DEC - 1 2005

Third Quarter 2005

Groundwater Sampling Report RED HILL FUEL STORAGE FACILITY, HAWAII

F 9-10 227] and 990051 01001] 02007

November 2005

Department of the Navy Commander, Pacific Division Naval Facilities Engineering Command Pearl Harbor, HI 96860-3134

Contract Number N62742-01-D-1806, CTO 0013

ENCLOSURE(1)

Third Quarter 2005

Groundwater Sampling Report RED HILL FUEL STORAGE FACILITY, HAWAII

November 2005

Prepared for:

Department of the Navy Commander, Pacific Division Naval Facilities Engineering Command 258 Makalapa Drive, Suite #100 Pearl Harbor, HI 96860-3134

Prepared by:

DAWSON GROUP, INC. 3375 Koapaka Street, Suite B200 Honolulu, Hawaii 96819-1862

Prepared under:

Contract Number N62742-01-D-1806, CTO 0013

Third Quarter 2005

Groundwater Sampling Report Red Hill Fuel Storage Facility, Hawaii

November 2005

Prepared by:

DAWSON GROUP, INC. 3375 Koapaka Street, Suite B-200 Honolulu, Hawaii 96819

eather from

Heather Kerr Project Manager / Environmental Scientist

This page intentionally left blank.

EXECUTIVE SUMMARY

The Department of the Navy, Naval Facilities Engineering Command, Pacific Division (NAVFAC PACIFIC) has retained Dawson Group, Inc. (DAWSON) to perform groundwater monitoring activities at the Red Hill Fuel Storage Facility (FSF), Hawaii. The Red Hill FSF consists of 20 active underground storage tanks (USTs) operated by the Fleet Industrial Supply Center (FISC) Pearl Harbor. Figure 1, Site Vicinity Map, illustrates the location of the project site.

This work was performed under NAVFAC PACIFIC Contract Number N62742-01-D-1806, Contract Task Order (CTO) 0013. This document is the third quarterly report and summarizes the following: field investigation, IDW disposal, sample results, and conclusions and recommendations for the next sampling event.

Site Background

From 1998 to 2001, the Navy conducted an investigation at the facility to assess potential releases from the fuel storage facility. In February 2001, the Navy installed a one-inch diameter sentinel well (MW-V1D) to monitor for contamination of the basal aquifer underlying the storage facility (AMEC Earth and Environmental, Inc. [AMEC], 2002). Sentinel well MW-V1D was installed and completed at approximately 100 feet below grade (fbg). At the time of well completion, depth to water in MW-V1D was measured at 86 fbg. The groundwater level at the project site fluctuates from dry season to wet season (AMEC, 2002).

A second monitoring well (MW-V2S) was installed and completed above the water-bearing zone at approximately 52 fbg. This monitoring well is located southwest of sentinel well MW-V1D and does not contain either groundwater or product. MW-V2S was intentionally completed above the water-bearing zone in order to avoid creation of a possible direct conduit to the basal aquifer (AMEC, 2002).

In February 2001, groundwater samples collected from sentinel well MW-V1D contained total petroleum hydrocarbon (TPH) concentrations ranging from 0.883 milligrams per liter (mg/L) to 1.05 mg/L and total lead ranging from 0.0104 mg/L to 0.015 mg/L. The maximum total lead concentration in the samples was equal to the primary drinking water standard of 0.015 mg/L for lead and exceeded the State of Hawaii Department of Health (HDOH) Tier 1 groundwater action level (GWAL) of 0.0056 mg/L (US Navy, 2004).

Following discussions with HDOH, a program was initiated to monitor the sentinel well MW-V1D and the Navy Public Works Center (PWC) potable water stilling basin for indications of contamination from the upgradient tank farm. The recommended parameters for analyses were TPH as diesel; TPH as gasoline; benzene, toluene, ethylbenzene, and total xylenes (BTEX); 1,2-dichloroethane (DCA); polynuclear aromatic hydrocarbons (PAHs); total lead; and 1,2-dibromoethane (EDB) (US Navy, 2004).

Field Activities

On 8 September 2005, three surface water samples (two primary and one duplicate) were collected from the PWC potable water stilling basin and analyzed for TPH as diesel, TPH as gasoline, 1,2-DCA, BTEX, methyl-tert-butyl ether (MtBE), total lead, and EDB.

On 8 September 2005, two groundwater samples (one primary and one duplicate) were collected from the sentinel well, MW-V1D and analyzed for TPH-D, TPH-G, 1,2-DCA, BTEX, total lead, and EDB.

