42	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,4-Dichlorobenzene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,2-Dichloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,3,5-Trimethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
4-Chlorotoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Chlorobenzene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
4-Methyl-2-pentanone (MIBK)	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
cis-1,2-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
4-Isopropyltoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
cis-1,3-Dichloropropene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
n-Propylbenzene	6.48	1.00	0.310	ug/L	1	VMS11094	VXX20449
Styrene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Dibromomethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
trans-1,3-Dichloropropene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,4-Trichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Acetone	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
1,1,2,2-Tetrachloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,2-Dibromo-3-chloropropane	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449
Methyl-t-butyl ether	3.00 U	5.00	1.50	ug/L	1	VMS11094	VXX20449
Tetrachloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Dibromochloromethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,3-Dichloropropane	0.240 U	0.400	0.120	ug/L	1	VMS11094	VXX20449
1,2-Dibromoethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Carbon tetrachloride	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,1,2-Tetrachloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
Chloroform	0.600 U	1.00	0.300	ug/L	1	VMS11094	VXX20449
Bromobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Chloromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,3-Trichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromomethane	1.88 U	3.00	0.940	ug/L	1	VMS11094	VXX20449
Bromochloromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Vinyl chloride	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Dichlorodifluoromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
SCS North America Inc.	En	ing 200 Wast Battan	Daine Anchese	AV 00519 4(007)	560 0040 B	007)561 5201	

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMWA01-WG18** SGS Ref. #: 1100328006 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 12:05 Receipt Date/Time: 01/29/10 11:45

	,					Analytical	Prep
<u>Parameter</u>	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	Batch	Batch Qualifiers
Chloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
sec-Butylbenzene	6.42	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromodichloromethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,1-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2-Butanone (MEK)	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
Methylene chloride	2.00 U	5.00	1.00	ug/L	1	VMS11094	VXX20449
Trichlorofluoromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
P & M -Xylene	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449
Naphthalene	9.30	2.00	0.620	ug/L	1	VMS11094	VXX20449
o-Xylene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromoform	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1-Chlorohexane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,4-Trimethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
tert-Butylbenzene	1.19	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,1-Trichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1-Dichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2-Chlorotoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Trichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
trans-1,2-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2-Dichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2,2-Dichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Hexachlorobutadiene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Isopropylbenzene (Cumene)	4.54	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2-Dichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1-Dichloropropene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,2-Trichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,3-Dichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,3-Trichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Xylenes (total)	2.00 U	2.00	1.00	ug/L	1	VMS11094	VXX20449
1,2-Dichloroethane-D4 <surr></surr>	106	73-120		%	1	VMS11094	VXX20449
Toluene-d8 <surr></surr>	98.7	80-120		%	1	VMS11094	VXX20449
4-Bromofluorobenzene <surr></surr>	103	76-120		%	1	VMS11094	VXX20449

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMWA01-WG18** SGS Ref. #: 1100328006 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 12:05 Receipt Date/Time: 01/29/10 11:45

Parameter Batch Information	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>	
Analytical Batch: VMS11094 Analytical Method: SW8260B		•	: VXX20449 od: SW5030B				Initial Prep Wt./Vol.: 5 mL Prep Extract Vol.: 5 mL		
Analysis Date/Time: 02/02/10 18:33 Dilution Factor: 1		Prep Date/Time: 02/02/10 11:17				Container Analyst: D	ID:1100328 SH	006-D	

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMWA01-WG18** SGS Ref. #: 1100328006 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 12:05 Receipt Date/Time: 01/29/10 11:45

Polynuclear Aromatics GC/MS

Parameter	<u>Result</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Analytical</u> <u>Batch</u>	<u>Prep</u> Batch	<u>Qualifiers</u>	
Acenaphthylene	0.0340 U	0.0568	0.0170	ug/L	1	XMS5285	XXX22249)	
Acenaphthene	0.231	0.0568	0.0170	ug/L	1	XMS5285	XXX22249)	
Fluorene	0.122	0.0568	0.0170	ug/L	1	XMS5285	XXX22249		
Phenanthrene	0.0340 U	0.0568	0.0170	ug/L	1	XMS5285	XXX22249)	
Anthracene	0.0340 U	0.0568	0.0170	ug/L	1	XMS5285	XXX22249		
Fluoranthene	0.0209 J	0.0568	0.0170	ug/L	1	XMS5285	XXX22249)	
Pyrene	0.0340 U	0.0568	0.0170	ug/L	1	XMS5285	XXX22249)	
Benzo(a)Anthracene	0.0340 U	0.0568	0.0170	ug/L	1	XMS5285	XXX22249)	
Chrysene	0.0340 U	0.0568	0.0170	ug/L	1	XMS5285	XXX22249		
Benzo[b]Fluoranthene	0.0340 U	0.0568	0.0170	ug/L	1	XMS5285	XXX22249)	
Benzo[k]fluoranthene	0.0340 U	0.0568	0.0170	ug/L	1	XMS5285	XXX22249)	
Benzo[a]pyrene	0.0340 U	0.0568	0.0170	ug/L	1	XMS5285	XXX22249)	
Indeno[1,2,3-c,d] pyrene	0.0340 U	0.0568	0.0170	ug/L	1	XMS5285	XXX22249)	
Dibenzo[a,h]anthracene	0.0340 U	0.0568	0.0170	ug/L	1	XMS5285	XXX22249)	
Benzo[g,h,i]perylene	0.0340 U	0.0568	0.0170	ug/L	1	XMS5285	XXX22249)	
Naphthalene	15.7	1.14	0.352	ug/L	10	XMS5287	XXX22249)	
1-Methylnaphthalene	8.26	0.568	0.170	ug/L	10	XMS5287	XXX22249)	
2-Methylnaphthalene	2.65	0.0568	0.0170	ug/L	1	XMS5285	XXX22249)	
Terphenyl-d14 <surr></surr>	112	50-126		%	1	XMS5285	XXX22249)	
Batch Information									
Analytical Batch: XMS5285		Prep Batch	: XXX22249			Initial Prep	Wt./Vol.: 880	mL	
Analytical Method: 8270D SIMS		Prep Metho	d: SW3520C			Prep Extrac	t Vol.: 1 mL		
Analysis Date/Time: 02/02/10 16:39		Prep Date/Time: 02/01/10 11:20				Container II	D:110032800	D6-H	
Dilution Factor: 1						Analyst: JD	Н		
Analytical Batch: XMS5287		Prep Batch: XXX22249				Initial Prep	Wt./Vol.: 880	mL	
Analytical Method: 8270D SIMS	Prep Method: SW3520C					Prep Extract Vol.: 1 mL			
Analysis Date/Time: 02/03/10 13:17		Prep Date/Time: 02/01/10 11:20					Container ID:1100328006-H		
Dilution Factor: 10						Analyst: JD	H		

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW01-WG18** SGS Ref. #: 1100328007 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 15:40 Receipt Date/Time: 01/29/10 11:45

Dissolved Metals by ICP/MS

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	0.620 U	1.00	0.310	ug/L	5	MMS6300	MXX22714	
Batch Information								
Analytical Batch: MMS6300		Prep Batch:	MXX22714			Initial Prep	Wt./Vol.: 50 m	۱L
Analytical Method: SW6020		Prep Metho	d: SW3010A			Prep Extrac	t Vol.: 50 mL	
Analysis Date/Time: 02/02/10 17:15		Prep Date/T	ime: 02/01/10 1	4:00		Container II	D:1100328007	7-L
Dilution Factor: 5						Analyst: NF	RB	

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW01-WG18** SGS Ref. #: 1100328007 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 15:40 Receipt Date/Time: 01/29/10 11:45

Volatile Fuels Department

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Analytical</u> Batch	Prep Batch Qualifiers
Gasoline Range Organics	60.0 U	100	30.0	ug/L	1	VFC9854	VXX20443
4-Bromofluorobenzene <surr></surr>	98.2	50-150		%	1	VFC9854	VXX20443
Batch Information							
Analytical Batch: VFC9854		Prep Batch:	VXX20443			Initial Prep	Wt./Vol.: 5 mL
Analytical Method: SW8015C		Prep Metho	d: SW5030B			Prep Extrac	ct Vol.: 5 mL
Analysis Date/Time: 02/01/10 13:57		Prep Date/1	ime: 02/01/10	09:00		Container I	D:1100328007-A
Dilution Factor: 1						Analyst: Hl	Л

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW01-WG18** SGS Ref. #: 1100328007 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 15:40 Receipt Date/Time: 01/29/10 11:45

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Diesel Range Organics	0.312 J	0.440	0.165	mg/L	1	XFC9100	XXX22248
5a Androstane <surr></surr>	92.7	50-150		%	1	XFC9100	XXX22248
Batch Information							
Analytical Batch: XFC9100		Prep Batch:	XXX22248			Initial Prep	Wt./Vol.: 910 mL
Analytical Method: SW8015C		Prep Metho	d: SW3520C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 02/02/10 22:02		Prep Date/1	ime: 02/01/10 1	10:20		Container I	D:1100328007-J
Dilution Factor: 1						Analyst: LC	E

Print Date: 2/10/2010 8:51 am

Analytical Prep

Client Sample ID: **RHMW01-WG18** SGS Ref. #: 1100328007 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 15:40 Receipt Date/Time: 01/29/10 11:45

Volatile Gas Chromatography/Mass Spectroscopy

Parameter	<u>Result</u>	LOQ/CL	DL	Units	DF	Batch	Batch Qualifiers
<u></u>							<u></u>
Benzene	0.240 U	0.400	0.120	ug/L	1	VMS11094	VXX20449
Toluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Ethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
n-Butylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,4-Dichlorobenzene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,2-Dichloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,3,5-Trimethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
4-Chlorotoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Chlorobenzene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
4-Methyl-2-pentanone (MIBK)	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
cis-1,2-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
4-Isopropyltoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
cis-1,3-Dichloropropene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
n-Propylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Styrene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Dibromomethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
trans-1,3-Dichloropropene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,4-Trichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Acetone	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
1,1,2,2-Tetrachloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,2-Dibromo-3-chloropropane	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449
Methyl-t-butyl ether	3.00 U	5.00	1.50	ug/L	1	VMS11094	VXX20449
Tetrachloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Dibromochloromethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,3-Dichloropropane	0.240 U	0.400	0.120	ug/L	1	VMS11094	VXX20449
1,2-Dibromoethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Carbon tetrachloride	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,1,2-Tetrachloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
Chloroform	0.600 U	1.00	0.300	ug/L	1	VMS11094	VXX20449
Bromobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,3-Trichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Chloromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromomethane	1.88 U	3.00	0.940	ug/L	1	VMS11094	VXX20449
Bromochloromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Vinyl chloride	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Dichlorodifluoromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
		200 W	Diatation	AV 00518 ((007)	5(2,2242,6	(007)5(1,5201	

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW01-WG18** SGS Ref. #: 1100328007 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 15:40 Receipt Date/Time: 01/29/10 11:45

0.1.3	,					Analytical	Prep
Parameter_	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	Batch	Batch Qualifiers
Chloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
sec-Butylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromodichloromethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,1-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2-Butanone (MEK)	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
Methylene chloride	2.00 U	5.00	1.00	ug/L	1	VMS11094	VXX20449
Trichlorofluoromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
P & M -Xylene	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449
Naphthalene	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449
o-Xylene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromoform	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1-Chlorohexane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,4-Trimethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
tert-Butylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,1-Trichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1-Dichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2-Chlorotoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Trichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
trans-1,2-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2-Dichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2,2-Dichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Hexachlorobutadiene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Isopropylbenzene (Cumene)	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2-Dichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1-Dichloropropene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,2-Trichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,3-Dichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,3-Trichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Xylenes (total)	2.00 U	2.00	1.00	ug/L	1	VMS11094	VXX20449
1,2-Dichloroethane-D4 <surr></surr>	101	73-120		%	1	VMS11094	VXX20449
Toluene-d8 <surr></surr>	100	80-120		%	1	VMS11094	VXX20449
4-Bromofluorobenzene <surr></surr>	102	76-120		%	1	VMS11094	VXX20449

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW01-WG18** SGS Ref. #: 1100328007 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 15:40 Receipt Date/Time: 01/29/10 11:45

Parameter	<u>Result</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>	
Batch Information									
Analytical Batch: VMS11094		Prep Batch	VXX20449		Initial Prep Wt./Vol.: 5 mL				
Analytical Method: SW8260B		Prep Metho	d: SW5030B			Prep Extract Vol.: 5 mL			
Analysis Date/Time: 02/02/10 19:04		Prep Date/Time: 02/02/10 11:17				Container ID:1100328007-D			
Dilution Factor: 1						Analyst: DS	SH		

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW01-WG18** SGS Ref. #: 1100328007 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/27/10 15:40 Receipt Date/Time: 01/29/10 11:45

Polynuclear Aromatics GC/MS

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Acenaphthylene	0.0334 U	0.0556	0.0167	ug/L	1	XMS5285	XXX22249
Acenaphthene	0.0372 J	0.0556	0.0167	ug/L	1	XMS5285	XXX22249
Fluorene	0.0384 J	0.0556	0.0167	ug/L	1	XMS5285	XXX22249
Phenanthrene	0.0204 J	0.0556	0.0167	ug/L	1	XMS5285	XXX22249
Anthracene	0.0334 U	0.0556	0.0167	ug/L	1	XMS5285	XXX22249
Fluoranthene	0.0334 U	0.0556	0.0167	ug/L	1	XMS5285	XXX22249
Pyrene	0.0334 U	0.0556	0.0167	ug/L	1	XMS5285	XXX22249
Benzo(a)Anthracene	0.0334 U	0.0556	0.0167	ug/L	1	XMS5285	XXX22249
Chrysene	0.0334 U	0.0556	0.0167	ug/L	1	XMS5285	XXX22249
Benzo[b]Fluoranthene	0.0334 U	0.0556	0.0167	ug/L	1	XMS5285	XXX22249
Benzo[k]fluoranthene	0.0334 U	0.0556	0.0167	ug/L	1	XMS5285	XXX22249
Benzo[a]pyrene	0.0334 U	0.0556	0.0167	ug/L	1	XMS5285	XXX22249
Indeno[1,2,3-c,d] pyrene	0.0334 U	0.0556	0.0167	ug/L	1	XMS5285	XXX22249
Dibenzo[a,h]anthracene	0.0334 U	0.0556	0.0167	ug/L	1	XMS5285	XXX22249
Benzo[g,h,i]perylene	0.0334 U	0.0556	0.0167	ug/L	1	XMS5285	XXX22249
Naphthalene	0.330	0.111	0.0344	ug/L	1	XMS5285	XXX22249
1-Methylnaphthalene	0.0334 U	0.0556	0.0167	ug/L	1	XMS5285	XXX22249
2-Methylnaphthalene	0.0559	0.0556	0.0167	ug/L	1	XMS5285	XXX22249
Terphenyl-d14 <surr></surr>	121	50-126		%	1	XMS5285	XXX22249
Batch Information							
Analytical Batch: XMS5285		Prep Batch:	: XXX22249			Initial Prep	Nt./Vol.: 900 mL
Analytical Method: 8270D SIMS		Prep Method: SW3520C				Prep Extrac	t Vol.: 1 mL
Analysis Date/Time: 02/02/10 17:11	Prep Date/Time: 02/01/10 11:20 Container ID:11003					D:1100328007-H	
Dilution Factor: 1						Analyst: JD	Н

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW05-WG18** SGS Ref. #: 1100328008 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/26/10 17:15 Receipt Date/Time: 01/29/10 11:45

Dissolved Metals by ICP/MS

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	0.620 U	1.00	0.310	ug/L	5	MMS6300	MXX22713	•
Batch Information								
Analytical Batch: MMS6300		Prep Batch: M	IXX22713			Initial Prep	Wt./Vol.: 50 n	nL
Analytical Method: SW6020		Prep Method:	SW3010A			Prep Extrac	t Vol.: 50 mL	
Analysis Date/Time: 02/02/10 16:49		Prep Date/Tin	ne: 02/01/10 14	1:00		Container II	D:110032800	18-G
Dilution Factor: 5						Analyst: NF	RB	

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW05-WG18** SGS Ref. #: 1100328008 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/26/10 17:15 Receipt Date/Time: 01/29/10 11:45

Volatile Fuels Department

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers	3
Gasoline Range Organics	60.0 U	100	30.0	ug/L	1	VFC9854	VXX20443	
4-Bromofluorobenzene <surr></surr>	96.9	50-150		%	1	VFC9854	VXX20443	
Batch Information								
Analytical Batch: VFC9854		Prep Batch:	VXX20443			Initial Prep	Wt./Vol.: 5 mL	
Analytical Method: SW8015C		Prep Metho	d: SW5030B			Prep Extrac	t Vol.: 5 mL	
Analysis Date/Time: 02/01/10 14:23		Prep Date/T	ime: 02/01/10 (09:00		Container I	D:1100328008-A	
Dilution Factor: 1						Analyst: HN	Λ	

SGS North America Inc. Environmental Division 200 West Potter Drive Anchorage AK 99518 t(907)562.2343 t(907)561 5301 www.ussgs.com Member of SGS Group

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW05-WG18** SGS Ref. #: 1100328008 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/26/10 17:15 Receipt Date/Time: 01/29/10 11:45

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Diesel Range Organics	2.06	0.449	0.169	mg/L	1	XFC9100	XXX22248
5a Androstane <surr></surr>	88.5	50-150		%	1	XFC9100	XXX22248
Batch Information							
Analytical Batch: XFC9100		Prep Batch:	XXX22248			Initial Prep	Wt./Vol.: 890 mL
Analytical Method: SW8015C		Prep Metho	d: SW3520C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 02/02/10 22:23		Prep Date/	Time: 02/01/10 1	0:20		Container I	D:1100328008-J
Dilution Factor: 1						Analyst: LC	E

SGS North America Inc. Environmental Division 200 West Potter Drive Anchorage AK 99518 t(907)562.2343 f(907)561 5301 www.ussgs.com Member of SGS Group

Print Date: 2/10/2010 8:51 am

Analytical Prep

Client Sample ID: **RHMW05-WG18** SGS Ref. #: 1100328008 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/26/10 17:15 Receipt Date/Time: 01/29/10 11:45

Volatile Gas Chromatography/Mass Spectroscopy

Parameter	<u>Result</u>	LOQ/CL	DL	Units	DF	Batch	Batch Qualifiers
Benzene	0.240 U	0.400	0.120	ug/L	1	VMS11094	VXX20449
Toluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Ethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
n-Butylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,4-Dichlorobenzene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,2-Dichloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,3,5-Trimethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
4-Chlorotoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Chlorobenzene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
4-Methyl-2-pentanone (MIBK)	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
cis-1,2-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
4-Isopropyltoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
cis-1,3-Dichloropropene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
n-Propylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Styrene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Dibromomethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
trans-1,3-Dichloropropene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,4-Trichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Acetone	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
1,1,2,2-Tetrachloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,2-Dibromo-3-chloropropane	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449
Methyl-t-butyl ether	3.00 U	5.00	1.50	ug/L	1	VMS11094	VXX20449
Tetrachloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Dibromochloromethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,3-Dichloropropane	0.240 U	0.400	0.120	ug/L	1	VMS11094	VXX20449
1,2-Dibromoethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Carbon tetrachloride	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,1,2-Tetrachloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
Chloroform	0.600 U	1.00	0.300	ug/L	1	VMS11094	VXX20449
Bromobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,3-Trichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Chloromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromomethane	1.88 U	3.00	0.940	ug/L	1	VMS11094	VXX20449
Bromochloromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Vinyl chloride	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Dichlorodifluoromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
			Diatat		5(2,2242,0	007)5(15201	

SGS North America Inc. Environmental Division 200 West Potter Drive Anchorage AK 99518 t(907)562.2343 f(907)561 5301 www.ussgs.com Member of SGS Group

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW05-WG18** SGS Ref. #: 1100328008 Project ID: 3354-003 Red Hill BFSF

Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/26/10 17:15 Receipt Date/Time: 01/29/10 11:45

0.1.9	,					Analytical	Prep
Parameter_	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	Batch	Batch Qualifiers
Chloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
sec-Butylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromodichloromethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,1-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2-Butanone (MEK)	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
Methylene chloride	2.00 U	5.00	1.00	ug/L	1	VMS11094	VXX20449
Trichlorofluoromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
P & M -Xylene	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449
Naphthalene	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449
o-Xylene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromoform	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1-Chlorohexane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,4-Trimethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
tert-Butylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,1-Trichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1-Dichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2-Chlorotoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Trichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
trans-1,2-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2-Dichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2,2-Dichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Hexachlorobutadiene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Isopropylbenzene (Cumene)	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2-Dichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1-Dichloropropene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,2-Trichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,3-Dichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,3-Trichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Xylenes (total)	2.00 U	2.00	1.00	ug/L	1	VMS11094	VXX20449
1,2-Dichloroethane-D4 <surr></surr>	99.6	73-120		%	1	VMS11094	VXX20449
Toluene-d8 <surr></surr>	99.7	80-120		%	1	VMS11094	VXX20449
4-Bromofluorobenzene <surr></surr>	105	76-120		%	1	VMS11094	VXX20449

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW05-WG18** SGS Ref. #: 1100328008 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/26/10 17:15 Receipt Date/Time: 01/29/10 11:45

Parameter Batch Information	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Analytical</u> <u>Batch</u>	<u>Prep</u> Batch	<u>Qualifiers</u>
Analytical Batch: VMS11094		Prep Batch	: VXX20449			Initial Prep	Wt./Vol.: 5	mL
Analytical Method: SW8260B		Prep Metho	d: SW5030B			Prep Extra	ct Vol.: 5 ml	L
Analysis Date/Time: 02/02/10 19:36		Prep Date/	Time: 02/02/10	11:17		Container	ID:1100328	008-D
Dilution Factor: 1						Analyst: D	SH	

Print Date: 2/10/2010 8:51 am

Client Sample ID: **RHMW05-WG18** SGS Ref. #: 1100328008 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/26/10 17:15 Receipt Date/Time: 01/29/10 11:45

Polynuclear Aromatics GC/MS

Parameter	<u>Result</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers	<u>5</u>
Acenaphthylene	0.0344 U	0.0575	0.0172	ug/L	1	XMS5285	XXX22249	
Acenaphthene	0.0344 U	0.0575	0.0172	ug/L	1	XMS5285	XXX22249	
Fluorene	0.0344 U	0.0575	0.0172	ug/L	1	XMS5285	XXX22249	
Phenanthrene	0.0182 J	0.0575	0.0172	ug/L	1	XMS5285	XXX22249	
Anthracene	0.0344 U	0.0575	0.0172	ug/L	1	XMS5285	XXX22249	
Fluoranthene	0.0190 J	0.0575	0.0172	ug/L	1	XMS5285	XXX22249	
Pyrene	0.0344 U	0.0575	0.0172	ug/L	1	XMS5285	XXX22249	
Benzo(a)Anthracene	0.0344 U	0.0575	0.0172	ug/L	1	XMS5285	XXX22249	
Chrysene	0.0344 U	0.0575	0.0172	ug/L	1	XMS5285	XXX22249	
Benzo[b]Fluoranthene	0.0344 U	0.0575	0.0172	ug/L	1	XMS5285	XXX22249	
Benzo[k]fluoranthene	0.0344 U	0.0575	0.0172	ug/L	1	XMS5285	XXX22249	
Benzo[a]pyrene	0.0344 U	0.0575	0.0172	ug/L	1	XMS5285	XXX22249	
Indeno[1,2,3-c,d] pyrene	0.0344 U	0.0575	0.0172	ug/L	1	XMS5285	XXX22249	
Dibenzo[a,h]anthracene	0.0344 U	0.0575	0.0172	ug/L	1	XMS5285	XXX22249	
Benzo[g,h,i]perylene	0.0344 U	0.0575	0.0172	ug/L	1	XMS5285	XXX22249	
Naphthalene	0.0712 U	0.115	0.0356	ug/L	1	XMS5285	XXX22249	
1-Methylnaphthalene	0.0207 J	0.0575	0.0172	ug/L	1	XMS5285	XXX22249	
2-Methylnaphthalene	0.0246 J	0.0575	0.0172	ug/L	1	XMS5285	XXX22249	
Terphenyl-d14 <surr></surr>	120	50-126		%	1	XMS5285	XXX22249	
Batch Information								
Analytical Batch: XMS5285		Prep Batch:	: XXX22249			Initial Prep	Nt./Vol.: 870 mL	
Analytical Method: 8270D SIMS		Prep Metho	d: SW3520C			Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 02/02/10 17:44 Dilution Factor: 1		Prep Date/1	Time: 02/01/10 1	1:20		Container II Analyst: JD	D:1100328008-H H	

Print Date: 2/10/2010 8:51 am

Client Sample ID: **TB01-WG18** SGS Ref. #: 1100328009 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/26/10 08:05 Receipt Date/Time: 01/29/10 11:45

Volatile Fuels Department

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Gasoline Range Organics	60.0 U	100	30.0	ug/L	1	VFC9854	VXX2044;	3
4-Bromofluorobenzene <surr></surr>	101	50-150		%	1	VFC9854	VXX20443	
Batch Information								
Analytical Batch: VFC9854		Prep Batch	: VXX20443			Initial Prep	Wt./Vol.: 5 m	٦L
Analytical Method: SW8015C		Prep Metho	od: SW5030B			Prep Extra	ct Vol.: 5 mL	
Analysis Date/Time: 02/01/10 14:42		Prep Date/	Time: 02/01/10	09:00		Container I	D:11003280	09-A
Dilution Factor: 1						Analyst: Hl	N	

Print Date: 2/10/2010 8:51 am

Prep

Analytical

Client Sample ID: **TB01-WG18** SGS Ref. #: 1100328009 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/26/10 08:05 Receipt Date/Time: 01/29/10 11:45

Volatile Gas Chromatography/Mass Spectroscopy

Parameter	<u>Result</u>	LOQ/CL	<u>DL</u>	Units	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
<u> </u>				<u></u>	<u></u>		
Benzene	0.240 U	0.400	0.120	ug/L	1	VMS11094	VXX20449
Toluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Ethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
n-Butylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,4-Dichlorobenzene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,2-Dichloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,3,5-Trimethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
4-Chlorotoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Chlorobenzene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
4-Methyl-2-pentanone (MIBK)	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
cis-1,2-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
4-Isopropyltoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
cis-1,3-Dichloropropene	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
n-Propylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Styrene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Dibromomethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
trans-1,3-Dichloropropene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,4-Trichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Acetone	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
1,1,2,2-Tetrachloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,2-Dibromo-3-chloropropane	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449
Methyl-t-butyl ether	3.00 U	5.00	1.50	ug/L	1	VMS11094	VXX20449
Tetrachloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Dibromochloromethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,3-Dichloropropane	0.240 U	0.400	0.120	ug/L	1	VMS11094	VXX20449
1,2-Dibromoethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Carbon tetrachloride	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,1,2-Tetrachloroethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
Chloroform	0.600 U	1.00	0.300	ug/L	1	VMS11094	VXX20449
Bromobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Chloromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,3-Trichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromomethane	1.88 U	3.00	0.940	ug/L	1	VMS11094	VXX20449
Bromochloromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Vinyl chloride	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Dichlorodifluoromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
	E. S. I.I.			AV 00510 ((007)	5(2 2242 6	007)5(1,5201	

SGS North America Inc. Environmental Division 200 West Potter Drive Anchorage AK 99518 t(907)562.2343 t(907)561 5301 www.ussgs.com Member of SGS Group

Print Date: 2/10/2010 8:51 am

Client Sample ID: **TB01-WG18** SGS Ref. #: 1100328009 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/26/10 08:05 Receipt Date/Time: 01/29/10 11:45

0.1.7	,					Analytical	Prep
Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	Batch	Batch Qualifiers
Chloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
sec-Butylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromodichloromethane	0.300 U	0.500	0.150	ug/L	1	VMS11094	VXX20449
1,1-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2-Butanone (MEK)	6.20 U	10.0	3.10	ug/L	1	VMS11094	VXX20449
Methylene chloride	2.00 U	5.00	1.00	ug/L	1	VMS11094	VXX20449
Trichlorofluoromethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
P & M -Xylene	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449
Naphthalene	1.24 U	2.00	0.620	ug/L	1	VMS11094	VXX20449
o-Xylene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Bromoform	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1-Chlorohexane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,4-Trimethylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
tert-Butylbenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,1-Trichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1-Dichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2-Chlorotoluene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Trichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
trans-1,2-Dichloroethene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2-Dichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
2,2-Dichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Hexachlorobutadiene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Isopropylbenzene (Cumene)	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2-Dichloropropane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1-Dichloropropene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,1,2-Trichloroethane	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,3-Dichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
1,2,3-Trichlorobenzene	0.620 U	1.00	0.310	ug/L	1	VMS11094	VXX20449
Xylenes (total)	2.00 U	2.00	1.00	ug/L	1	VMS11094	VXX20449
1,2-Dichloroethane-D4 <surr></surr>	101	73-120		%	1	VMS11094	VXX20449
Toluene-d8 <surr></surr>	98.1	80-120		%	1	VMS11094	VXX20449
4-Bromofluorobenzene <surr></surr>	108	76-120		%	1	VMS11094	VXX20449

Print Date: 2/10/2010 8:51 am

Client Sample ID: **TB01-WG18** SGS Ref. #: 1100328009 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 01/26/10 08:05 Receipt Date/Time: 01/29/10 11:45

Parameter	Result	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	Qualifiers
Batch Information			<u></u>	onto	<u>51</u>	Batom	Batom	quamoro
Analytical Batch: VMS11094		Prep Batch	VXX20449			Initial Prep	Wt./Vol.: 5 r	mL
Analytical Method: SW8260B		Prep Metho	d: SW5030B			Prep Extrac	ct Vol.: 5 mL	_
Analysis Date/Time: 02/02/10 16:28		Prep Date/	Time: 02/02/10	11:17		Container I	D:11003280	009-В
Dilution Factor: 1						Analyst: DS	SH	

SGS Ref.# Client Name Project Name/# Matrix	3354-00	Meth vironmental Co 3 Red Hill BF Surface, Eff., (SF	(TEC)		Printed Prep	Date/Time Batch Method Date	02/10/2010 8 XXX22248 SW3520C 02/01/2010	3:51
QC results affect the f 1100328001, 11	01	1	00328006, 11	100328007, 110	00328008				
Parameter			Results	LOQ/CL	DL	Units		Analysis Date	S
Semivolatile	Organic Fu	els Depart	ment						
Diesel Range Orga	nics		0.300 U	0.400	0.150	mg/L		02/02/1	0
Surrogates									
5a Androstane <su< td=""><td>rr></td><td></td><td>93.2</td><td>60-120</td><td></td><td>%</td><td></td><td>02/02/1</td><td>0</td></su<>	rr>		93.2	60-120		%		02/02/1	0
Batch Method Instrument	XFC9100 SW8015C HP 7890A	FID SV E F							

SGS Ref.# Client Name Project Name/# Matrix	947711 Me The Environmental C 3354-003 Red Hill B Water (Surface, Eff.,	FSF	(TEC)		Printed Prep	Date/Time Batch Method Date	02/10/2010 8:51 XXX22249 SW3520C 02/01/2010
-	following production samples: 100328004, 1100328005, 11	.00328006, 11	00328007, 110	00328008			
Parameter		Results	LOQ/CL	DL	Units		Analysis Date
Polynuclear A	Aromatics GC/MS						
Acenaphthylene		0.0300 U	0.0500	0.0150	ug/L		02/02/10
Acenaphthene		0.0300 U	0.0500	0.0150	ug/L		02/02/10
Fluorene		0.0300 U	0.0500	0.0150	ug/L		02/02/10
Phenanthrene		0.0300 U	0.0500	0.0150	ug/L		02/02/10
Anthracene		0.0300 U	0.0500	0.0150	ug/L		02/02/10
Fluoranthene		0.0300 U	0.0500	0.0150	ug/L		02/02/10
Pyrene		0.0300 U	0.0500	0.0150	ug/L		02/02/10
Benzo(a)Anthrace	ene	0.0300 U	0.0500	0.0150	ug/L		02/02/10
Chrysene		0.0300 U	0.0500	0.0150	ug/L		02/02/10
Benzo[b]Fluorant	hene	0.0300 U	0.0500	0.0150	ug/L		02/02/10
Benzo[k]fluorantl	hene	0.0300 U	0.0500	0.0150	ug/L		02/02/10
Benzo[a]pyrene		0.0300 U	0.0500	0.0150	ug/L		02/02/10
indeno[1,2,3-c,d]	pyrene	0.0300 U	0.0500	0.0150	ug/L		02/02/10
Dibenzo[a,h]anth	racene	0.0300 U	0.0500	0.0150	ug/L		02/02/10
Benzo[g,h,i]peryl	ene	0.0300 U	0.0500	0.0150	ug/L		02/02/10
Naphthalene		0.0620 U	0.100	0.0310	ug/L		02/02/10
l-Methylnaphthal	ene	0.0300 U	0.0500	0.0150	ug/L		02/02/10
2-Methylnaphthal	ene	0.0300 U	0.0500	0.0150	ug/L		02/02/10
Surrogates							
Terphenyl-d14 <s< td=""><td>surr></td><td>109</td><td>50-126</td><td></td><td>%</td><td></td><td>02/02/10</td></s<>	surr>	109	50-126		%		02/02/10
Batch	XMS5285						
Method	8270D SIMS						
Instrument	HP 6890/5973 MS SVQA						

SGS Ref.# Client Name Project Name/# Matrix	947747 N The Environmenta 3354-003 Red Hill Water (Surface, Ef	BFSF	. (TEC)		Printed Prep	Date/Time Batch Method Date	02/10/2010 8:51 VXX20443 SW5030B 02/01/2010
	ollowing production sample 00328004, 1100328005,		100328007, 110	00328008, 110	0328009		
Parameter		Results	LOQ/CL	DL	Units		Analysis Date
Volatile Fuel	s Department						
Gasoline Range Or	ganics	60.0 U	100	30.0	ug/L		02/01/10
Surrogates							
4-Bromofluoroben	zene <surr></surr>	96.8	50-150		%		02/01/10
Batch Method Instrument	VFC9854 SW8015C HP 5890 Series II PID+F	ID VCA					

SGS Ref.# Client Name Project Name/# Matrix	947859 The Environmen 3354-003 Red Hi Water (Surface, T		(TEC)		Printed Prep	Date/Time Batch Method Date	02/10/2010 8:51 MXX22713 SW3010A 02/01/2010
	following production samp 100328004, 1100328003		00328008				
Parameter		Results	LOQ/CL	DL	Units		Analysis Date
Metals by ICE	P/MS						
Lead		0.620 U	1.00	0.310	ug/L		02/02/10
Batch	MMS6300						
Method	SW6020						
Instrument	Perkin Elmer Sciex ICF	P-MS P3					

SGS Ref.# Client Name Project Name/# Matrix	947864 The Environment 3354-003 Red Hi Water (Surface, E	ll BFSF	(TEC)		Printed Prep	Date/Time Batch Method Date	02/10/2010 8:51 MXX22714 SW3010A 02/01/2010
QC results affect the 1100328007	following production samp	les:					
Parameter		Results	LOQ/CL	DL	Units		Analysis Date
Metals by ICI	P/MS						
Lead		0.620 U	1.00	0.310	ug/L		02/02/10
Batch Method	MMS6300 SW6020						
Instrument	Perkin Elmer Sciex ICP	-MS P3					

SGS Ref.# Client Name Project Name/# Matrix	3354-003 Red	Method Blank Iental Company, Inc Hill BFSF e, Eff., Ground)	. (TEC)		Prin Prep	ed Date/Time Batch Method Date	02/10/2010 8:51 VXX20449 SW5030B 02/02/2010	
QC results affect the follo 1100328001, 11003	61	umples: 005, 1100328006, 1	100328007, 110	00328008, 11	00328009			
Parameter		Results	LOQ/CL	DL	Units		Analysis Date	

SGS Ref.# Client Name Project Name/# Matrix	947959 Me The Environmental 0 3354-003 Red Hill E Water (Surface, Eff.	BFSF	(TEC)		Printed Date/Time Prep Batch Method Date	02/10/2010 8:51 VXX20449 SW5030B 02/02/2010
Parameter		Results	LOQ/CL	DL	Units	Analysis Date
Volatile Gas Ch	romatography/Mas	s Spectros	сору			
Benzene		0.240 U	0.400	0.120	ug/L	02/02/10
Toluene		0.620 U	1.00	0.310	ug/L	02/02/10
Ethylbenzene		0.620 U	1.00	0.310	ug/L	02/02/10
n-Butylbenzene		0.620 U	1.00	0.310	ug/L	02/02/10
1,4-Dichlorobenzene		0.300 U	0.500	0.150	ug/L	02/02/10
1,2-Dichloroethane		0.300 U	0.500	0.150	ug/L	02/02/10
1,3,5-Trimethylbenzer	ne	0.620 U	1.00	0.310	ug/L	02/02/10
4-Chlorotoluene		0.620 U	1.00	0.310	ug/L	02/02/10
Chlorobenzene		0.300 U	0.500	0.150	ug/L	02/02/10
4-Methyl-2-pentanone	e (MIBK)	6.20 U	10.0	3.10	ug/L	02/02/10
cis-1,2-Dichloroethen	e	0.620 U	1.00	0.310	ug/L	02/02/10
4-Isopropyltoluene		0.620 U	1.00	0.310	ug/L	02/02/10
cis-1,3-Dichloroprope	ne	0.300 U	0.500	0.150	ug/L	02/02/10
n-Propylbenzene		0.620 U	1.00	0.310	ug/L	02/02/10
Styrene		0.620 U	1.00	0.310	ug/L	02/02/10
Dibromomethane		0.620 U	1.00	0.310	ug/L	02/02/10
trans-1,3-Dichloropro	pene	0.620 U	1.00	0.310	ug/L	02/02/10
1,2,4-Trichlorobenzen		0.620 U	1.00	0.310	ug/L	02/02/10
Acetone		6.20 U	10.0	3.10	ug/L	02/02/10
1,1,2,2-Tetrachloroeth	ane	0.300 U	0.500	0.150	ug/L	02/02/10
1,2-Dibromo-3-chloro		1.24 U	2.00	0.620	ug/L	02/02/10
Methyl-t-butyl ether	F F	3.00 U	5.00	1.50	ug/L	02/02/10
Tetrachloroethene		0.620 U	1.00	0.310	ug/L	02/02/10
Dibromochlorometha	ie.	0.300 U	0.500	0.150	ug/L	02/02/10
1,3-Dichloropropane		0.240 U	0.400	0.120	ug/L	02/02/10
1,2-Dibromoethane		0.620 U	1.00	0.310	ug/L	02/02/10
Carbon tetrachloride		0.620 U	1.00	0.310	ug/L	02/02/10
1,1,1,2-Tetrachloroeth	ane	0.300 U	0.500	0.150	ug/L	02/02/10
Chloroform	lanc	0.600 U	1.00	0.300	ug/L	02/02/10
Bromobenzene		0.620 U	1.00	0.310	ug/L	02/02/10
Chloromethane		0.620 U	1.00	0.310	ug/L	02/02/10
	2	0.620 U	1.00	0.310	ug/L ug/L	02/02/10
1,2,3-Trichloropropan	e	1.88 U	3.00	0.940		02/02/10
Bromomethane		0.620 U	1.00		ug/L	02/02/10
Bromochloromethane			1.00	0.310	ug/L	02/02/10
Vinyl chloride		0.620 U	1.00	0.310	ug/L	02/02/10
Dichlorodifluorometh	ane	0.620 U		0.310	ug/L	02/02/10
Chloroethane		0.620 U	1.00	0.310	ug/L	02/02/10
sec-Butylbenzene		0.620 U	1.00	0.310	ug/L	
Bromodichlor580eff93	ie	0.300 U	0.500	0.150	ug/L	02/02/10