Conclusions and Recommendations

The following conclusions are based on the data collected during this investigation.

Stilling Basin

• Concentrations of lead were detected above the laboratory method reporting limits (MRLs). No constituents were detected at concentrations above the HDOH Tier 1 GWALs or HDOH drinking water standard.

Sentinel Well

- Concentrations of TPH as diesel, naphthalene, 2-methylnaphthalene, acenaphthene, dibenzofuran, fluorene, phenanthrene, fluoranthene, pyrene, benz(a)anthracene, and chrysene were detected above laboratory MRLs. No constituents were detected at concentrations above the HDOH Tier 1 GWALs.
- Lead was detected at concentrations above the laboratory MRL. The concentrations were below both the HDOH Tier 1 GWAL and the HDOH drinking water standard in the sentinel well samples. The September 2005 results were also less than the corresponding 2001 investigation results (AMEC, 2002). This was the first time since the samples have been collected at MW-V1D that the lead concentrations have been below the HDOH Tier 1 GWAL and HDOH drinking water standard. Previous samples collected from MW-V1D had not been filtered prior to lead analysis.
- The groundwater in the upgradient sentinel well (MW-V1D) shows evidence of contamination in the basal aquifer by contaminants of potential concern.

Based on the findings during this investigation, DAWSON recommends the following actions:

- Installation of a dedicated pump within MW-V1D to avoid cross-contamination, to facilitate low-flow sampling methodology, to more efficiently sample the monitoring well, and to contribute to the repeatability of sampling methods.
- Continue to filter lead samples during collection and prior to analysis.
- Continue sampling at the stilling basin and the sentinel well during the next quarter (October through December 2005).

TABLE OF CONTENTS

Cover Page	<i>i</i>
Title Page	
Signature Page	
Executive Summary	
Table of Contents	vii
Acronyms and Abbreviations	xi

1.	IN	TRODI	JCTION	1-1
	1.1	Project	Objectives	1-1
	1.2	Docume	nt Organization	1-1
	1.3	Site Loc	ation and Facility Description	1-2
	1.4	Previou	s Environmental Actions/Studies	1-2
2.	DA		JALITY OBJECTIVES	2-1
3.	ME	ETHOD	OLOGIES AND PROCEDURES	3-1
	3.1	Equipm	ent Decontamination	3-1
	3.2	Laborate	ory Analysis	3-1
	3.3	Stilling	Basin Sampling Methodology	3-1
		3.3.1	Installation of Temporary Well Conduit	3-2
		3.3.2	Surface Water Sampling Methodology	3-2
		3.3.3	Field Quality Control Sampling	3-2
	3.4	Sentinel	Well Sampling Methodology	3-3
		3.4.1	Measurement of Static Water Level and Detection of an Immiscible Phase	3-3
		3.4.2	Well Purging Methodology	3-3
		3.4.3	Sample Collection Procedures	
		3.4.4	Field Quality Control Sampling	
	3.5	Storage	of Investigation Derived Waste	3-4
4.	IN	VESTIC	GATION RESULTS	4-1
	4.1	Stilling	Basin Water Sample Results	4-1
		4.1.1	Dissolved Lead	
		4.1.2	Total Petroleum Hydrocarbons (TPH)	4-1
		4.1.3	1,2-Dibromoethane (EDB)	4-1
		4.1.4	Volatile Organic Compounds (VOCs)	4-1
		4.1.5	Polynuclear Aromatic Hydrocarbons (PAHs)	4-1
	4.2	Sentinel	Well Groundwater Sample Results	4-1
		4.2.1	Dissolved Lead	4-2
		4.2.2	Total Petroleum Hydrocarbons (TPH)	4-2

•

.

		ENCES	
CC	DNCL	USIONS AND RECOMMENDATIONS	5-1
4.5	IDW D	Disposal	4-4
	4.4.2	Laboratory/Quality Control Data Assessment	
	4.4.1	Field Quality Assurance/Quality Control	
4.4	Data Q	uality Review	
4.3	Trip Bl	lank Analytical Results	
	4.2.5	Polynuclear Aromatic Hydrocarbons (PAHs)	
	4.2.4	Volatile Organic Compounds (VOCs)	
	4.2.3	1,2-Dibromoethane (EDB)	
	4.4	4.2.4 4.2.5 4.3 Trip B 4.4 Data Q 4.4.1 4.4.2	 4.2.4 Volatile Organic Compounds (VOCs)

LIST OF FIGURES

FIGURES

٨

- 1 Site Vicinity Map
- 2 Site Plan

LIST OF TABLES

TABLES

- 1 Summary of Groundwater Sample Results for Stilling Basin
- 2 Summary of Groundwater Sample Results for MW-V1D
- 3 Summary of Trip Blank Results

LIST OF APPENDICES

APPENDICES

- A Non-Hazardous Waste Manifest
- B Laboratory Reports and Chain-of-Custody Records for Primary and QC Groundwater and Stilling Basin Samples
- C Monitoring Well Sampling Logs

This page intentionally left blank.