SGS Ref.# Client Name Project Name/# Matrix	947959 The Environmer 3354-003 Red F Water (Surface,		(TEC)		Printed Date/Time Prep Batch Method Date	02/10/2010 8:51 VXX20449 SW5030B 02/02/2010
Parameter		Results	LOQ/CL	DL	Units	Analysis Date
Volatile Gas	Chromatography/	Mass Spectros	сору			
1,1-Dichloroether	ne	0.620 U	1.00	0.310	ug/L	02/02/10
2-Butanone (MEk	()	6.20 U	10.0	3.10	ug/L	02/02/10
Methylene chloric	le	2.00 U	5.00	1.00	ug/L	02/02/10
Trichlorofluorom	ethane	0.620 U	1.00	0.310	ug/L	02/02/10
P & M -Xylene		1.24 U	2.00	0.620	ug/L	02/02/10
Naphthalene		1.24 U	2.00	0.620	ug/L	02/02/10
o-Xylene		0.620 U	1.00	0.310	ug/L	02/02/10
Bromoform		0.620 U	1.00	0.310	ug/L	02/02/10
1-Chlorohexane		0.620 U	1.00	0.310	ug/L	02/02/10
1,2,4-Trimethylbe	enzene	0.620 U	1.00	0.310	ug/L	02/02/10
tert-Butylbenzene		0.620 U	1.00	0.310	ug/L	02/02/10
1,1,1-Trichloroeth	nane	0.620 U	1.00	0.310	ug/L	02/02/10
1,1-Dichloroethar	ie	0.620 U	1.00	0.310	ug/L	02/02/10
2-Chlorotoluene		0.620 U	1.00	0.310	ug/L	02/02/10
Trichloroethene		0.620 U	1.00	0.310	ug/L	02/02/10
trans-1,2-Dichloro	oethene	0.620 U	1.00	0.310	ug/L	02/02/10
1,2-Dichlorobenz	ene	0.620 U	1.00	0.310	ug/L	02/02/10
2,2-Dichloropropa	ane	0.620 U	1.00	0.310	ug/L	02/02/10
Hexachlorobutadi	ene	0.620 U	1.00	0.310	ug/L	02/02/10
Isopropylbenzene	(Cumene)	0.620 U	1.00	0.310	ug/L	02/02/10
1,2-Dichloropropa	ane	0.620 U	1.00	0.310	ug/L	02/02/10
1,1-Dichloroprope	ene	0.620 U	1.00	0.310	ug/L	02/02/10
1,1,2-Trichloroeth	nane	0.620 U	1.00	0.310	ug/L	02/02/10
1,3-Dichlorobenz	ene	0.620 U	1.00	0.310	ug/L	02/02/10
1,2,3-Trichlorobe	nzene	0.620 U	1.00	0.310	ug/L	02/02/10
Xylenes (total)		2.00 U	2.00	1.00	ug/L	02/02/10
Surrogates						
1,2-Dichloroethar	ne-D4 <surr></surr>	103	73-120		%	02/02/10
Toluene-d8 < surr	>	100	80-120		%	02/02/10
4-Bromofluorobe	nzene <surr></surr>	105	76-120		%	02/02/10
Batch	VMS11094					
Method	SW8260B					
Instrument	HD 5800 Series II MS	1 377 4				

Instrument HP 5890 Series II MS1 VJA

SGS Ref.# Client Name Project Name/# Matrix	3354-003	Lab Control conmental Cor Red Hill BFS urface, Eff., G	npany, Inc. (F	TEC)		Printed I Prep	Date/Time Batch Method Date	02/10/2010 XXX22249 SW3520C 02/01/2010	8:51
QC results affect the foll	owing produc	ction samples:	,	00220007 110	0220000				
1100328001, 11003 Parameter	328004, 110	0328005, 110	QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Polynuclear Arom	atics GC	/ms							
Acenaphthylene		LCS	0.403	81	(50-101)			0.5 ug/L	02/02/2010
Acenaphthene		LCS	0.406	81	(45-93)			0.5 ug/L	02/02/2010
Fluorene		LCS	0.421	84	(50-98)			0.5 ug/L	02/02/2010
Phenanthrene		LCS	0.434	87	(50-104)			0.5 ug/L	02/02/2010
Anthracene		LCS	0.437	87	(55-105)			0.5 ug/L	02/02/2010
Fluoranthene		LCS	0.512	102	(58-109)			0.5 ug/L	02/02/2010
Pyrene		LCS	0.491	98	(56-105)			0.5 ug/L	02/02/2010
Benzo(a)Anthracene		LCS	0.523	105	(55-120)			0.5 ug/L	02/02/2010
Chrysene		LCS	0.464	93	(56-109)			0.5 ug/L	02/02/2010
Benzo[b]Fluoranthene		LCS	0.481	96	(45-120)			0.5 ug/L	02/02/2010
Benzo[k]fluoranthene		LCS	0.493	99	(56-112)			0.5 ug/L	02/02/2010
Benzo[a]pyrene		LCS	0.507	101	(57-110)			0.5 ug/L	02/02/2010
Indeno[1,2,3-c,d] pyrer	ne	LCS	0.456	91	(55-111)			0.5 ug/L	02/02/2010
Dibenzo[a,h]anthracene	e	LCS	0.461	92	(54-113)			0.5 ug/L	02/02/2010
Benzo[g,h,i]perylene		LCS	0.439	88	(49-116)			0.5 ug/L	02/02/2010
Naphthalene		LCS	0.354	71	(44-89)			0.5 ug/L	02/02/2010
1-Methylnaphthalene		LCS	0.385	77	(42-92)			0.5 ug/L	02/02/2010
2-Methylnaphthalene		LCS	0.363	73	(45-89)			0.5 ug/L	02/02/2010
Surrogates Terphenyl-d14 <surr> 60 of 93</surr>		LCS		103	(50-126)				02/02/2010

SGS Ref.#	947712 Lab Control Sample					Date/Time Batch	02/10/2010 XXX22249	8:51
Client Name Project Name/# Matrix	The Environmental Co 3354-003 Red Hill BFS Water (Surface, Eff., G	SF	ΓEC)		·	Method Date	SW3520C 02/01/2010	
Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date

Polynuclear Aromatics GC/MS

 Batch
 XMS5285

 Method
 8270D SIMS

 Instrument
 HP 6890/5973 MS SVQA

SGS Ref.#	947748 Lab Control Sample	Printed Date/Time	02/10/2010	8:51
	947749 Lab Control Sample Duplicate	Prep Batch	VXX20443	
Client Name	The Environmental Company, Inc. (TEC)	Method	SW5030B	
Project Name/#	3354-003 Red Hill BFSF	Date	02/01/2010	
Matrix	Water (Surface, Eff., Ground)			

QC results affect the following production samples:

1100328001, 1100328004, 1100328005, 1100328006, 1100328007, 1100328008, 1100328009

Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuels Department	1							
Gasoline Range Organics	LCS	198	99	(79-108)			200 ug/L	02/01/2010
	LCSD	185	93		7	(<20)	200 ug/L	02/01/2010
Surrogates								
4-Bromofluorobenzene <surr></surr>	LCS		100	(50-150)				02/01/2010
	LCSD		98		2			02/01/2010

Batch	VFC9854
Method	SW8015C
Instrument	HP 5890 Series II PID+FID VCA

SGS Ref.# Client Name	n en						ed Date/Time Batch Method	02/10/2010 MXX22713 SW3010A	8:51	
Project Name/#		Red Hill BFS	1 27	ILC)			Date	02/01/2010		
Matrix		face, Eff., G						,		
QC results affect	the following product	ion samples:								
1100328001,	, 1100328004, 1100	328005, 110	0328006, 11	00328008						
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	
Metals by I	CP/MS									
Lead		LCS	1030	103	(80-120)			1000 ug/L	02/02/2010	
Batch Method	MMS6300									

Method SW6020

Instrument Perkin Elmer Sciex ICP-MS P3

Instrument

Perkin Elmer Sciex ICP-MS P3

SGS Ref.# Client Name Project Name/# Matrix	3354-003 F	Lab Control nmental Cor Red Hill BFS face, Eff., G	npany, Inc. (F	TEC)		Printed Prep	Date/Time Batch Method Date	02/10/2010 MXX22714 SW3010A 02/01/2010	8:51
QC results affect th 1100328007	ne following producti	on samples:							
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Metals by IC	P/MS								
Lead		LCS	1020	102	(80-120)			1000 ug/L	02/02/2010
Batch Method	MMS6300 SW6020								

SGS Ref.#	947960 Lab C	ontrol Sample			Printee	d Date/Time	02/10/2010	8:51
		ontrol Sample Dup			Prep	Batch Mothed	VXX20449	
Client Name Project Name/#	The Environmenta 3354-003 Red Hil	1 5, (TEC)			Method Date	SW5030B 02/02/2010	
Matrix	Water (Surface, E						02/02/2010	
QC results affect the	following production sam	oles:						
1100328001, 11	00328004, 1100328005	, 1100328006, 110	00328007, 11	00328008, 110032	28009			
_		QC	Pct	LCS/LCSD		RPD	Spiked	Analysis
Parameter		Results	Recov	Limits	RPD	Limits	Amount	Date

SGS Ref.# Client Name Project Name/# Matrix		ental Corr Hill BFSI	Sample Dup pany, Inc. (7			Printe Prep	ed Date/Time Batch Method Date	02/10/2010 VXX20449 SW5030B 02/02/2010	8:51
Parameter	Water (Burrace,	, 111., 01	QC	Pct	LCS/LCSD	RPD	RPD Limite	Spiked	Analysis
Farameter			Results	Recov	Limits		Limits	Amount	Date
Volatile Gas Chr	omatography/	Mass S	pectrosco	ppy					
Benzene		LCS	31.2	104	(80-120)			30 ug/L	02/02/2010
		LCSD	32.3	108		4	(< 20)	30 ug/L	02/02/2010
Toluene		LCS	32.1	107	(77-120)			30 ug/L	02/02/2010
		LCSD	33.3	111		4	(< 20)	30 ug/L	02/02/2010
Ethylbenzene		LCS	32.1	107	(80-120)			30 ug/L	02/02/2010
		LCSD	32.9	110		2	(< 20)	30 ug/L	02/02/2010
n-Butylbenzene		LCS	35.9	120	(80-124)			30 ug/L	02/02/2010
2		LCSD	37.0	123		3	(< 20)	30 ug/L	02/02/2010
1,4-Dichlorobenzene		LCS	32.3	108	(80-120)			30 ug/L	02/02/2010
-,		LCSD	34.4	115	(••••)	6	(< 20)	30 ug/L	02/02/2010
1,2-Dichloroethane		LCS	33.2	111	(80-129)			30 ug/L	02/02/2010
1,2-Diemoroethane		LCSD	34.2	114	(00-12))	3	(< 20)	30 ug/L 30 ug/L	02/02/2010
1,3,5-Trimethylbenzene		LCS	34.1	114	(80-128)			20 / 1	02/02/2010
1,5,5-11inethylbenzene		LCSD	34.1 35.9	114	(80-128)	5	(< 20)	30 ug/L 30 ug/L	02/02/2010 02/02/2010
			24.5	115	(70,120)			20 /	00/00/0010
4-Chlorotoluene		LCS LCSD	34.5 36.6	115 122	(79-128)	6	(< 20)	30 ug/L 30 ug/L	02/02/2010 02/02/2010
		LCSD	30.0	122		0	(< 20)	50 ug/L	02/02/2010
Chlorobenzene		LCS	32.0	107	(80-120)			30 ug/L	02/02/2010
		LCSD	32.7	109		2	(< 20)	30 ug/L	02/02/2010
4-Methyl-2-pentanone (MIBK)	LCS	94.8	105	(69-134)			90 ug/L	02/02/2010
		LCSD	96.6	107		2	(< 20)	90 ug/L	02/02/2010
cis-1,2-Dichloroethene		LCS	34.8	116	(80-125)			30 ug/L	02/02/2010
		LCSD	31.7	106		9	(<20)	30 ug/L	02/02/2010
4-Isopropyltoluene		LCS	34.6	115	(80-125)			30 ug/L	02/02/2010
		LCSD	36.6	122	. ,	6	(< 20)	30 ug/L	02/02/2010
cis-1,3-Dichloropropen	e	LCS	35.3	118	(80-120)			30 ug/L	02/02/2010
, rr		LCSD	36.6	122 *	······································	4	(< 20)	30 ug/L	02/02/2010
n-Propylbenzene		LCS	34.0	113	(80-129)			30 ug/L	02/02/2010
		LCSD	35.8	119	(00-12))	5	(< 20)	30 ug/L 30 ug/L	02/02/2010
66 of 93								-	

Client Name Project Name/#	947960 Lab Control 947961 Lab Control The Environmental Con 3354-003 Red Hill BFS	Sample Dup npany, Inc. (F			Printe Prep	d Date/Time Batch Method Date	02/10/2010 VXX20449 SW5030B 02/02/2010	8:51	
Matrix Parameter	Water (Surface, Eff., Gr	QC	Pct	LCS/LCSD Limits	RPD	RPD	Spiked	Analysis	
Volatile Gas Chron	natography/Mass S	Results	Recov	Linits	14.5	Limits	Amount	Date	
Styrene	LCS	32.7	109	(80-120)			30 ug/L	02/02/2010	
	LCSD	33.6	112		3	(< 20)	30 ug/L	02/02/2010	
Dibromomethane	LCS	33.0	110	(80-120)			30 ug/L	02/02/2010	
	LCSD	33.5	112		1	(< 20)	30 ug/L	02/02/2010	
rans-1,3-Dichloropropen	e LCS	32.7	109	(80-124)			30 ug/L	02/02/2010	
	LCSD	34.5	115		5	(<20)	30 ug/L	02/02/2010	
1,2,4-Trichlorobenzene	LCS	32.3	108	(80-120)			30 ug/L	02/02/2010	
	LCSD	35.0	117		8	(< 20)	30 ug/L	02/02/2010	
Acetone	LCS	80.9	90	(50-135)			90 ug/L	02/02/2010	
	LCSD	81.7	91		1	(< 20)	90 ug/L	02/02/2010	
,1,2,2-Tetrachloroethane	e LCS	32.6	109	(76-123)			30 ug/L	02/02/2010	
	LCSD	34.5	115		6	(< 20)	30 ug/L	02/02/2010	
,2-Dibromo-3-chloropro	pane LCS	33.1	110	(73-130)			30 ug/L	02/02/2010	
	LCSD	35.0	117		6	(< 20)	30 ug/L	02/02/2010	
Methyl-t-butyl ether	LCS	53.2	118	(80-120)			45 ug/L	02/02/2010	
5 5	LCSD	55.2	123 *		4	(< 20)	45 ug/L	02/02/2010	
Fetrachloroethene	LCS	32.0	107	(79-122)			30 ug/L	02/02/2010	
	LCSD	32.5	108	()	2	(< 20)	30 ug/L	02/02/2010	
Dibromochloromethane	LCS	28.9	96	(80-120)			30 ug/L	02/02/2010	
	LCSD	30.4	101	()	5	(<20)	30 ug/L	02/02/2010	
,3-Dichloropropane	LCS	33.2	111	(80-121)			30 ug/L	02/02/2010	
,	LCSD	34.8	116	()	5	(< 20)	30 ug/L 30 ug/L	02/02/2010	
,2-Dibromoethane	LCS	32.2	107	(80-120)			30 ug/L	02/02/2010	
,	LCSD	32.8	109	())	2	(< 20)	30 ug/L 30 ug/L	02/02/2010	
Carbon tetrachloride	LCS	32.1	107	(80-126)			20. ug/I	02/02/2010	
	LCSD	33.2	107	(00-120)	3	(< 20)	30 ug/L 30 ug/L	02/02/2010	
1 1 1 7 Tetre - hl				(00.100)				00/00/2010	
1,1,1,2-Tetrachloroethane 67 of 93	e LCS	33.5	112	(80-120)			30 ug/L	02/02/2010	

SGS Ref.# Client Name Project Name/#	947960 Lab Control 947961 Lab Control The Environmental Cor 3354-003 Red Hill BFS	Sample Dup npany, Inc. (F		Printed Date/Time Prep Batch Method Date		02/10/2010 VXX20449 SW5030B 02/02/2010	8:51	
Matrix	Water (Surface, Eff., G	ound) QC	Pct	LCS/LCSD		RPD	Spiked	Analysis
Parameter		Results	Recov	Limits	RPD	Limits	Amount	Date
Volatile Gas Chr	omatography/Mass S	Spectrosc	opy					
	LCSD	35.1	117		5	(< 20)	30 ug/L	02/02/2010
Chloroform	LCS	31.6	105	(80-124)			30 ug/L	02/02/2010
	LCSD	32.2	107		2	(< 20)	30 ug/L	02/02/2010
Bromobenzene	LCS	31.7	106	(80-120)			30 ug/L	02/02/2010
	LCSD	33.1	110		5	(< 20)	30 ug/L	02/02/2010
Chloromethane	LCS	32.7	109	(67-125)			30 ug/L	02/02/2010
	LCSD	34.0	113	()	4	(< 20)	30 ug/L 30 ug/L	02/02/2010
,2,3-Trichloropropane	LCS	30.8	103	(80-120)			30 ug/L	02/02/2010
,2,5- memoropropane	LCSD	32.6	109	(00-120)	6	(< 20)	30 ug/L 30 ug/L	02/02/2010
х	1.00	27.1	00	(20,140)			2 0 /7	
Bromomethane	LCS LCSD	27.1 30.9	90 103	(30-140)	13	(< 20)	30 ug/L 30 ug/L	02/02/2010 02/02/2010
						(_•)		
Bromochloromethane	LCS	29.4 20.4	98	(77-129)	0	(< 20)	30 ug/L 30 ug/L	02/02/2010 02/02/2010
	LCSD	29.4	98		0	(< 20)	50 ug/L	02/02/2010
Vinyl chloride	LCS	29.0	97	(72-145)			30 ug/L	02/02/2010
	LCSD	29.2	97		1	(< 20)	30 ug/L	02/02/2010
Dichlorodifluorometha	ne LCS	31.8	106	(62-153)			30 ug/L	02/02/2010
	LCSD	32.6	109		2	(< 20)	30 ug/L	02/02/2010
Chloroethane	LCS	29.7	99	(67-133)			30 ug/L	02/02/2010
	LCSD	30.1	100	、 <i>)</i>	1	(< 20)	30 ug/L	02/02/2010
ec-Butylbenzene	LCS	34.2	114	(80-120)			30 ug/L	02/02/2010
	LCSD	35.9	114	(00-120)	5	(< 20)	30 ug/L 30 ug/L	02/02/2010
x 11 1 1								
Bromodichloromethane		34.4	115	(80-120)	3	(< 20)	30 ug/L 30 ug/L	02/02/2010 02/02/2010
	LCSD	35.5	118		3	(~ 20)	50 ug/L	02/02/2010
,1-Dichloroethene	LCS	27.5	92	(76-130)			30 ug/L	02/02/2010
	LCSD	28.4	95		3	(< 20)	30 ug/L	02/02/2010
-Butanone (MEK)	LCS	94.0	104	(66-136)			90 ug/L	02/02/2010

SGS Ref.# Client Name Project Name/# Matrix	947960 Lab Control 947961 Lab Control The Environmental Cor 3354-003 Red Hill BFS Water (Surface, Eff., Gr	Sample Dup npany, Inc. (F		Printe Prep	ed Date/Time Batch Method Date	02/10/2010 VXX20449 SW5030B 02/02/2010	8:51	
Parameter	Water (Burlace, Ell., Br	QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Gas Chr	omatography/Mass S							
Methylene chloride	LCS	27.4	91	(63-131)			30 ug/L	02/02/2010
	LCSD	28.3	94		3	(< 20)	30 ug/L	02/02/2010
Trichlorofluoromethane	LCS	29.4	98	(68-145)			30 ug/L	02/02/2010
	LCSD	29.8	99		1	(< 20)	30 ug/L	02/02/2010
P & M -Xylene	LCS	66.2	110	(80-120)			60 ug/L	02/02/2010
	LCSD	67.7	113		2	(< 20)	60 ug/L	02/02/2010
Naphthalene	LCS	31.8	106	(75-120)			30 ug/L	02/02/2010
	LCSD	33.7	112		6	(< 20)	30 ug/L	02/02/2010
o-Xylene	LCS	31.4	105	(80-120)			30 ug/L	02/02/2010
	LCSD	32.8	109		4	(< 20)	30 ug/L	02/02/2010
Bromoform	LCS	29.4	98	(80-120)			30 ug/L	02/02/2010
	LCSD	31.0	103		5	(< 20)	30 ug/L	02/02/2010
1-Chlorohexane	LCS	48.6	108	(70-125)			45 ug/L	02/02/2010
	LCSD	49.3	109		1	(< 20)	45 ug/L	02/02/2010
1,2,4-Trimethylbenzene	LCS	34.2	114	(80-125)			30 ug/L	02/02/2010
	LCSD	36.0	120		5	(< 20)	30 ug/L	02/02/2010
tert-Butylbenzene	LCS	33.1	110	(80-122)			30 ug/L	02/02/2010
,	LCSD	34.7	116		5	(< 20)	30 ug/L	02/02/2010
1,1,1-Trichloroethane	LCS	32.9	110	(80-122)			30 ug/L	02/02/2010
, ,	LCSD	33.0	110	()	0	(< 20)	30 ug/L	02/02/2010
1,1-Dichloroethane	LCS	37.9	126 *	(80-120)			30 ug/L	02/02/2010
,	LCSD	38.8	129 *		2	(< 20)	30 ug/L	02/02/2010
2-Chlorotoluene	LCS	34.0	113	(80-125)			30 ug/L	02/02/2010
	LCSD	35.7	119	· · · · · · · · · · · · · · · · · · ·	5	(< 20)	30 ug/L	02/02/2010
Trichloroethene	LCS	33.0	110	(80-125)			30 ug/L	02/02/2010
	LCSD	33.7	112	(30 120)	2	(< 20)	30 ug/L 30 ug/L	02/02/2010
trans-1,2-Dichloroethen	e LCS	33.2	111	(79-132)			30 ug/L	02/02/2010
69 of 93	LCSD	33.6	112	(1) 152)	1	(< 20)	30 ug/L 30 ug/L	02/02/2010
09 01 93								

SGS Ref.# Client Name Project Name/#		Lab Control Lab Control onmental Com Red Hill BFSI	Sample Dup pany, Inc. (Print Prep	ed Date/Time Batch Method Date	02/10/2010 VXX20449 SW5030B 02/02/2010	8:51	
Matrix		rface, Eff., Gr					Date	02/02/2010	
Parameter	X		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Gas Chi	romatogra <u>r</u>	phy/Mass S	pectrosc	opy					
1,2-Dichlorobenzene		LCS	31.9	106	(80-120)			30 ug/L	02/02/2010
		LCSD	34.2	114		7	(< 20)	30 ug/L	02/02/2010
2,2-Dichloropropane		LCS	33.6	112	(80-132)			30 ug/L	02/02/2010
		LCSD	33.5	112	. ,	0	(< 20)	30 ug/L	02/02/2010
Iexachlorobutadiene		LCS	31.5	105	(77-125)			30 ug/L	02/02/2010
		LCSD	32.7	109	(77.125)	4	(< 20)	30 ug/L 30 ug/L	02/02/2010
11		LOG	24.0	112	(00.101)			20 7	00/00/2010
sopropylbenzene (Cur	mene)	LCS LCSD	34.0 34.3	113 114	(80-121)	1	(< 20)	30 ug/L 30 ug/L	02/02/2010 02/02/2010
						·	(20)	50 ug/L	52, 52, 2010
,2-Dichloropropane		LCS	35.3	118	(80-121)		/ == .	30 ug/L	02/02/2010
		LCSD	36.3	121		3	(< 20)	30 ug/L	02/02/2010
1,1-Dichloropropene		LCS	34.1	114	(80-122)			30 ug/L	02/02/2010
		LCSD	34.3	114		1	(< 20)	30 ug/L	02/02/2010
1,1,2-Trichloroethane		LCS	32.1	107	(77-120)			30 ug/L	02/02/2010
,,		LCSD	33.9	113		5	(< 20)	30 ug/L	02/02/2010
2 D. 11 1.		1.00	22.7	100	(00.120)			20 /	00/00/2010
1,3-Dichlorobenzene		LCS LCSD	32.7 34.5	109 115	(80-120)	5	(< 20)	30 ug/L 30 ug/L	02/02/2010 02/02/2010
						c	(=•)	00 ug/2	02,02,2010
1,2,3-Trichlorobenzen	e	LCS	30.5	102	(77-120)	_		30 ug/L	02/02/2010
		LCSD	32.6	109		7	(< 20)	30 ug/L	02/02/2010
Xylenes (total)		LCS	97.6	108	(80-120)			90 ug/L	02/02/2010
		LCSD	100	112		3	(< 20)	90 ug/L	02/02/2010
Surrogates									
,2-Dichloroethane-D ²	4 <surr></surr>	LCS		99	(73-120)				02/02/2010
		LCSD		100		0			02/02/2010
Caluana do seren		LCC		07	(90.120)				02/02/2010
Foluene-d8 <surr></surr>		LCS LCSD		97 96	(80-120)	2			02/02/2010 02/02/2010
		LCOD		20		-			52, 52, 2010
4-Bromofluorobenzene	e <surr></surr>	LCS		102	(76-120)				02/02/2010
70 - 1 00		LCSD		102		1			02/02/2010
70 of 93									

SGS Ref.# Client Name Project Name/# Matrix	947960 Lab Contr 947961 Lab Contr The Environmental C 3354-003 Red Hill BF Water (Surface, Eff., 9	ol Sample Dup ompany, Inc. (' SF			Printec Prep	l Date/Time Batch Method Date	02/10/2010 VXX20449 SW5030B 02/02/2010	8:51
Parameter	Water (Burlace, Birl,	QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date

Volatile Gas Chromatography/Mass Spectroscopy

BatchVMS11094MethodSW8260BInstrumentHP 5890 Series II MS1 VJA

SGS Ref.#	947982	Lab Control	Sample				Date/Time	02/10/2010	8:51
Client Name Project Name/# Matrix	3354-003	ronmental Con Red Hill BFS urface, Eff., Gr	F	TEC)		Ргер	Batch Method Date	XXX22248 SW3520C 02/01/2010	
-	he following produ 1100328004, 110	-	0328006, 11	00328007, 110	0328008				
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Semivolatile	Organic Fue	ls Departm	nent						
Diesel Range Org	anics	LCS	4.84	97	(75-125)			5 mg/L	02/02/2010
Surrogates									
5a Androstane <s< td=""><td>urr></td><td>LCS</td><td></td><td>98</td><td>(60-120)</td><td></td><td></td><td></td><td>02/02/2010</td></s<>	urr>	LCS		98	(60-120)				02/02/2010
Batch Method Instrument	XFC9100 SW8015C								

01	
2	
0	

SGS Ref.#	947866	Matrix S	oike			Printe	ed Date/Time	02/10/20	010 8:51
	947867	Matrix S	oike Duplic	ate		Prep	Batch	MXX22	714
		-	-				Method	3010 H2	0 Digest for Metals ICI
							Date	02/01/20)10
Original	1100319001								
Matrix	Water (Surfac	e, Eff., Ground)						
OC results affect	the following production	samples:							
1100328007		F							
	0.110	Original	QC	Pct	MS/MSD		RPD	Spiked	Analysis
Parameter	Qualifiers	Result	Result	Recov	Limits	RPD	Limits	Amount	Date
Metals by I	CP/MS								
Lead	MS	(0.620) U	985	99	(80-120)			1000	1g/L 02/02/2010
	MS	D	1010	101		3	(< 15)	1000 u	1g/L 02/02/2010
Batch	MMS6300								
Method	SW6020								
Instrument	Perkin Elmer Sciex	ICP-MS P3							

73 of 93

SGS Ref.#	1100328002	Billable Matrix Spike	Printed I	Date/Time	02/10/2010 8:51
	1100328003	Billable Matrix Spike Dup.	Prep	Batch	MXX22713
				Method	3010 H20 Digest for Metals ICI
				Date	02/01/2010
Original	1100328001				
Matrix	Water (Surface,	Eff., Ground)			

QC results affect the following production samples:

arameter	Qualifier	Original s Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amount	2
issolved Me	etals by ICP	/ms							
ead		BMS (0.620) U	1050	105	(80-120)			1000	ug/L 02/02/2010
		BMSD	1010	101		4	(< 15)	1000	ug/L 02/02/2010
Batch	MMS6300								
Method Instrument	SW6020								
Instrument	Perkin Elmer	Sciex ICP-MS P3							
olatile Fue	els Departme	nt							
Gasoline Range Organics		BMS (60.0) U	462	103	(79-108)			450	ug/L 02/01/2010
		BMSD	468	104		1	(< 20)	450	ug/L 02/01/2010
urrogates									
4-Bromofluorobenzene <surr></surr>		BMS	51.1	102	(50-150)				02/01/2010
		BMSD	51.4	103		1			02/01/2010
Batch	VFC9854								
Method	SW8015C								
Instrument	HP 5890 Serie	es II PID+FID VCA							
emivolatile	e Organic Fu	els Department							
iesel Range Or	ganics	BMS (0.320) U	5.06	92	(75-125)			5.49	mg/L 02/02/2010
		BMSD	4.56	84		11	(< 30)	5.43	mg/L 02/02/2010
urrogates									
a Androstane <	surr>	BMS	.104	95	(50-150)				02/02/2010
		BMSD	0.0947	87		10			02/02/2010
Batch	XFC9100								
Method	SW8015C								
		FID SV E F							

-	76	
21		
	-16	-

1	1100328002Billable Matrix Spike1100328003Billable Matrix Spike Dup.1100328001						ted Date/Time D Batch Method Date	02/10/2010 8:51 VXX20449 Volatiles Extraction AFCEE 3.1 02/02/2010		
	Water (Surface, Eff., Ground)									
	0	Original Result		Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amoun	5	
Volatile Gas Chroma	atography/Mas	s Spec	troscopy							
Benzene	BMS (0		28.8	96	(80-120)			30.0	ug/L 02/02/2010	
Benzene	BMSD		29.0	90 97	(00-120)	1	(< 20)	30.0	ug/L 02/02/2010	
Toluene	BMS (0) 620) U	29.8	99	(77-120)	-	(_)	30.0	ug/L 02/02/2010	
Toruche	BMSD		31.2	104	(,, ==+)	5	(< 20)	30.0	ug/L 02/02/2010	
Ethylbenzene	BMS (0) 620) U	30.3	101	(80-120)		(_•)	30.0	ug/L 02/02/2010	
Ethylochizene	BMSD		30.8	101	(******)	2	(< 20)	30.0	ug/L 02/02/2010	
n-Butylbenzene	BMS (0) 620) U	33	110	(80-124)	_	(_•)	30.0	ug/L 02/02/2010	
n Dutyloenzene	BMSD		34.5	115	(*****)	4	(< 20)	30.0	ug/L 02/02/2010	
1,4-Dichlorobenzene	BMS (0	300) U	30.9	103	(80-120)		(_)	30.0	ug/L 02/02/2010	
1,1 Diemorobenzene	BMSD		32.1	105	(00120)	4	(< 20)	30.0	ug/L 02/02/2010	
1,2-Dichloroethane	BMS (0	9 300) U	30.6	102	(80-129)		(_)	30.0	ug/L 02/02/2010	
1,2 Diemoroeulane	BMSD		30.7	102	(••• -=>)	0	(< 20)	30.0	ug/L 02/02/2010	
1,3,5-Trimethylbenzene	BMS (0) 620) U	31.6	102	(80-128)	Ű	(*20)	30.0	ug/L 02/02/2010	
1,5,5 Trinieury Ioenzene	BMSD		33.0	110	(00120)	4	(< 20)	30.0	ug/L 02/02/2010	
4-Chlorotoluene	BMS (0) 620) II	32	107	(79-128)	•	(*20)	30.0	ug/L 02/02/2010	
Chiorotoluche	BMS		33.8	113	(7) 120)	6	(< 20)	30.0 30.0	ug/L 02/02/2010	
Chlorobenzene	BMSD (0	300) 11	29.9	100	(80-120)	0	(*20)		ug/L 02/02/2010	
Chlorobelizene	BMS		31.1	100	(00 120)	4	(< 20)	30.0 30.0	ug/L 02/02/2010 ug/L 02/02/2010	
4-Methyl-2-pentanone (MI		20) II	96.2	104	(69-134)	т	(*20)		ug/L 02/02/2010	
4-Meury1-2-pentanone (Mi	BK) BMS (0 BMSD	5.20) 0	90.2 86.9	97	(0)-154)	10	(< 20)	90.0 90.0	ug/L 02/02/2010 ug/L 02/02/2010	
cis-1,2-Dichloroethene	BMSD (0	620) 11	31.7	106	(80-125)	10	(<20)		ug/L 02/02/2010 ug/L 02/02/2010	
cis-1,2-Dicilioroethene	BMS (0 BMSD	.020) 0	31.1	100	(00-125)	2	(< 20)	30.0 30.0	ug/L 02/02/2010 ug/L 02/02/2010	
1 Isopropultaluana		6 2 0) II	32.3	104	(80-125)	2	(< 20)		ug/L 02/02/2010 ug/L 02/02/2010	
4-Isopropyltoluene	BMS (0 BMSD	0.620) U		108	(80-125)	5	(< 20)	30.0	ug/L 02/02/2010 ug/L 02/02/2010	
sia 1.2 Dishlammana		200) 11	33.8		(80-120)	5	(< 20)	30.0	e	
cis-1,3-Dichloropropene	BMS (0 BMSD	0.300) U	33.2	111	(80-120)	0	(< 20)	30.0	ug/L 02/02/2010	
		(20) 11	33.2	111	(90.120)	0	(< 20)	30.0	ug/L 02/02/2010	
n-Propylbenzene	BMS (0	0.620) U	31.6	105	(80-129)	4	(< 20)	30.0	ug/L 02/02/2010	
C.	BMSD		32.9	110	(90, 120)	4	(< 20)	30.0	ug/L 02/02/2010	
Styrene	BMS (0).620) U	29.9	100	(80-120)	2	$(\langle 20 \rangle)$	30.0	ug/L 02/02/2010	
D1 4	BMSD		30.6	102	(90, 120)	3	(< 20)	30.0	ug/L 02/02/2010	
Dibromomethane	BMS (0).620) U	30.6	102	(80-120)	0	$(\cdot, 2)$	30.0	ug/L 02/02/2010	
14.5.11	BMSD	(2 0) II	30.7	102	(00.124)	0	(< 20)	30.0	ug/L 02/02/2010	
trans-1,3-Dichloropropene	BMS (0).620) U	30.8	103	(80-124)	_	$(\cdot, 2)$	30.0	ug/L 02/02/2010	
1045.11	BMSD		32.3	108	(00.100)	5	(< 20)	30.0	ug/L 02/02/2010	
1,2,4-Trichlorobenzene	BMS (0	0.620) U	31.4	105	(80-120)		(~20)	30.0	ug/L 02/02/2010	
	BMSD		32.8	109	(50 105)	4	(< 20)	30.0	ug/L 02/02/2010	
Acetone	BMS (6	5.20) U	83.7	93	(50-135)	-	(. 20)	90.0	ug/L 02/02/2010	
	BMSD		81.4	90	/ _ /	3	(< 20)	90.0	ug/L 02/02/2010	
1,1,2,2-Tetrachloroethane	BMS (0	0.300) U	32.6	109	(76-123)			30.0	ug/L 02/02/2010	
75 of 93	BMSD		32.4	108		1	(< 20)	30.0	ug/L 02/02/2010	

C	CC
	6.0

SGS Ref.# Original	1100328002 1100328003 1100328001	Billable	Matrix Spik Matrix Spik		Prin Preț	ted Date/Time D Batch Method Date	02/10/2010 8:51 VXX20449 Volatiles Extraction AFCEE 3.1 02/02/2010		
Matrix	Water (Surfac	e, Eff., Ground	l)						
Parameter	Qualifiers	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spike Amou	2
Weletile Coe Chr.		Maga Smaa	+						
Volatile Gas Chro					(= 2, 1 = 0,)				
1,2-Dibromo-3-chlorop		IS (1.24) U	33.4	111	(73-130)			30.0	ug/L 02/02/2010
	BM		33.3	111	(00.100)	0	(< 20)	30.0	ug/L 02/02/2010
Methyl-t-butyl ether		IS (3.00) U	51.7	115	(80-120)	2	(. 20)	45.0	ug/L 02/02/2010
	BM		50.5	112	(70, 100)	2	(< 20)	45.0	ug/L 02/02/2010
Tetrachloroethene		IS (0.620) U	29.3	98	(79-122)			30.0	ug/L 02/02/2010
	BM		30.3	101	(00.100)	3	(< 20)	30.0	ug/L 02/02/2010
Dibromochloromethane		IS (0.300) U	27.7	92	(80-120)			30.0	ug/L 02/02/2010
	BM		28.9	96		4	(< 20)	30.0	ug/L 02/02/2010
1,3-Dichloropropane		IS (0.240) U	31.7	106	(80-121)			30.0	ug/L 02/02/2010
	BM		32.9	110		4	(< 20)	30.0	ug/L 02/02/2010
1,2-Dibromoethane		IS (0.620) U	30.8	103	(80-120)			30.0	ug/L 02/02/2010
	BM		31.6	105		3	(< 20)	30.0	ug/L 02/02/2010
Carbon tetrachloride		IS (0.620) U	30.2	101	(80-126)			30.0	ug/L 02/02/2010
	BM	ISD	30.1	100		0	(< 20)	30.0	ug/L 02/02/2010
1,1,1,2-Tetrachloroetha	ne BM	IS (0.300) U	31.4	105	(80-120)			30.0	ug/L 02/02/2010
	BM	ISD	32.3	108		3	(< 20)	30.0	ug/L 02/02/2010
Chloroform	BM	IS (0.600) U	29.2	97	(80-124)			30.0	ug/L 02/02/2010
	BM	ISD	29.3	98		1	(< 20)	30.0	ug/L 02/02/2010
Bromobenzene	BM	IS (0.620) U	29.8	99	(80-120)			30.0	ug/L 02/02/2010
	BM	ISD	30.8	103		4	(< 20)	30.0	ug/L 02/02/2010
Chloromethane	BM	IS (0.620) U	31.9	106	(67-125)			30.0	ug/L 02/02/2010
	BM	ISD	31.3	104		2	(< 20)	30.0	ug/L 02/02/2010
1,2,3-Trichloropropane	BM	IS (0.620) U	30.4	101	(80-120)			30.0	ug/L 02/02/2010
	BM	ISD	30.7	102		1	(< 20)	30.0	ug/L 02/02/2010
Bromomethane	BM	IS (1.88) U	31.1	104	(30-140)			30.0	ug/L 02/02/2010
	BM	ISD	31.6	105		2	(< 20)	30.0	ug/L 02/02/2010
Bromochloromethane	BM	IS (0.620) U	27	90	(77-129)			30.0	ug/L 02/02/2010
	BM	ISD	27.7	92		2	(< 20)	30.0	ug/L 02/02/2010
Vinyl chloride	BM	IS (0.620) U	26.9	90	(72-145)			30.0	ug/L 02/02/2010
	BM	ISD	26.7	89		1	(< 20)	30.0	ug/L 02/02/2010
Dichlorodifluoromethar	ne BM	IS (0.620) U	30	100	(62-153)			30.0	ug/L 02/02/2010
	BM	ISD	30.0	100		0	(< 20)	30.0	ug/L 02/02/2010
Chloroethane	BM	IS (0.620) U	27.1	90	(67-133)			30.0	ug/L 02/02/2010
	BM		27.3	91		1	(< 20)	30.0	ug/L 02/02/2010
sec-Butylbenzene	BM	IS (0.620) U	31.7	106	(80-120)			30.0	ug/L 02/02/2010
	BM		33.2	111		5	(< 20)	30.0	ug/L 02/02/2010
Bromodichloromethane	BM	IS (0.300) U	32.3	108	(80-120)			30.0	ug/L 02/02/2010
	BM		32.6	109		1	(< 20)	30.0	ug/L 02/02/2010
1,1-Dichloroethene		IS (0.620) U	26.2	87	(76-130)			30.0	ug/L 02/02/2010
76 of 93	BM		25.8	86	. /	2	(< 20)	30.0	ug/L 02/02/2010

SG	S									
SGS Ref.#	1100328002Billable Matrix Spike1100328003Billable Matrix Spike Dup.					Prin Prep	ted Date/Time Batch Method Date	02/10/2010 8:51 VXX20449 Volatiles Extraction AFCEE 3.1 02/02/2010		
Original	1100328001						2	02/02	2010	
Matrix	Water (Surface,	Eff., Ground								
Parameter	Qualifiers	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spike Amou		Analysis Date
Volatile Gas Chro	matography/N	lass Spec	troscopy							
2-Butanone (MEK)		(6.20) U	98.5	109	(66-136)			00.0	ug/I	02/02/2010
2-Butanone (MEK)	BMS			109	(00-130)	6	(< 20)	90.0	-	02/02/2010
Methylene chloride	BMS		92.6 26	87	(63-131)	0	(< 20)	90.0	U	02/02/2010
	BMSI		26 26.4	88	(05-151)	2	(< 20)	30.0 30.0	-	02/02/2010
Trichlorofluoromethane	BMS		26.9	90	(68-145)	2	(~20)		•	02/02/2010
memoromeoromethane	BMSI	. ,	26.9	90 90	(00-145)	0	(< 20)	30.0 30.0	•	02/02/2010
P & M -Xylene		(1.24) U	20.9 61.3	102	(80-120)	0	(<20)		•	02/02/2010
i & wi -Aylene	BMS		63.5	102	(00-120)	4	(< 20)	60.0 60.0	-	02/02/2010
Naphthalene		(1.24) U	03.5 32.6	100	(75-120)	7	(<20)		•	02/02/2010
Napitulalelle	BMSI		32.0	109	(75-120)	1	(< 20)	30.0	-	02/02/2010
o Vulono					(80.120)	1	(< 20)	30.0	•	
o-Xylene	BMS		29.3	98 101	(80-120)	4	(< 20)	30.0	-	02/02/2010
D (BMSI		30.4	101	(80.120)	4	(< 20)	30.0	•	02/02/2010
Bromoform	BMS	. ,	29.3	98	(80-120)	2	(< 20)	30.0	-	02/02/2010
	BMSI		29.9	100	(70.125)	2	(< 20)	30.0	U	02/02/2010
1-Chlorohexane	BMS		44.8	99	(70-125)	2	(. 20)	45.0	-	02/02/2010
	BMSI		46.1	102	(00.105)	3	(< 20)	45.0	•	02/02/2010
1,2,4-Trimethylbenzene	BMS	(0.620) U	31.9	106	(80-125)			30.0	-	02/02/2010
	BMSI		33.4	111		5	(< 20)	30.0	•	02/02/2010
tert-Butylbenzene		(0.620) U	30.8	103	(80-122)			30.0	•	02/02/2010
	BMSI		32.1	107		4	(< 20)	30.0	•	02/02/2010
1,1,1-Trichloroethane		(0.620) U	30.5	102	(80-122)			30.0	•	02/02/2010
	BMSI)	30.3	101		1	(< 20)	30.0	ug/L	02/02/2010
1,1-Dichloroethane	BMS	(0.620) U	34.5	115	(80-120)			30.0	ug/L	02/02/2010
	BMSI)	34.9	116		1	(< 20)	30.0	ug/L	02/02/2010
2-Chlorotoluene	BMS	(0.620) U	31.9	106	(80-125)			30.0	ug/L	02/02/2010
	BMSI)	33.1	110		4	(< 20)	30.0	ug/L	02/02/2010
Trichloroethene	BMS	(0.620) U	30.2	101	(80-125)			30.0	ug/L	02/02/2010
	BMSI)	30.5	102		1	(< 20)	30.0	ug/L	02/02/2010
trans-1,2-Dichloroethen	e BMS	(0.620) U	30.9	103	(79-132)			30.0	ug/L	02/02/2010
	BMSI)	30.6	102		1	(< 20)	30.0	ug/L	02/02/2010
1,2-Dichlorobenzene	BMS	(0.620) U	30.2	101	(80-120)			30.0	ug/L	02/02/2010
	BMSI)	31.4	105		4	(< 20)	30.0	ug/L	02/02/2010
2,2-Dichloropropane	BMS	(0.620) U	31.4	105	(80-132)			30.0	•	02/02/2010
	BMSI		31.4	105		0	(< 20)	30.0	ug/L	02/02/2010
Hexachlorobutadiene	BMS	(0.620) U	29.2	97	(77-125)			30.0	ug/L	02/02/2010
	BMSI		31.6	105		8	(< 20)	30.0	-	02/02/2010
Isopropylbenzene (Cum		(0.620) U	31.3	104	(80-121)			30.0	•	02/02/2010
	BMSI		32.4	108		4	(< 20)	30.0	-	02/02/2010
1,2-Dichloropropane		(0.620) U	32.2	107	(80-121)		- /	30.0	•	02/02/2010
77 of 93	BMSI		32.7	109	. /	2	(< 20)	30.0	-	02/02/2010

SGS Ref.# Original Matrix	1100328 1100328 1100328	003 I	Billable N	Matrix Spiko Matrix Spiko			Prin Preț	ted Date/Time D Batch Method Date	VXX2	les Extraction AFC	EE 3.
Parameter	Qualifiers	Or	iginal esult	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spike Amour		
Volatile Gas	Chromatogra	aphy/Mass	s Speci	troscopy							
1,1-Dichloroproper		BMS (0.		31	103	(80-122)			30.0	ug/L 02/02/2010	
		BMSD	<i>.</i>	31.0	103		0	(< 20)	30.0	ug/L 02/02/2010	
1,1,2-Trichloroetha	ine	BMS (0.	620) U	31.2	104	(77-120)			30.0	ug/L 02/02/2010	
		BMSD		31.8	106		2	(< 20)	30.0	ug/L 02/02/2010	
1,3-Dichlorobenzer	ne	BMS (0.	620) U	30.8	103	(80-120)			30.0	ug/L 02/02/2010	
		BMSD		32.0	107		4	(< 20)	30.0	ug/L 02/02/2010	
1,2,3-Trichloroben	zene	BMS (0.	620) U	30.1	100	(77-120)			30.0	ug/L 02/02/2010	
		BMSD		30.9	103		3	(< 20)	30.0	ug/L 02/02/2010	
Xylenes (total)		BMS (2.	00) U	90.6	101	(80-120)			90.0	ug/L 02/02/2010	
		BMSD		93.9	104		4	(< 20)	90.0	ug/L 02/02/2010	
Surrogates											
1,2-Dichloroethane	-D4 <surr></surr>	BMS		29.8	99	(73-120)				02/02/2010	
		BMSD		28.9	96		3			02/02/2010	
Toluene-d8 <surr></surr>		BMS		28.9	96	(80-120)				02/02/2010	
		BMSD		29.4	98		2			02/02/2010	
4-Bromofluoroben	zene <surr></surr>	BMS		30.9	103	(76-120)				02/02/2010	
		BMSD			103		0			02/02/2010	

Instrument HP 5890 Series II MS1 VJA

Polynuclear Aromatics GC/MS

SGS

SGS Ref.#	1100328002 1100328003		1atrix Spike 1atrix Spike			Prin Prep	ted Date/Time D Batch Method Date	XXX 3520)/2010 22249 Liquic //2010	8:51 //Liquid Ext for 82
Original	1100328001									
Matrix	Water (Surface	, Eff., Ground								
Parameter	Qualifiers	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spike Amou		Analysis Date
Polynuclear Aroma	atics GC/MS									
		(0.021() II	450	07	(50-101)					02/02/2010
Acenaphthylene		6 (0.0316) U	.459	87 80	(30-101)	Q	(< 20)	0.526	-	2 02/02/2010 2 02/02/2010
A 1 . (1	BMS		0.423	80	(45.02)	8	(< 30)	0.532	•	02/02/2010
Acenaphthene		6 (0.0316) U	.448	85	(45-93)	12	(< 20)	0.526	-	2 02/02/2010
	BMS		0.399	75	(50,00)	12	(< 30)	0.532	•	_ 02/02/2010
Fluorene		6 (0.0316) U	.469	89	(50-98)	_	(0.526	•	2 02/02/2010
	BMS		0.437	82		7	(< 30)	0.532	•	_ 02/02/2010
Phenanthrene		6 (0.0316) U	.469	89	(50-104)			0.526	-	2 02/02/2010
	BMS	SD	0.459	86		2	(< 30)	0.532	ug/I	_ 02/02/2010
Anthracene	BMS	6 (0.0316) U	.488	93	(55-105)			0.526	ug/I	2 02/02/2010
	BMS	SD	0.484	91		1	(< 30)	0.532	ug/I	_ 02/02/2010
Fluoranthene	BMS	6 (0.0316) U	.562	107	(58-109)			0.526	ug/I	2 02/02/2010
	BMS	SD	0.585	110*		4	(< 30)	0.532	ug/I	_ 02/02/2010
Pyrene	BMS	6 (0.0316) U	.539	102	(56-105)			0.526	ug/I	2 02/02/2010
	BMS	SD	0.549	103		2	(< 30)	0.532	ug/I	_ 02/02/2010
Benzo(a)Anthracene	BMS	6 (0.0316) U	.543	103	(55-120)			0.526	ug/I	02/02/2010
	BMS		0.568	107		5	(< 30)	0.532	-	_ 02/02/2010
Chrysene	BMS	6 (0.0316) U	.457	87	(56-109)			0.526	•	2 02/02/2010
-)	BMS		0.495	93		8	(< 30)	0.520	•	_ 02/02/2010
Benzo[b]Fluoranthene	BMS	6 (0.0316) U	.466	89	(45-120)			0.526	•	02/02/2010
	BMS		0.539	101	()	15	(< 30)	0.520	-	02/02/2010
Benzo[k]fluoranthene		6 (0.0316) U	.442	84	(56-112)	10	(20)	0.526	•	2 02/02/2010
Denzo[k]nuorantinene	BMS		0.523	98	(00112)	17	(< 30)	0.520	-	02/02/2010
Benzo[a]pyrene		6 (0.0316) U	.467	89	(57-110)	17	(\ 50)		•	2 02/02/2010
Benzolajpyrene	BMS		0.565	106	(37110)	19	(< 30)	0.526 0.532	-	02/02/2010
Indona[122 a d] numan		5 (0.0316) U			(55-111)	17	(< 50)		•	
Indeno[1,2,3-c,d] pyrene		. ,	.482	92 99	(33-111)	9	(< 30)	0.526	-	2 02/02/2010
	BMS		0.527		(54 112)	9	(< 30)	0.532	•	2,02/02/2010
Dibenzo[a,h]anthracene		6 (0.0316) U	.495	94	(54-113)	0	(< 20)	0.526	•	2 02/02/2010
	BMS		0.538	101	(10.11())	8	(< 30)	0.532	•	_ 02/02/2010
Benzo[g,h,i]perylene		6 (0.0316) U	.48	91	(49-116)		(0.526	-	2 02/02/2010
	BMS		0.500	94		4	(< 30)	0.532	-	_ 02/02/2010
Naphthalene		0.0375 J	.387	67	(44-89)			0.526	•	2 02/02/2010
	BMS		0.366	62		6	(< 30)	0.532	•	_ 02/02/2010
1-Methylnaphthalene		6 (0.0316) U	.424	81	(42-92)			0.526	-	2 02/02/2010
	BMS	SD	0.407	77		4	(< 30)	0.532	ug/I	_ 02/02/2010
2-Methylnaphthalene		6 (0.0316) U	.389	74	(45-89)			0.526	ug/I	2 02/02/2010
	BMS	SD	0.377	71		3	(< 30)	0.532	ug/I	_ 02/02/2010
Surrogates										
Terphenyl-d14 <surr></surr>	BMS	5	.56	106	(50-126)					02/02/2010
	BMS		0.577	108	. /	3				02/02/2010
79 of 93										

SGS

SGS Ref.#	1100328002	Billable	Matrix Spike			Printed	l Date/Time	02/10/2010	8:51
	1100328003	Billable	Matrix Spike	Dup.		Prep	Batch	XXX22249	
							Method	3520 Liquio	d/Liquid Ext for 827
							Date	02/01/2010	
Original	1100328001								
Matrix	Water (Surface,	Eff., Ground	l)						
Parameter	Qualifiers	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date

Polynuclear Aromatics GC/MS

BatchXMS5285Method8270D SIMSInstrumentHP 6890/5973 MS SVQA

North Carolina

of 9;															در میں تھی	ww	<u>w.us.</u> s	sgs.com	
CLIENT:	TEC INC.				SGS Ref	erence #:										page		of	
CONTACT:	Rick Adkisson PHO	NE NO:	808.528.1445				ين وسنطرو بي									page		•	•
PROJECT:	3354-003 SITE/	PWSID#:	Red Hill BFSF			Preserv. Used	Ζ		\square	\square	\angle	\mathbb{Z}			\angle	\square	\Box	/	
REPORTS TO:	Rick Adkisson email		@tecinc.com an@tecinc.co		* C O N	SAMPLE TYPE C =				NS)									
INVOICE TO:	P .O.	TE #: NUMBER:			N T I N	сомр	RO (8015B)	RO (8015B)	(8260B)	(8270C-SIMS)	o (6020)								
LAB NO.		DATE	TIME	MATRIX	E R S	G ≕ GRAB	TPH-GRO	TPH-DRO	voc's	PAH's	Diss Pb							REMARKS	
(DQG) A.G	RHMW2254-WG18	1/27/2010	0920	Water	21		X		X		Χ						2	3x Volume sent in 3 co	oolers
D A.G.	RHMW03-WG18	1/27/2010	1100	Water	7		X		X		X								
6	RHMW02-WG18	1/26/2010	1630	Water	7		X		Χ		Χ								
61	RHMWA01-WG18	1/27/2010	1205	Water	7		X		X		Χ								
DA-G,L	RHMW01-WG18	1/27/2010	1540	Water	7		Х		Χ		Χ								
OA.C	RHMW05-WG18	1/26/2010	1715	Water	7		X		X		Χ								
DA.C	TB01-WG18		0805	Water	3		X		X										
)															
Collected/Relinquish	ed By: (1) Rebat B-Whitte	Date	Time	Received By:		/			Shippin	ig Carri	er:					Samples	Received	d Cold?	
Calls U	1 hre	1/28/10	\$:35		2	\bigwedge	\sim	/	Shippin	ig Ticke	et No:					Temperati	ure °C: 🕽	see saf	
Relinquished By: (F 1	Date	Time	Received By:					Special	Delive	rable R	equiremer	nts:			Chain of	Custody	Seal: (Circle)	
	Lh	1/28/10	14:0						See (Contrac	t					INTACD	BROK	EN ABSENT	
Relinquished By	3)	Date	Time	Received By:		7			Reques	sted Tu	rnaroun	d Time a	nd-or Spe	ecial Instr	uctions:				
						6			See	Cor	trac	t							
Relinquished By	4)	Date 1/29/10	Time 1145	Received For tabo	ratory By:														
	ter Drive Anchorage, AK 99518 Tel: (907)			/		_										4) 463-33			
	Road Fairbanks, AK 99701 Tel: (907) 474 sland Access Rd., Unit 1B Honolulu, HI 9681	• •		2287		1258 5500										(304) 346 10) 350-1			

.....

93																	ww	ww.u	<u>s.sgs.com</u>
CLIENT:	TEC INC.				SGS Re	ierence #:											page		of
CONTACT:	Rick Adkisson Pl	HONE NO:	808.528.1445														pago		
PROJECT:	3354-003 s	TE/PWSID#:	Red Hill BFSF			Preserv. Used		\square	\square	\angle		./	\square	\square	\square	\square	\angle	\angle	
REPORTS TO:	Rick Adkisson er		n@tecinc.com an@tecinc.co	-	r C O N	SAMPLE TYPE C =	ŵ	(n)		MS)									
INVOICE TO:		uote #: 0. NUMBER:			T A I N	COMP G =	RO (8015B)	TPH-DRO (8015B)	VOC's (8260B)	PAH's (8270C-SIMS)	Pb (6020)								
LAB NO.	SAMPLE IDENTIFICATION	DATE	TIME	MATRIX	E R S	GRAB	TPH-GRO	TPH-D	voc's	PAH's	Diss P								REMARKS
@ H-K (3)H-	✓ RHMW2254-WG18	1/27/2010	0920	Water	8			X		X									3x Volume sent in 3 coolers
									 										
								-											
													-			-+			
	· •								<u> </u>										
· · · · · · · · · · · · · · · · · · ·																			*.**.* <u>*******************************</u>
											L								
		•																	
Collected/Relinquist	hed By (1) Robert B. Whit.	to Date 1/28/10	Time 8235	Received By:		Λ	_			ng Cari ng Tick									ived Cold YES NO
Relinquished By: (Date 1/28/10	Time 1430	Received By:						l Delive	erable f	Requiren	nents:				Chain o		lody Seal: (Circle) ROKEN ABSENT
Relinquished By: ((3)	Date.	Time	Received By:	/	Λ					urnaroun ntrac		and-or	Special	l Instru	ctions:			
Relinquished By: ((4)	Date 1/29/10	Time 1145	Received For Labor	ory By														
3180 Peger	tter Drive Anchorage, AK 99518 Tel: (90 Road Fairbanks, AK 99701 Tel: (907) Island Access Rd., Unit 1B Honolulu, HI 9	474-8656 Fax: (907) 474	-9685	2287		1258	Greent	brier St	reet Ch	nariesto	n, WV	25311	Tel: (3) 469-64 04) 346) 350-19	-0725	Fax: (304) 34	46-076	1

S 83 of 93	GS			F CUSTOD ronmental \$:						-		ŗ	North Ca	arolina	.sgs.com	8
LIENT:	TEC INC.				SGS Rei	ference #:											page		of	
ONTACT:	Rick Adkisson	PHONE NO:	808.528.1445														puge		01	
ROJECT	3354-003	SITE/PWSID#:	Red Hill BFSF			Preserv. Used			\angle		\angle	/	\square				\square	\angle	/	-
EPORTS TO:	Rick Adkisson		n@tecinc.com nan@tecinc.co	-	C O N	SAMPLE TYPE C =	e e e	a		MS)										
VOICE TO:	TEC INC	QUOTE #: P.O. NUMBER:			T A I N	COMP	RO (8015B)	RO (8015B)	(8260B)	(8270C-SIMS)	o (6020)									
LAB NO.	SAMPLE IDENTIFICATION	N DATE	TIME	MATRIX	E R S	G = GRAB	TPH-GRO	TPH-DRO	voc's	PAH's	Diss Pb								REMAR	<s< td=""></s<>
DH-K	RHMW02-WG18	1/26/2010	1630	Water	4			X		X										
DH-K	RHMWA01-WG1	8 1/27/2010	1205	Water	4			X		X										
· ·																				
		· · · · · · · · · · · · · · · · · · ·																		
				1																
					6															
ollected/Relinquist	And By: (1) Robert B.W.	h, H, Date 1/28/10	Time 0835	Received By			\square		Shippin Shippin										ved Cold? (YES)	
elinquished By	DL	Date 1/28/10	Time 14/3-0	Received By:		$\overline{\ }$			Special See C			Requirem	ients:				Chain of		dy Seal: (Circle) DKEN ABSENT	
elinquished by: ((3)	Date	Time	Received By:		ノ			Reques	ted Tu	Irnaroun	id Time	and-or	Special	Instruc	tions:				
	()					Δ			See											
elinquished By. (Date 1/29/10	Time 1/45	Received For Voo	oratory By															
3180 Peger	tter Drive Anchorage, AK 99518 Tel Road Falrbanks, AK 99701 Tel: (9 Island Access Rd., Unit 1B Honolulu,	907) 474-8656 Fax: (907) 47	4-9685	-225/1		 151 1258 5500 	Greent	orier St	reet Ch	arlesto	n, WV		Tel: (30	4) 346	-0725	Fax: ((304) 34	4 6-0761		

SGS

CHAIN OF CUSTODY RECORD SGS Environmental Services Inc.

.

of 9	· · · · · · · · · · · · · · · · · · ·										<i>,</i>					-	ww	<u>/w.us</u>	.sgs.com	
CLIENT:	TEC INC.				SGS Ref	erence #:											page		of	
	Rick Adkisson PHC	NE NO:	808.528.1445								_				ļ					
PROJECT:	3354-003 sitte	/PWSID#:	Red Hill BFSF		#	Preserv.	\angle	\square	\square	\square	/	Ĺ	\angle	\square	\square	\angle	\angle	\angle		
REPORTS TO:	Rick Adkisson ema		n@tecinc.com an@tecinc.co		т С О	SAMPLE TYPE C =	Ê	(8		(SMI										
INVOICE TO:		DTE #: NUMBER:			T A I N	COMP G =	TPH-GRO (8015B)	TPH-DRO (8015B)	VOC's (8260B)	PAH's (8270C-SIMS)	Pb (6020)									
LAB NO.	SAMPLE IDENTIFICATION	DATE	TIME	MATRIX	E R S	GRAB	р-ндт	D-H9T	voc's	PAH's	Diss F								REMARI	ĸs
ØH-K	RHMW01-WG18	1/27/2010	1540	Water	4			X		X										
@H-K	RHMW03-WG18	1/27/2010	1100	Water	4			X		X								_		
																	$ \rightarrow $			
					L															
													·				\downarrow			
																	\perp			
		· · · · · · · · · · · · · · · · · · ·																		
																	+			
Collected/Relinquist	fed By: (1) Q-1 1 Q 1 J wh	Date	Time	Received By:	<u> </u>											_				
20	led By: (1) Robert B. Whithe					. /	/			ng Carri									ved Cold?	
Relinquished By: (2)	Date	0835 Time	Received By:	<u> </u>	1	~			ng Ticke									SEE SRI	
		1/28/10	14/20		$\overline{}$					Delive		Requirem	ients:				NTACT		dy Seal: (Circle)	
Relinquișneți By: (3)	Date	Time	Received By:	\rightarrow							id Time	and or	Special			VIACE	BRU	OKEN ABSENT	
U		1					1			e Cor			anu-or	opecia	insuuc					
Relinquished By: (4)	Date 1/29/10	Time 1145	Received For Labe	ratory By:	\square						~								
3180 Peger	tter Drive Anchorage, AK 99518 Tel: (907) Road Fairbanks, AK 99701 Tel: (907) 474 sland Access Rd., Unit 1B Honolulu, HI 968	-8656 Fax: (907) 474	-9685	2287		1258	Greent	orier Str	reet Ch	arlesto	n, WV	0087 Te 25311 3405 Te	Tel: (30	04) 346	-0725	Fax: (3	304) 34	46-0761		

of 9											_							
CLIENT:	TEC INC.				SGS Rei	erence #:											page	of
CONTACT:	Rick Adkisson PHO	DNE NO:	808.528.1445														page	0
PROJECT:	3354-003 SIT	E/PWSID#:	Red Hill BFSF		#	Preserv. Used		\square	\square	\square	/*	Ż	\square	\square	\mathbb{Z}	\angle		
REPORTS TO:	Rick Adkisson ema		n@tecinc.com nan@tecinc.co	-	* C O N	SAMPLE TYPE C =	Â	a		MS)								
INVOICE TO:		DTE #: . NUMBER:			T A . I N.	COMP G =	RO (8015B)	RO (8015B)	(8260B)	(8270C-SIMS)	Pb (6020)		:					
LED GG	P.O SAMPLE IDENTIFICATION RHMW2254-WG18 RHMW05-WG18	DATE	TIME	MATRIX	E R S	GRAB	TPH-GRO	TPH-DRO	voc's	PAH's	Diss P							REMARKS
ODH-KE	RHMW2254-WG18	1/27/2010	0920	Water	4			X		X								3x Volume sent in 3 coolers
🕑 н-к	RHMW05-WG18	1/26/2010	1715	Water	4			X		X								
	·			L										-				
Collected/Relinquis	By: (1) Robert B. Whithe	Date	Time	Received By:)				Shippiı	ng Carr	ier:					s	amples R	eceived Cold?
alsh	An-	1/28/10 Date	0835-	// ·	L	\bigwedge			Shippir	ng Tick	et No:					т	emperatur	C: SEE SAF
Relinquished By:	(2)			Received By:	~				Specia	l Delive	erable F	Requirem	ents:			с	hain of C	Custody Seal: (Circle)
	hh	1/28/10	1420			\mathbf{i}			See	Contra	ct						ITACD	BROKEN ABSENT
Relinqu is hed By:	(3)	Date	Time	Received By:		\mathcal{T}			Reque	sted Tu	Irnaroun	d Time	and-or	Specia	I Instruc	tions:		
					~	1			See	Co	ntrac	t						
Relinquished By:	(4)	Date 1/29/10	Time 1145	Received For Labo	pratory By:	1												
—	tter Drive Anchorage, AK 99518 Tel: (907)																463-3304	
	Road Fairbanks, AK 99701 Tel: (907) 47 Island Access Rd., Unit 1B Honolulu, HI 968			2287													04) 346-0) 350-155	

SGS

SAMPLE RECEIPT FORM

Yes No N	SAMPLE RECEIPT FORM	SGS WO#:	
X	Are samples RUSH , priority or <i>w/in 72 hrs</i> of hold time ?	TAT (circle	one): Standard - or- Rush
<u> </u>	✓ If yes, have you done <i>e-mail ALERT notification</i> ?		te: $\sqrt{-2\theta-1^2}$
<i>_</i>			
X	Are samples <i>within 24 hrs.</i> of hold time or due date ?	Received Tin	
	✓ If yes, have you also spoken with supervisor?	Cooler ID	Temperature <u>Measured w/</u> (Therm/IB ID#)
X	Archiving bottles: Are lids marked w/ red "X"?	#1	(Therm/IR ID#)
$\chi_{}$ –	Were samples collected with proper preservative?	#2	°C
X	Any problems (ID, cond'n, HT, etc)? Explain:	<u>#3</u>	°C
,		<u># 4</u>	°C
		# s	4 °C
		Note: Temperature re	eadings include thermometer correction factors
X	If this is for PWS, provide PWSID:	Delivery meth	od (circle all that apply):
	Payment received: \$ by Check or Credit Card		rt Courier / Lynden / SGS
$-\frac{1}{x}$	Will courier charges apply?		Ex / USPS / DHL / Carlile
	Data package required? (Level: 1 / 2 / 3 (4)		reak / NAC / ERA / PenAir
*		Other:	
<u>× </u>	Is this a DoD project? (USACE, Navy, AFCEE)	Additional Samp	ple Remarks: $(\sqrt{if applicable})$
This santia	n must be filled out for DoD projects (USACE, Navy, AFCEE):		ra Sample Volume?
Yes No	n musi de fuieu dui foi DOD projecis (USACE, Nuvy, APCEE):		hited Sample Volume?
$\mathbf{\hat{x}}$ 110	Is received temperature ≤6°C?		Iti-Incremental Samples?
^	Were containers ice-free? Notify PM immediately of any ice in samples.		p-filtered for dissolved
<u> </u>	If some cooler temperatures are non-compliant, see		Lab required for
	form FS-0029 (attached) for samples/analyses affected.	+ore	eign Soil?
	Was there an airbill? (If "yes," see attached.)		
— -×	Was cooler sealed with custody seals & were they intact?	This section m	nust be completed if problems are noted.
<u>~</u>	# / where:		
~	Was there a COC with cooler?	Was client no	otified of problems? Yes / No
_X			\mathbf{N}
<u> </u>	Was COC sealed in plastic bag & taped inside lid of cooler?):
<u> </u>	Was the COC filled out properly? Did labels correspond?	Individual con	ntacted:
<u>× </u>	Did the COC indicate USACE / Navy / AFCEE project?		/ Fax / E-mail (circle one)
	Samples were packed to prevent breakage with (circle one):		
1	Bubble Wrap Vermiculite Other (specify):	Reason for cc	ontact:
X	Were all samples sealed in separate plastic bags?		
×	Were all VOCs free of headspace and/or MeOH preserved?		
×	Were correct container / sample sizes submitted?		
×	Was the PM notified of arrival so they can send		
	Sample Receipt Acknowledgement to client?		
			T IO X7 / X 7
معدية مرفعوني .		Change Order	r Reauired? Yes / No
t	1 June During a fill IR	<i>D</i> .	
otes:/V	SAMPLE RAMMOT UGG	peels	to de
	1º00 · · · · · · · · · · · · · · · · · ·	1	For In PL
	Filter in les P	er di	the 12
	\bigwedge		
		Achel	
ompleted by	(sign): (print):	MARK	ABE
. ,			
ogin proof: S	Self-check completed <u>y</u> Peer-reviewer's Initials <u>()</u>)a	
J			
86 of 9	93		

SGS

SAMPLE RECEIPT FORM

SAMPLE RECEIPT FORM	SGS WO#:
Yes No NA	
Are samples RUSH , priority or <i>w/in 72 hrs</i> of hold time	? TAT (circle one): Standard -or- Rush
If yes, have you done <i>e-mail ALERT notification</i> ?	Received Date:
<i>L</i> Are samples <i>within 24 hrs.</i> of hold time or due date ?	Received Time:
If yes, have you also <i>spoken with</i> supervisor?	Cooler ID Temperature Measured w/
Archiving bottles: Are lids marked w/ red "X" ?	(Therm #)
<u>V</u> Were samples collected with proper preservative?	1 1.7 °C 36d
Any problems (ID, cond'n , HT, etc)? Explain:	2 1.3 °C 36d
	3 1.2 °C 36d
	4 1.0 °C 36d
	Note: Temperature readings include thermometer correction factors
If this is for PWS, provide PWSID :	Delivery method (circle all that apply):
by Check or Credit Ca	rd Client / Alert Courier / Lynden / SGS
🕢 Will courier charges apply?	UPS / FedEx / USPS / DHL / Carlile
Data package required? (Level: 1 / 2 / 3 / 4)	AkAir Goldstreak / NAC / ERA / PenAir
Notes:	Other:
Is this a DoD project? (USACE, Navy, AFCEE)	Additional Sample Remarks: ($\sqrt{if applicable}$)
	Extra Sample Volume?
This section must be filled out for DoD projects (USACE, Navy, AFCEE):	Limited Sample Volume?
Yes No Yes N/A	Multi-Incremental Samples?
Is received temperature ≤6°C? Was pH verified upon receipt?	
Were containers ice-free? Notify PM immediately of any ice in samples If some cooler temperatures are non-compliant, see	
form FS-0029 (attached) for samples/analyses affected.	Foreign Soil?
Was there an airbill? (If "yes," see attached.)	
Was cooler sealed with custody seals & were they intact?	This section must be completed if problems are noted.
#/where: <u> FHON I BICK TON UN</u>	Was alignt notified of mehlome? Ves / No.
<u> </u>	Was client notified of problems? Yes / No
Was COC sealed in plastic bag & taped inside lid of cooler?	By (SGS PM):
Was the COC filled out properly? Did labels correspond?	
Did the COC indicate USACE / Navy / AFCEE project? Samples were packed to prevent breakage with (circle one):	Individual contacted:
Bubble Wrap Vermiculite Other (specify):	Via: Phone / Fax / E-mail (circle one)
Were all samples sealed in separate plastic bags?	Date/Time:
Were all VOCs free of headspace and/or MeOH preserved?	Reason for contact:
Were correct container / sample sizes submitted?	
Was the PM notified of arrival so they can send	
Sample Receipt Acknowledgement to client?	
Cooler ID <u>1</u> Cooler Temp $^{\circ}C$ <u>7</u> Cooler ID <u>7</u> Cooler Temp $^{\circ}C$ <u>7</u>	
Cooler ID 2 Cooler Temp °C 16 Cooler ID 4 Cooler Temp °C 0.9	Change Order Required? Yes / No
Notes: <u>SIMPLE TO RHMW 2254-WG 18 ONE</u>	CONTAILER FOR DRO AMEYSYS
BROKEN IN COOLER UPON RACHIME I Lite	a for wither the
	Λ
COOLFN # 5 TB = 33 C = 2.6 361	/
·	
1	· · · · · · · · · · · · · · · · · · ·
	11145 ADUCHTY
Completed by (sign): (print):	M/CI 1/00017/
	tials_QU
Login proof: Self-check completed	
87 of 93	

		/e	ativ	serv	Pres		0#	SW	SGS		r Ty	ine			Tra	ottle		_	ner \		_		MP	SA			3		
*Notes	Other:		ic Acid				HCI	None	Other:						AG	Other:			or 4oz	250mL or 8oz	500mL	1L	TB	бс		Test	Matrix	Container ID	#
							<u>ب</u>			L					く		3									GRO VOS Diss Mately P	i	A.c	1
							Ľ			L					ら		3									VOS		D-F	
						5						V								1					P6	Diss Metaly P		G	
]								5							1							2				РАН	:	H,Ĩ	
		Ш					V								6							2				DRO	-	J,K	_
A.C. I GAO 3 V V V D.F VOC 3 J J L V L															2														
D.F VOC 3 3 L L L																													
G PIST P6 3 5 J 4 G																													
H,I PAH 37 2 V V																													
		\vdash					~								6							Z		35		DRO		J,K	
						5						4								1				35		EXTAL VOL		E	
						ļ	V			6			_		6		3							15/		GRO VOC	1	A.C	3
		┝──┨					ن ا			L			_		L	_	3							151		VOC		D-/-	
				ert									_			1G	A	J	5					3.50		Diss P6		6-	
<u> </u>		⊢																						51		PAH		HI	
						·	V						\square		レ							1		50	-	DRO		J	
						5						レ								1				371		EXTRI-VOL		K	
					06	7#4	0					da	- ha	<u></u>	int.		18			3		9			Bottle		1.1		
					06	-#1	501	ber a	ea p	ient	cum	00	(be	nus	ipt i	rece	noc	n u	valio	eser	ai pr	mica	cne	nar) (quire (addition	e: Containers which requ	Note:	~ Г	
		10	<i>G.</i> ,	1-2	te: /	Dat					/	7	n	\mathcal{D}_{a}	, 	[y:	ed b	olete	om	С							

SAMPLE RECEIPT FORM - Bottle Tracking SGS WO# **Container Volume Container Type** Preservative Acid 250mL or 8oz 125mL or 4oz Container ID Ascorbic / NH4Cl Nalgene Other: None HCI HNO3 H2SO4 NaOH 500mL Matrix HDPE 60mL 40mL Septa Other: *Notes Other: Coli AG g E B S Test # 4-6,8 12 L 4.C GRO V V VOC 12 i D.F l L Piss P6 G Ч L H,I 8 6 PAH し 8 J,KDRO V 7 610 3 A-C D-F 7 VOC Filter 1 V 6-H,I 2 PAH 1 Ľ DRO KKDiss 16 L 1 L 9 GRO í V V ß ν VOC V V Ĺ. C Ĺ EKTRA VOL 5 33 ĺ Bottle Totals 20 * Note: Containers which require (additional) chemical preservation upon receipt must be documented per SOP#106 Completed by: Jan Dang Date: 1- 29-10

F042r02 Revised 9/8/2009

Samples/Analyses Affected by Non-compliant Cooler Temperatures

Total # of Coolers in this WO#	5	SGS WO#:	
Cooler # or ID: Samples/Analyses Affected: 	#/ ③ H,I,J ③ H	TB (°C): <u>/. 7</u>	С (°С): <u>/.</u> <i>б</i>
Cooler # or ID: Samples/Analyses Affected: SLMRCLS (5) H- K	# 2 © H-K	TB (°C): <u>/</u> <u>/</u>	C (°C): <u>/ C</u>
Cooler # or ID: Samples/Analyses Affected: 51 MILLES (4, 7)	<u>#3</u> H-K	ТВ (°С): <u>/ /</u>	C (°C): <u>/ 6</u>
Cooler # or ID: Samples/Analyses Affected: 	#4 ②K ③I,J	тв (°С): <u>/</u> // //	C (°C): <u>6.9</u>
Cooler # or ID: Samples/Analyses Affected: Sf.MMCLS D-S	#5 A-F,G- Q-GH	TB (℃): <u> </u>	с (°с):_ <u>26</u>
Note:			
Completed by:	Paup	Date: <u>- 129-10</u>	

FS-0029r02_SRF_for_cooler&sample_temp_comp.xls

FS-0029r02 rev.3/18/2009

SGS Environmental	CUSTODY SEAL		36.D Coolen 1 TBS 1.7 C= 1.0
ہ Signature:		1-28-20	JTBS 1.7
an a		/	5 < 5 1.0
SGS Environmental	CUSTODY SEAL		<i></i>
Signature:	Date/Time:	1-28-20	
COC	CUSTODY SEAL		36D Color 2
 Environmental			TB= 1.3
Signature:	Date/Time:	1-28-10	-) c= 1.6
SGS Environmental	CUSTODY SEAL	in an	
			100
Signature:	Date/Time:	1-28-10	100328
Environmental	CUSTODY SEAL		Carlen 3
Signature:		1-21-10	36 D
600	Date/Time: CUSTODY SEAL	/	7 TB=1.2 C=1.6
 Environmental	CUSTODY SEAL		
Signature:	Date/Time:	1-212-10	•
SGS Environmental	CUSTODY SEAL		
	· · · · · · · · · · · · · · · · · · ·		Coolen 4 TB=1.0 TC= 0.9
Signature:		(-2-10	7 (5 0.9
SGS Environmental	CUSTODY SEAL		
Signature:	Date/Time:	1-24-10	

SGS Environme	ental CUSTO	DY SEAL		
Signature:	h	Date/Time:	1-24-10	Color 5 7 36D
SGS Environm	ental CUSTO	DY SEAL		TB= 3.3 C= 2.6
Signature:	h	Date/Time:	1-28-10	

Fectex US Airbill Tracking B709 5110 7652	
I From Date	4a Express Package Service Tomes PedEx Priority Overnight Next business moring. ² Friday shipments will be delivered on Monday unless SATURDAY Delivery is selected. Saturday Levery NU I available.
Sender's Name Phone Phone 200 6700	Sacurd busness day." Hursday shipments wilb bedivered on Monday unless SATURDAY Dalivery is selected.
Address	4b Express Freight Service ** To most locations. Packages over 150 lbs. FedEx 1Day Freight in the delivered on Monday unless SATURDAY in the delivered on Monday unless SATURDAY Delivery is selected. in the delivered on the delive
City Accept State Ad ZIP 20131.	FedEx 2Day Freight Second business day.** Thursday shipments will be delivered on Monday unless SaturDAY Delivery is selleded. FedEx 3Day Freight Third business day.** Saturday Delivery NOT available. 5 Packaging • Declared value limit \$200. 5 FedEx 3Day Freight Declared value limit \$200.
2 Your Internal Billing Reference	FedEx Pat* FedEx Pat* FedEx Starty Pak. FedEx Box FedEx Tube Tother FedEx Large Pak and FedEx Starty Pak.
3 To Recipient's Name Phone	Special Handling and Delivery Signature Options SATURDAY Delivery NOT available for FodEx Standard Overnight, FedEx First Overnight, FedEx Express Saver, or FedEx 3Day Freight.
Company Contract Cont	No Signature Required Package may be left without obtaining a signature for delivery. Direct Signature Someone at recipient's address: may sign for delivery. <i>Fee applies</i> : Indirect Signature Info one is available at recipient's address. Someone at a neighboring address. Someone at a neighboring address. The someone at
Address 200 1. Porte D.K. Start Port	Does this shipment contain dangerous goods?
Address Print FedEx location address here if a HOLD option is selected.	No As per attached Shipper's Declaration Ury (ce, 9, UN 1845 Dangeryus goods (including dry ice) cannot be shipped in RefEx packaging or placed in a FedEx koress Drop Box. Cargo Aircraft Only
City State ZIP 775772	Description Bill to: Obtain Recip. Obtain Recip. Sender, Acct. No. in Section Acct. No. in Section Acct. No. in Section Acct. No. in Section Image: Acct. No. in Section Recipient Obtain Recip. Acct. No. in Section Acct. No. in Section Image: Acct. No. in Section Recipient Obtain Recip. Acct. No. in Section Acct. No. in Section Image: Acct. No. in Section Recipient Obtain Recip. Credit Card Cash/Check
8709 5110 7652	Total Pagkarges Total Weight Total Declared Value! Credit Card Auth.

APPENDIX A-2

Laboratory Analytical Results February 23, 2010

SGS North America Inc. Alaska Division Level II Laboratory Data Report

Project: Client: SGS Work Order: 3354-003 Red Hill BFSF The Environmental Company, Inc. (TEC) 1100658

Released by:

Contents:

Cover Page Case Narrative Final Report Pages Quality Control Summary Forms Chain of Custody/Sample Receipt Forms

Note:

Unless otherwise noted, all quality assurance/quality control criteria is in compliance with the standards set forth by the proper regulatory authority, the SGS Quality Assurance Program Plan, and the National Environmental Accreditation Conference.

CASE NARRATIVE

Client Name: The Environmental Company, Inc. (TEC) Project Name: 3354-003 Red Hill BFSF Workorder No.: 1100658

Sample Comments

Refer to the sample receipt form for information on sample condition.

Lab Sample ID	Sample Type	Client Sample ID
1100658001	PS	RHMW02-WG18B
	AK102 - Unknown hyd	drocarbon with several peaks is present.
1100658002	PS	RHMWA01-WG18B
	AK102 - Unknown hyd	drocarbon with several peaks is present.

Laboratory Analytical Report

Client: The Environmental Company, Inc. 1003 Bishop Street, Pauahi Tower Suite 1550 Honolulu, HI 96813

> Attn: Rick Adkisson T: (808)528-1445 F:(808)528-0768

Project: 3354-003 Red Hill BFSF

Workorder No.: 1100658

Certification:

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, other than the conditions noted on the sample data sheet(s) and/or the case narrative. This certification applies only to the tested parameters and the specific sample(s) received at the laboratory.

If you have any questions regarding this report, or if we can be of further assistance, please contact your SGS Project Manager.

Jennifer Serna

Project Manager

Enclosed are the analytical results associated with the above work order. If you have any questions regarding this report, or if we can be of any other assistance, please contact your SGS Project Manager at 907-562-2343. All work is provided under SGS general terms and conditions (<<u>http://www.sgs.com/terms_and_conditions.htm</u>>), unless other written agreements have been accepted by both parties.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and AK100001 for NELAP (RCRA methods: 1020A, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035B, 6010B, 6020, 7470A, 7471B, 8021B, 8081B, 8082A, 8260B, 8270D, 8270D-SIM, 9040B, 9045C, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, the National Environmental Laboratory Accreditation Program and other regulatory authorities. The following descriptors or qualifiers may be found in your report:

- * The analyte has exceeded allowable regulatory or control limits. ١ Surrogate out of control limits. В Indicates the analyte is found in a blank associated with the sample. CCV Continuing Calibration Verification CL Control Limit The analyte concentration is the result of a dilution. D DF **Dilution Factor** DL Detection Limit (i.e., maximum method detection limit) E The analyte result is above the calibrated range. F Indicates value that is greater than or equal to the DL GT Greater Than ICV Initial Calibration Verification T The quantitation is an estimation. The analyte was positively identified, but the quantitation is a low estimation. JL LCS(D) Laboratory Control Spike (Duplicate) LOD Limit of Detection (i.e., 2xDL)
- LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)
- LT Less Than
- M A matrix effect was present.
- MB Method Blank
- MS(D) Matrix Spike (Duplicate)
- ND Indicates the analyte is not detected.
- Q QC parameter out of acceptance range.
- R Rejected
- RPD Relative Percent Difference
- U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

SAMPLE SUMMARY

Client Name: The Environmental Company, Inc. (TEC) Project Name: 3354-003 Red Hill BFSF Workorder No.: 1100658

Analytical Methods

Method Description DRO by 8015C (W) Analytical Method SW8015C

Sample ID Cross Reference

Lab Sample ID	Client Sample ID
1100658001	RHMW02-WG18B
1100658002	RHMWA01-WG18B

Print Date: 3/4/2010 4:07 pm

The Environmental Company, Inc. (TEC)

Print Date: 3/4/2010 4:07 pm

Client Sample ID: **RHMW02-WG18B** SGS Ref. #: 1100658001 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/23/10 10:25 Receipt Date/Time: 02/24/10 11:00

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Diesel Range Organics	8.65	0.440	0.165	mg/L	1	XFC9119	XXX22334
5a Androstane <surr></surr>	81.3	50-150		%	1	XFC9119	XXX22334
Batch Information							
Analytical Batch: XFC9119		Prep Batch:	XXX22334			Initial Prep	Wt./Vol.: 910 mL
Analytical Method: SW8015C		Prep Metho	d: SW3520C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 03/02/10 01:29		Prep Date/	ime: 03/01/10 1	0:05		Container I	D:1100658001-A
Dilution Factor: 1						Analyst: LC	Æ

The Environmental Company, Inc. (TEC)

Print Date: 3/4/2010 4:07 pm

Client Sample ID: **RHMWA01-WG18B** SGS Ref. #: 1100658002 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/23/10 12:05 Receipt Date/Time: 02/24/10 11:00

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Diesel Range Organics	6.91	0.435	0.163	mg/L	1	XFC9119	XXX22334
5a Androstane <surr></surr>	89.3	50-150		%	1	XFC9119	XXX22334
Batch Information							
Analytical Batch: XFC9119		Prep Batch:	XXX22334			Initial Prep	Wt./Vol.: 920 mL
Analytical Method: SW8015C		Prep Metho	d: SW3520C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 03/02/10 01:50		Prep Date/	ime: 03/01/10 1	0:05		Container I	D:1100658002-A
Dilution Factor: 1						Analyst: LC	Æ

SGS Ref.# Client Name Project Name/# Matrix	3354-00	Meth vironmental Co 3 Red Hill BF Surface, Eff., (SF	(TEC)		Printed Prep	Date/Time Batch Method Date	03/04/2010 16:07 XXX22334 SW3520C 03/01/2010
QC results affect the 1100658001, 1	• •	ction samples:						
Parameter			Results	LOQ/CL	DL	Units		Analysis Date
Semivolatile	Organic Fu	els Depart	ment					
Diesel Range Org	anics		0.300 U	0.400	0.150	mg/L		03/02/10
Surrogates								
5a Androstane <su< td=""><td>ırr></td><td></td><td>91.7</td><td>60-120</td><td></td><td>%</td><td></td><td>03/02/10</td></su<>	ırr>		91.7	60-120		%		03/02/10
Batch Method Instrument	XFC9119 SW8015C HP 7890A	FID SV E F						

SGS Ref.#	950633	Lab Contro	l Sample			Printed Prep	Date/Time Batch	03/04/2010	16:07
Client Name Project Name/# Matrix	3354-003	ronmental Co Red Hill BFS urface, Eff., G	F	(TEC)		ттер	Batch Method Date	SW3520C 03/01/2010	XX22334 /3520C /01/2010 Spiked Analysis
QC results affect the 1100658001, 1	• •	ction samples:							
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	
Semivolatile	Organic Fue	els Depart	ment						
Diesel Range Orga	nics	LCS	4.09	82	(75-125)			5 mg/L	03/02/2010
Surrogates									
5a Androstane <su< td=""><td>rr></td><td>LCS</td><td></td><td>94</td><td>(60-120)</td><td></td><td></td><td></td><td>03/02/2010</td></su<>	rr>	LCS		94	(60-120)				03/02/2010
Batch Method Instrument	XFC9119 SW8015C HP 7890A	FID SV E	F						

Locations Nationwide

Hawaii

Maryland Louisiana

New Jersey West Virginia

Alaska

North Carolina

www.us.sgs.com

CLIENT:	TEC INC.				SGS Re	ference #:													
CONTACT:	Rick Adkisson Pl	IONE NO:	808.528.1445		-	**				-							page	ə	of
PROJECT:	3354-003 si	TE/PWSID#:	Red Hill BFSF			Preserv. Used		1	<u>}</u>	/		/	\square	\square	\square	Ζ	Ζ	Ζ	
REPORTS TO:	: Rick Adkisson er		n@tecinc.com nan@tecinc.c	_	# C O N	SAMPLE TYPE C =	e ferre a ferr	(6		(SM									
INVOICE TO:		Jote #: 0. NUMBER:			T A I N	COMP G =	TPH-GRO (8015B)	TPH-DRO (8015B)	VOC's (8260B)	PAH's (8270C-SIMS)	Diss Pb (6020)								
LAB NO.	SAMPLE IDENTIFICATION	DATE	TIME	MATRIX	E R S	GRAB	D-H-T	D-H4T	voc's	PAH's	Diss P								REMARKS
(DA	RHMW02-WG18B	2/23/2010	1025	Water	2			X											3x Volume sent in 2 coolers
(a) AB	RHMWA01-WG18B	2/23/2010	1205	Water	2			X			ļ								
							· · ·			ļ	ļ				ļ				
			-	-			ļ				ļ	ļ							
5. 	- (water to -			_															
															ļ				
											-								
																_	-		
												.							· · · · · · · · · · · · · · · · · · ·
Collected/Relinquis	shed By: (1)	Date	Time	Received By:					Shippi	ng Car	rier:						Sample	es Rec	eived Cold? YES NO
US	Ulut	2/23/10	1230						Shippi	ng Tick	ket No:						36 Tempe) rature	.T8=2.8 c= 2.5
Relinquished By:	(2)	Date	Time	Received By:					Specia	l Deliv	erable	Require	ments:				Chain	of Cu	stody Seal: (Circle)
		Date			/				See	Contra	ict					<	INTAC	-	ROKEN ABSENT
Relinquished By:	(3)	Received By:									and-or	Specia	al Instru	uctions:		2			
						7			See	e Co	ntrac	t							
Relinquished By:		2/24/10		Received For Lab	oratory By														
- 3180 Pege	otter Drive Anchorage, AK 99518 Tel: (90 er Road Fairbanks, AK 99701 Tel: (907) Island Access Rd., Unit 1B Honolulu, HI S	474-8656 Fax: (907) 47	4-9685	22/87			Green	brier St	treet CI	narlesto	on, WV	25311	el: (504 Tel: (3 el: (910	04) 34	6-0725	Fax:	(304)	346-076	61

SGS

SAMPLE RECEIPT FORM SGS WO#:

Yes No NA	505 WO#: ()
Are samples RUSH , priority or <i>w/in 72 hrs</i> of hold time ?	TAT (circle one): standard>-or- Rush Received Date: え/ay/パマ
Are samples within 24 hrs. of hold time or due date?	Received Time: //ov
Archiving bottles: Are lids marked w/ red "X" ?	Cooler ID Temperature Measured
Were samples collected with proper preservative?	(Therm #) د کرک °C 36.0
Any problems (ID, cond'n , HT, etc)? Explain:	<u> 1 </u>
	C
	<u> </u>
	°C
If this is for DWAC months DWACD	Note: Temperature readings include thermometer correction factor
If this is for PWS, provide PWSID :	Delivery method (circle all that apply):
Payment received: \$ by Check or Credit Card	
Will courier charges apply?	UPS / FedEx / USPS / DHL / Carlile
Data package required? (Level: 1 / 2 / 3 / 4)	AkAir Goldstreak / NAC / ERA / PenAi
	Other:
Is this a DoD project? (USACE, Navy, AFCEE)	Additional Sample Remarks: $(\sqrt{if applicable})$
This section must be filled out for DoD projects (USACE, Navy, AFCEE):	Extra Sample Volume?
Yes No Yes N/A	Limited Sample Volume?
Its IV/A Is received temperature $\leq 6^{\circ}$ C? \checkmark Was pH verified upon receipt?	Multi-Incremental Samples?
Were containers ice-free? Notify PM immediately of any ice in samples.	Lab-filtered for dissolved
If some cooler temperatures are non-compliant, see	Ref Lab required for
form FS-0029 (attached) for samples/analyses affected.	Foreign Soil?
Was there an airbill? (If "yes," see attached.)	
Was cooler sealed with custody seals & were they intact?	This section must be completed if problems are noted
#/ where: a, lon front + lon back	Was client notified of problems? Yes / No
Was there a COC with cooler	
Was COC sealed in plastic bag & taped inside lid of cooler?	By (SGS PM):
Was the COC filled out properly? Did labels correspond?	
Did the COC indicate USACE / Navy / AFCEE project?	Individual contacted:
Samples were packed to prevent breakage with <i>(circle one)</i> : Bubble Wrap Vermiculite Other (specify):	Via: Phone / Fax / E-mail (circle one)
Were all samples sealed in separate plastic bags?	Date/Time:
Were all VOCs free of headspace and/or MeOH preserved?	Reason for contact:
Were correct container / sample sizes submitted?	
Was the PM notified of arrival so they can send	
Sample Receipt Acknowledgement to client?	· · · · · · · · · · · · · · · · · · ·
Cooler ID Cooler Temp °C 2.5 Cooler ID Cooler Temp °C	
Cooler ID Cooler Temp °C Cooler ID Cooler Temp °C	Change Order Required? Yes / No
<u> </u>	
Notes: TI Jan for sample "RHM WOZ-WG 18B" N	us broken in transit
	· · · · · · · · · · · · · · · · · · ·
	TRI
Completed by (sign): (print):	Joe Rud
TTJ Designed to the second sec	(14)
Login proof: Self-check completed JB Peer-reviewer's In itia	
	/

100658		sətoN'	*							·		···						T		r—–		
		Other:)																			2
		IJ [†] HN	[[,		,	 		<u> </u>					-		<u> </u>	-		·	allnele
	tive	Ascorbic Acid	_						 					<u> </u>		<u> </u>	<u> </u>					20
	Preservative	HO ^p N							 	ļ,			1						1			ñ
┭━	ese	H2SO4	_						 <u> </u>											9		
	٦	ÊONH								1			,	<u> </u>						#10		Date.
3	ŧ	HCI	*	[1					·	<u> </u>						<u> </u>	1		d O		1
	ž	əuoN																1		л С		
	31	Other:																	1	ad p		
Ŭ				$\left \right $					 			<u> </u>								inte		
	Ž	Coli							 		<u> </u>									ame		
	Der	Nalgene							 				-					<u> </u>		go		
ł	Container Tvpe	НДРЕ															├			pe	-	÷,
		DO DO		┝──┼		,						<u> </u> ,			ļ				ł	ust	1	7
		90 9V	<u> </u>				ļ,								ļ				ł	<u>ā</u>		-
		Other:	+		<u>></u>								\vdash	<u> </u>					┢──	Seip		-
40			<u> </u>						 ļ					ļ		,				ĕ	ľ	
-	Ĭ	Jm04	{						 											por		
	Container Volume	Jm09																		n K		i
ι Π	L ja	204 TO Jm221												4						/atic		-
	tair	220mL or 802	,										1					†		Ser		- 7 -
		Jm002							 						/			+		pre		Commissed by
Ğ	Ë				$\overline{\sim}$															cal Cal		ζ
u 5			1		જ		-		 									-	ς β	emi		
		LB ÓC																	otal;	с р		
Ű	ò		1									<u> </u>							Ц Ч	nal		
																			offe	litio		
									1											(ado		
											•									ire		
																				nbe		
		Test	0																	с К		
		F	DRO		No			•												vhic		
					Δ													.		LS V		
																				aine		
					·															onta		
																				ŭ		
l		XittsM	-		^															* Note: Containers which require (additional) chemical preservation upon receipt must be documented per SOP#106		
<u>ea</u>			_		AB								1					İ	1	*		
S		Container ID	4		4																	
6																						
		#	-		3														1			

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$500, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

APPENDIX A-3

Laboratory Analytical Results March 30, 2010

SGS North America Inc. Alaska Division Level II Laboratory Data Report

Project: Client: SGS Work Order: 3354-003 Red Hill BFSF The Environmental Company, Inc. (TEC) 1101343

Released by:

Contents:

Cover Page Case Narrative Final Report Pages Quality Control Summary Forms Chain of Custody/Sample Receipt Forms

Note:

Unless otherwise noted, all quality assurance/quality control criteria is in compliance with the standards set forth by the proper regulatory authority, the SGS Quality Assurance Program Plan, and the National Environmental Accreditation Conference.

CASE NARRATIVE

Client Name: The Environmental Company, Inc. (TEC) Project Name: 3354-003 Red Hill BFSF Workorder No.: 1101343

Sample Comments

Refer to the sample receipt form for information on sample condition.

Lab Sample ID	Sample Type	Client Sample ID
1101343001	PS	RHMW02-WG18C
	AK102 - The pattern is consistent with a weathered middle distillate	
1101343002	PS	RHMWA01-WG18C
	AK102 - The pattern is consistent with a weathered middle distillate.	

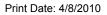
Laboratory Analytical Report

Client: The Environmental Company, Inc. 1003 Bishop Street, Pauahi Tower Suite 1550 Honolulu, HI 96813

> Attn: Rick Adkisson T: (808)528-1445 F:(808)528-0768

Project: 3354-003 Red Hill BFSF

Workorder No.: 1101343


Certification:

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, other than the conditions noted on the sample data sheet(s) and/or the case narrative. This certification applies only to the tested parameters and the specific sample(s) received at the laboratory.

If you have any questions regarding this report, or if we can be of further assistance, please contact your SGS Project Manager.

Jennifer Serna jennifer.serna@sgs.com

Project Manager

SGS

Enclosed are the analytical results associated with the above work order. If you have any questions regarding this report, or if we can be of any other assistance, please contact your SGS Project Manager at 907-562-2343. All work is provided under SGS general terms and conditions (<<u>http://www.sgs.com/terms_and_conditions.htm</u>>), unless other written agreements have been accepted by both parties.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and AK100001 for NELAP (RCRA methods: 1020A, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035B, 6010B, 6020, 7470A, 7471B, 8021B, 8081B, 8082A, 8260B, 8270D, 8270D-SIM, 9040B, 9045C, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, the National Environmental Laboratory Accreditation Program and other regulatory authorities. The following descriptors or qualifiers may be found in your report:

- * The analyte has exceeded allowable regulatory or control limits.
- ! Surrogate out of control limits.
- B Indicates the analyte is found in a blank associated with the sample.
- CCV Continuing Calibration Verification
- CL Control Limit
- D The analyte concentration is the result of a dilution.
- DF Dilution Factor
- DL Detection Limit (i.e., maximum method detection limit)
- E The analyte result is above the calibrated range.
- F Indicates value that is greater than or equal to the DL
- GT Greater Than
- ICV Initial Calibration Verification
- J The quantitation is an estimation.
- JL The analyte was positively identified, but the quantitation is a low estimation.
- LCS(D) Laboratory Control Spike (Duplicate)
- LOD Limit of Detection (i.e., 2xDL)
- LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)
- LT Less Than
- M A matrix effect was present.
- MB Method Blank
- MS(D) Matrix Spike (Duplicate)
- ND Indicates the analyte is not detected.
- Q QC parameter out of acceptance range.
- R Rejected
- RPD Relative Percent Difference
- U Indicates the analyte was analyzed for but not detected.
- Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

SAMPLE SUMMARY

Client Name: The Environmental Company, Inc. (TEC) Project Name: 3354-003 Red Hill BFSF Workorder No.: 1101343

Analytical Methods

Method Description DRO by 8015C (W) Analytical Method SW8015C

Sample ID Cross Reference

Lab Sample ID	Client Sample ID
1101343001	RHMW02-WG18C
1101343002	RHMWA01-WG18C

Print Date: 4/8/2010 5:29 pm

The Environmental Company, Inc. (TEC)

Print Date: 4/8/2010 5:29 pm

Client Sample ID: **RHMW02-WG18C** SGS Ref. #: 1101343001 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 03/30/10 10:25 Receipt Date/Time: 03/31/10 11:14

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Diesel Range Organics	2.63	0.460	0.172	mg/L	1	XFC9145	XXX22440
5a Androstane <surr></surr>	86.7	50-150		%	1	XFC9145	XXX22440
Batch Information							
Analytical Batch: XFC9145		Prep Batch:	XXX22440			Initial Prep	Wt./Vol.: 870 mL
Analytical Method: SW8015C		Prep Metho	d: SW3520C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 04/07/10 16:23		Prep Date/	Time: 04/02/10 0)9:55		Container I	D:1101343001-A
Dilution Factor: 1						Analyst: LC	E

SGS North America Inc. Environmental Division 200 West Potter Drive Anchorage AK 99518 t(907)562.2343 f(907)561 5301 www.ussgs.com Member of SGS Group

The Environmental Company, Inc. (TEC)

Print Date: 4/8/2010 5:29 pm

Client Sample ID: **RHMWA01-WG18C** SGS Ref. #: 1101343002 Project ID: 3354-003 Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 03/30/10 12:05 Receipt Date/Time: 03/31/10 11:14

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Analytical</u> Batch	Prep Batch Qualifiers
Diesel Range Organics	2.35	0.444	0.167	mg/L	1	XFC9145	XXX22440
5a Androstane <surr></surr>	89	50-150		%	1	XFC9145	XXX22440
Batch Information							
Analytical Batch: XFC9145		Prep Batch:	XXX22440			Initial Prep	Wt./Vol.: 900 mL
Analytical Method: SW8015C		Prep Metho	d: SW3520C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 04/07/10 16:44		Prep Date/	Time: 04/02/10 (9:55		Container I	D:1101343002-A
Dilution Factor: 1						Analyst: LC	E

SGS North America Inc. Environmental Division 200 West Potter Drive Anchorage AK 99518 t(907)562.2343 f(907)5615301 www.ussgs.com Member of SGS Group

SGS Ref.# Client Name Project Name/# Matrix	3354-00	Metl vironmental Co 3 Red Hill BF Surface, Eff., (SF	(TEC)		Printed Prep	Date/Time Batch Method Date	04/08/2010 17:30 XXX22440 SW3520C 04/02/2010
QC results affect the 1101343001, 1		ction samples:						
Parameter			Results	LOQ/CL	DL	Units		Analysis Date
Semivolatile	Organic Fu	els Depart	ment					
Diesel Range Org	anics		0.300 U	0.400	0.150	mg/L		04/07/10
Surrogates								
5a Androstane <s< td=""><td>urr></td><td></td><td>76.6</td><td>60-120</td><td></td><td>%</td><td></td><td>04/07/10</td></s<>	urr>		76.6	60-120		%		04/07/10
Batch Method Instrument	XFC9145 SW8015C HP 7890A	FID SV E F						

SGS Ref.#	954867 Lab Contr	ol Sample			Printe	d Date/Time	04/08/2010	17:30
Client Name Project Name/#	954869 Lab Contr The Environmental C 3354-003 Red Hill Bl		-		Prep	Batch Method Date	XXX22440 SW3520C 04/02/2010	
Matrix	Water (Surface, Eff.,	Ground)						
QC results affect the foll 1101343001, 11013	owing production samples 343002							
Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Semivolatile Org	anic Fuels Depar LCS LCSI	3.94	79 82	(75-125)	4	(< 20)	5 mg/L 5 mg/L	04/07/2010 04/07/2010
Surrogates								
5a Androstane <surr></surr>	LCS		84	(60-120)				04/07/2010
	LCSI)	87		4			04/07/2010
	FC9145							

MethodSW8015CInstrumentHP 7890AFID SV E F

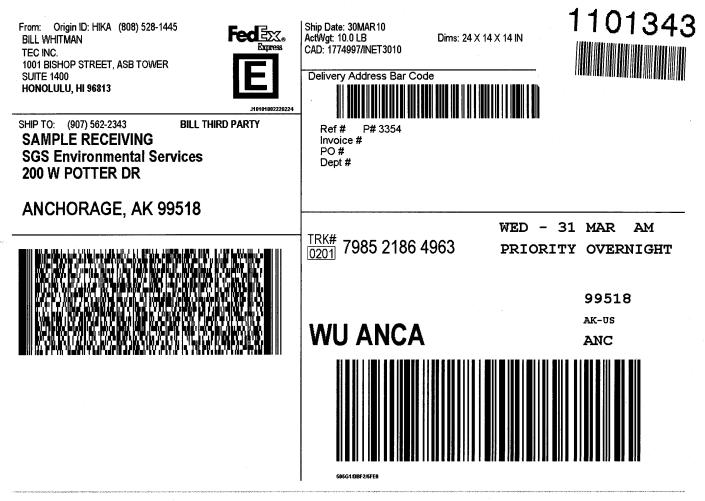
CHAIN OF CUSTODY RECORD SGS Environmental Services Inc.

of 1																		www.	<u>us.sgs</u> .	<u>.coṁ</u>	
	TEC INC.				•	SGS Re	erence #:										pag	ne		of	
CONTACT:	Rick Adkisson	PHONE	E NO:	808.528.1445													ραί	yc _		_ 07	—
PROJECT:	3354-003	SITE/P	WSID#:	Red Hill BFSF			Preserv. Used			\square			ŗ	\square			\square				
REPORTS TO:	Rick Adkisson	email c		@tecinc.com an@tecinc.co		# C © O N	SAMPLE TYPE C =	() ()	(6		MS)										
INVOICE TO:	TEC INC	QUOTE P.O. N	E #: IUMBER:			T A I N	COMP G =	RO (8015B)	RO (8015B)	VOC's (8260B)	PAH's (8270C-SIMS)	Pb (6020)									
LAB NO.	SAMPLE IDENTIFICATION	ON	DATE	TIME	MATRIX	E [*] R S	GRAB	TPH-GRO	TPH-DRO	voc's	PAH's	Diss P								REMARKS	3
O Aib	RHMW02-WG18	BC	3/30/2010	1025	Water	2			X												
D A,B	RHMWA01-WG1	8C	3/30/2010	1205	Water	2			X												
,																					
	lare		3/30/10	1308	Received By:			/			ng Carr ng Tick						34			IO I.	
Relinquished By: (D	ate	Time	Received By:						l Delive		Requireme	ents:			Chair INTA	~	istody Sea BROKEN	al: (Circle) ABSENT	
Relinquished By: ((3)	D	Date	Time	Received By:					Reque	sted Tu	Irnaroun	d Time	and-or S	Special	Instructio	ns:				
			4°							See	Cor	ntrac	t								
Relinquished By: ((4)	D	121/10	Time 1114	Received For Lab	eratory By:															
3180 Peger	itter Drive Anchorage, AK 99518 T r Road Fairbanks, AK 99701 Tel: Island Access Rd., Unit 1B Honolulu	(907) 474-86	656 Fax: (907) 474	-9685			 151 1258 5500 	Greent	orier St	reet Ch	arlesto	n, WV		Fel: (304) 346-0	725 Fa	ax: (304)) 346-07			

SGS

-

ç


es No NA	SAMPLE RECEIPT FORM	SGS WO#:		
	Are samples RUSH , priority or <i>w/in 72 hrs</i> of hold time ? If yes, have you done <i>e-mail ALERT notification</i> ?	TAT (circle Received Da	one): Standar te: 3° 3°	d-or- Rush
	Are samples within 24 hrs. of hold time or due date?	Received Tir	ne: 1// 4	· · · · · · · · · · · · · · · · · · ·
<i>U</i>	If yes, have you also spoken with supervisor?	Cooler ID	Temperature	Measured
<i>V</i>	Archiving bottles: Are lids marked w/ red "X" ?	•		(Therm #)
/	Were samples collected with proper preservative?	1	1.0 °C	34d
			°C	
			°C	
			°C	
		Note: Tomparature	e readings include thermom	
<u>د</u>	If this is for PWS, provide PWSID:		od (circle all that a	
	Payment received: \$ by Check or Credit Card		lert Courier / Lyn	
	Will courier charges apply?		IEX USPS / DH	
	Data package required? (Level: 1 / 2 / 3 / 4)			,
			streak / NAC /	ERA / Penal
-	Is this a DoD project? (USACE, Navy, AFCEE)	Other:	nla Dana lan (1):	
	is and a DOD project: (USACE, Navy, AFCEE)		ple Remarks: (\sqrt{ij})	
The second second	must be filled out for DoD projects (USACE, Navy, AFCEE):		a Sample Volum	
<u>rais sector</u> S No	Yes NA		ited Sample Volu	
- 1 - 1	Is received temperature <6°C" Was pH verified upon receipt?		ti-Incremental Sa	
	Were containers ice-free? Notify PM immediately of any ice in samples		-filtered for disso	
	If some cooler temperatures are non-compliant, see		Lab required for	
	form FS-0029 (attached) for samples/analyses affected	Fore	eign Soil?	
<u> </u>	Was there an airbill? (If "yes," see attached.)	F		
	Was cooler sealed with custody seals & were they intact?	This section n	nust be completed if pro	oblems are noted
	#1 where: 2 Flow & Aleg TOU LIN	With a still start of		0 X - / N
	Was there a COC with cooler?	was client no	otified of problems	? Yes / No
	Was COC sealed in plastic bag & taped inside lid of cooler?	By (SGS PM	[):	
=	Was the COC filled out properly? Did labels correspond?		.)	
	Did the COC indicate USACE / Navy / AFCEE project?	Individual co	ontacted:	
	Samples were packed to prevent breakage with <i>(circle one)</i> .	Via: Phone	e / Fax / E-mail	(circle one)
	Bubble Wraps Vermiculite Other (specify):	Date/Time:		
	Were all samples sealed in separate plastic bags?	Reason for c	ontact:	
A	Were all VOCs free of headspace and/or MeOH preserved?			
	Were correct container / sample sizes submitted?			· · · · · · · · · · · · · · · · · · ·
-	Was the PM notified of arrival so they can send			
ske ID /	Sample Receipt Acknowledgement to client? Cooler Temp °C / 3 Cooler ID Cooler Temp °C		·	
her ID	Cooler Temp °C <u>Cooler ID</u> Cooler Temp °C <u>Cooler Temp °C</u> Cooler ID Cooler Temp °C			
		Change Orde	er Required? Yes	/ No 😽
		L		
es:		· · · · · · · · · · · · · · · · · · ·	·	·
······		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
		····		
	<u>A</u>			
npleted by (sign): Im (print): J/M	ITS ANT	CHAT 1	
ihieren nà (;	$\frac{y_{1}}{y_{2}} = \frac{y_{1}}{y_{2}} + \frac{y_{1}}{y$			
in nreef.	Self-check completed Peer-reviewer's In itial	$\sim 00a$		-
in proof:	Self-check completed Peer-reviewer's In itial	s		
. 11 of ²	14			

12 of 14

ς	ßS														- All															
	And And	4-				SA	MP	LEF			T FC				Tra						SG	s w	/0#							
100									Co	ntai	ner \	Volu	Ime			Co	onta	ine	r Ty	/pe				F	Pres	erv				
#	Container ID	Matrix		Test		бс б	TB	1L	500mL	250mL or 8oz	125mL or 4oz	60mL	40mL	Other:	AG	CG	HDPE	Nalgene	Coli	Septa	Other:	None	HCI	HNO3	H2SO4	NaOH	Ascorbic Acid	NH₄CI	Other:	*Notes
1,2	AIB	l	PRO	TPH				4							5								~							
									ļ																					
									ļ																					
												<u> </u>																		
																												$\left - \right $		
									 																			┝─┨		
																											$\left - \right $	┝━┥		_
						-			 																			┝╼┥		_
				,			\vdash																					\vdash		
			·																									\vdash		
																				_										
														-				_	_							$\left - \right $				\neg
					Battle			11																						_
	*	Note	: Containers w	hich requi	Bottle re (additio				al pr	eser	vatio	on u	bon	rece	eipt i	mus	t be	do	cum	nent	ed p	ber	SOF	> #1	06					\neg
				•					•					$\overline{}$	•		~~~				•									
-								С	Com	plet	ed b	y:_	Í	n/		/	/							Dat	te:Ź	3.31	1-/	0	· ·	
									-			7				- 8													ed 9/	8/20

Page 1 of 1

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, incidental, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$500, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

1114

13 of 14

https://www.fedex.com/shipping/html/en//PrintIFrame.html

1101343

SGS Environmental	CUSTODY SEAL	
Signature: <u>ADAD</u>	Date/Time: 3/30/10 1300	-
SGS Environmental	CUSTODY SEAL	
Signature: Dala	Date/Time: 3/30/10/ 1300	

Appendix B

January, February, and March 2010 TPH-DRO Results Memorandum

April 19, 2010

January 2010 Sampling Event at the Red Hill Facility

TPH-DRO at RHMW02

The January 2010 total petroleum hydrocarbon, diesel range organics (TPH-DRO) results at RHMW02 were significantly impacted by two large peaks identified by the laboratory as caprolactam and DEET. These tentatively identified compound (TIC) peaks were reported as part of the TPH-DRO result because according to the analytical method, all peaks within the diesel range must be quantified. However, these TICs are apparently unrelated to Red Hill Bulk Fuels Storage Facility (Facility) stored fuels. Caprolactam is a monomer used to produce "Nylon 6" and is found in plastics and possibly in paints and floor polishes. DEET is a pesticide commonly used as an insect repellent.

Neither of these TIC compounds was detected as part of the laboratory extraction or instrument quality control process (e.g., method blanks, instrument blanks, and laboratory control spikes). Also, caprolactam and DEET are not used or found in the SGS laboratory that performed the analysis. Therefore, the TICs are not laboratory introduced contaminants. In addition, the same field personnel performed the January sampling and their sampling approach was identical to that used in previous Facility sampling events. Furthermore, the field personnel were extremely careful and cognizant not to introduce any contaminants to the collected and/or shipped samples. Consequently, it is not believed that the TICs were introduced via the analytical or sampling/shipping process.

As shown in Table 1, these two significant TIC peaks (i.e., identified by the laboratory as caprolactam and DEET) contributed significantly to the reported TPH-DRO results. Although the TPH-DRO analytical method requires that all peaks in the diesel range be quantified for the "officially reported" TPH-DRO result, Table 1 estimates what the respective TPH-DRO concentrations would have been without the two TIC peaks. The reprocessing or re-quantification results were provided by the laboratory. These "adjusted concentrations" more closely represent what would be anticipated with normal and duplicate samples.

January 2010 Results	Official TPH-DRO Result (µg/L)	Estimated TPH-DRO Result without the two TIC peaks included (µg/L)
RHMW02	2,130	1,740
RHMW02D (duplicate sample)	3,410	2,110

Table 1 – January 2010 RHMW02 Analytical Results**

Table 1 Note: ** TICs are "tentatively identified" compounds. The TPH-DRO analytical method is not specific (i.e., is designed to quantify any and all organic compounds within the diesel range). By scanning the TPH-DRO extract via GC/MS, unknown peaks have been "tentatively identified" (i.e., without the benefit of "neat" standards and the use of specific methods designed to accurately quantify the particular TIC peaks "identified"). Therefore, although the TICs are believed to be the "identified" compounds, there is some inherent uncertainty associated with this identification process. This uncertainty is why the "officially reported" TPH-DRO result must quantify all the organic compounds within the TPH-DRO range.

In summary, these TICs from the January 2010 sampling event are apparently not attributable to stored fuels at the Facility, they are not laboratory contaminants, and it is unlikely that they were introduced by the sampling/shipping process.

TPH-DRO at RHMW05

Similar to RHMW02, the January 2010 TPH-DRO result for RHMW05 was significantly impacted by two large peaks identified by the laboratory as caprolactam and DEET. These TIC peaks were reported as part of the TPH-DRO result because according to the analytical method, all peaks within the diesel range must be quantified. However as mentioned above, these TICs are apparently unrelated to Facility stored fuels. Caprolactam is a monomer used to produce "Nylon 6" and is found in plastics and possibly in paints and floor polishes. DEET is a pesticide commonly used as an insect repellent.

As with RHMW02, neither of these TIC compounds was detected as part of the laboratory extraction or instrument quality control process (e.g., method blanks, instrument blanks, and laboratory control spikes). Also, caprolactam and DEET are not used or found in the SGS laboratory that performed the analysis. Therefore, the TICs are not laboratory introduced contaminants. In addition, the same field personnel performed the January sampling and their sampling approach was identical to that used in previous Facility sampling events. Furthermore, the field personnel were extremely careful and cognizant not to introduce any contaminants to the collected and/or shipped samples. Consequently, it is not believed that the TICs were introduced via the analytical or sampling/shipping process.

As shown in Table 2, these two significant TIC peaks contributed significantly to the reported TPH-DRO results. Although the TPH-DRO analytical method requires that all peaks in the diesel range be quantified for the "officially reported" TPH-DRO result, Table 2 estimates what the respective TPH-DRO concentrations would have been without the two TIC peaks. The reprocessing or re-quantification results were provided by the laboratory.

January 2010 Results	Official TPH-DRO Result (µg/L)	Estimated TPH-DRO Result without the two TIC peaks included (µg/L)
RHMW05	2,060	541

Table 2 – January 2010 RHMW05 Analytical Results**

Table 2 Note: ** TICs are "tentatively identified" compounds. The TPH-DRO analytical method is not specific (i.e., is designed to quantify any and all organic compounds within the diesel range). By scanning the TPH-DRO extract via GC/MS, unknown peaks have been "tentatively identified" (i.e., without the benefit of "neat" standards and the use of specific methods designed to accurately quantify the particular TIC peaks "identified"). Therefore, although the TICs are believed to be the "identified" compounds, there is some inherent uncertainty associated with this identification process. This uncertainty is why the "officially reported" TPH-DRO result must quantify all the organic compounds within the TPH-DRO range.

In summary, these TICs from the January 2010 sampling event are apparently not attributable to stored fuels at the Facility, they are not laboratory contaminants, and it is unlikely that they were introduced by the sampling/shipping process.

February 2010 Re-sampling Event at the Red Hill Facility

TPH-DRO at RHMW02

Per the Facility Groundwater Protection Plan, because of the January 2010 results for RHMW02, the monitoring well was re-sampled in February 2010 for TPH-DRO. The February 2010 TPH-DRO results for RHMW02 were significantly impacted by three relatively large TIC peaks. The first peak (i.e., likely caprolactum) provided the largest TIC contribution toward the "officially reported" TPH-DRO concentration. The second peak was initially thought to be DEET, but following additional analyses, was identified to likely be dodecanoic acid. The third TIC peak was not able to be identified, even after subsequent analyses.

These three TIC peaks were reported as part of the TPH-DRO result because according to the analytical method, all peaks within the diesel range must be quantified. Caprolactam is a monomer used to produce "Nylon 6" and would be found in plastics and possibly in paints and floor polishes. Dodecanoic acid is not used or found in the SGS laboratory and was not found as part of the laboratory quality control process (e.g., instrument and method blanks), thus is not a laboratory contaminant. The third TIC peak that contributed to the "officially reported" TPH-DRO concentration could not be identified, even given subsequent analyses.

Chromatograms from the February laboratory data depict the two TIC peaks (i.e., identified as caprolactam and dodecanoic acid) that apparently are unrelated to Facility stored fuels and the third unknown TIC compound. The three peaks are summarized on the chromatograph as follows:

- The first peak marked (~2 minutes) should be caprolactam/nylon6. This is the largest TIC peak and is the major TIC contributor to the "officially reported" TPH-DRO result.
- The second peak marked (~4 minutes) was initially thought to be DEET, but following subsequent analysis was identified as likely to be dodecanoic acid.

• The third peak marked (~6.6 minutes) is an unidentified/unknown compound (i.e., not identifiable following an 8270 analytical method TIC library search). This peak was also present on the chromatograms for the January 2010 TPH-DRO sample results, but was much smaller and did not significantly influence the "officially reported" January TPH-DRO results.

Note that none of these three TIC peaks appear as part of the associated laboratory quality control process (e.g., method blanks and instrument blanks).

Table 3 depicts the "official reported" TPH-DRO results that include all three TIC peaks described above. Table 3 also estimates what the TPH-DRO results would be in the event that the three TIC peaks (i.e., likely caprolactam, dodecanoic acid, and an unknown compound) were not present. This reprocessing or re-quantification of the chromatograms was performed by the laboratory.

February 2010 Results	Official TPH-DRO Result (µg/L)	Estimated TPH-DRO Result without the three major TIC peaks included (µg/L)
RHMW02	8,650	3,470
RHMW02D (duplicate sample)	6,910	2,930

Table 3 – February 2010 RHMW02 Analytical Results**

Table 3 Note: ** TICs are "tentatively identified" compounds. The TPH-DRO analytical method is not specific (i.e., is designed to quantify any and all organic compounds within the diesel range). By scanning the TPH-DRO extract via GC/MS, unknown peaks have been "tentatively identified" (i.e., without the benefit of "neat" standards and the use of specific methods designed to accurately quantify the particular TIC peaks "identified"). Therefore, although the TICs are believed to be the "identified" compounds, there is some inherent uncertainty associated with this identification process. This uncertainty is why the "officially reported" TPH-DRO result must quantify all the organic compounds within the TPH-DRO range.

In summary, for the February analytical results, the first two TICs (and possibly the third TIC) are apparently not attributable to stored fuels at the Facility and they are likely not laboratory contaminants. Also, it is believed that none of these three TIC peaks have been significant contaminants of past Facility TPH-DRO reported concentrations prior to the January and February 2010 sampling events. In addition, the same field personnel performed the February sampling and their sampling approach was identical to that used in previous Facility sampling events. Furthermore, the field personnel were extremely careful and cognizant not to introduce any contaminants to the collected and/or shipped samples. Consequently, TEC does not believe that the TICs were introduced via the analytical or sampling/shipping process.

One identifiable variable that occurred during the January and February sampling events that was not true with earlier rounds was the ongoing process of dismantling/removing temporary PVC collection pipelines and the demobilization of various equipment and supplies from the tunnel complex. It is unclear how or if these occurrences may have had any effect/influence on the January and February 2010 TPH-DRO results.

March 2010 Re-sampling Event at the Red Hill Facility

TPH-DRO at RHMW02

Per the Facility Groundwater Protection Plan, because of the February 2010 results for RHMW02, the monitoring well was re-sampled in March 2010 for TPH-DRO. These sampling results (normal and duplicate samples) did not show large concentrations of the TICs described above that are apparently non-fuel related. Furthermore, the TPH-DRO concentrations more closely approximate the levels that have been historically observed from RHMW02. Table 4 presents the RHMW02 TPH-DRO March 2010 results.

March 2010 Results	Official TPH-DRO Result (µg/L)
RHMW02	2,630
RHMW02D (duplicate sample)	2,350

Table 4 – March 2010 RHMW02 Analytical Results

Please feel free to contact me if you have any questions or comments on my cell phone at 865-742-2181.

Sincerely,

fick allow

Rick Adkisson TEC, Project Manager