,

.

ACRONYMS AND ABBREVIATIONS

ACRONYM/ ABBREVIATION	DEFINITION/MEANING
12004	1.2 dishlaraathara
1,2 DCA AMEC	1,2 dichloroethane AMEC Earth and Environmental, Inc.
BTEX	benzene, toluene, ethylbenzene, and total xylene
CAS	
-	Columbia Analytical Services
CFR	Code of Federal Regulations
COPC	contaminants of potential concern
COTR	Contracting Officer's Technical Representative
CTO	contract task order
DAWSON	Dawson Group, Inc.
DOT	Department of Transportation
DQO	Data Quality Objectives
DW	drinking water
EDB	1,2-dibromoethane
EM	Engineering Manual
EPA	United States Environmental Protection Agency
fbg	feet below grade
FISC	Fleet Industrial Supply Center
FSF	fuel storage facility
FSP	Field Sampling Plan
GWAL	groundwater action level
HASP	Health and Safety Plan
HAZWOPER	Hazardous Waste Emergency Operations
HDOH	State of Hawaii Department of Health
IDW	investigation derived waste
IP	interface probe
IRP	Installation Restoration Program
mg/L	milligrams per liter
MRL	method reporting limit
MtBE	methyl tert-butyl ether
NAVFAC PACIFIC	Naval Facilities Engineering Command, Pacific
OSHA	Occupational Safety and Health Administration
РАН	polynuclear aromatic hydrocarbon
PVC	polyvinyl chloride
PWC	Public Works Center
QA	quality assurance
QC	quality control
RPM/NTR	Remedial Project Manager / Navy Technical Representative
SSHO	Site Safety and Health Officer
ТРН	total petroleum hydrocarbons
U.S. Army	United States Department of the Army
UST	underground storage tank

ł,

ACRONYMS AND ABBREVIATIONS

ACRONYM/ ABBREVIATION	DEFINITION/MEANING
VOC	volatile organic compound
WP	Work Plan

1. INTRODUCTION

The Department of the Navy, Naval Facilities Engineering Command, Pacific Division (NAVFAC PACIFIC) has retained Dawson Group, Inc. (DAWSON) to perform groundwater monitoring activities at the Red Hill Fuel Storage Facility (FSF), Hawaii. The Red Hill FSF consists of 20 active underground storage tanks (USTs) operated by the Fleet Industrial Supply Center (FISC) Pearl Harbor. Figure 1, Site Vicinity Map, illustrates the location of the project site.

This work was performed under NAVFAC PACIFIC Contract Number N62742-01-D-1806, Contract Task Order (CTO) 0013. This document is the third quarterly report and summarizes the following: field investigation, IDW disposal, sample results, and conclusions and recommendations for the next sampling event.

1.1 Project Objectives

The project objective is to determine if petroleum-related groundwater contamination is present downgradient of the 20 active USTs. In order to achieve this objective, the following tasks will be conducted:

- Conduct quarterly sampling of surface water located in the stilling basin located at the potable water infiltration tunnel operated by the Navy Public Works Center (PWC).
- Conduct quarterly sampling of groundwater from the sentinel monitoring well (MW-V1D) located downgradient of the 20 USTs.
- Present data in a quarterly report, which will include a description of the nature and extent of contamination, if any.

1.2 Document Organization

The following presents the organization of this document:

- Section 1 Introduction: presents the project objectives, organization of this document, site location and description, and previous environmental action/studies performed at this site.
- Section 2 Data Quality Objectives: provides the data quality objectives for the groundwater monitoring program.
- Section 3 Methodologies and Procedures: describes the equipment decontamination, laboratory analysis, stilling basin sample collection, groundwater monitoring well sample collection, and storage of investigation derived waste (IDW).
- Section 4 Investigation Results: presents the groundwater monitoring well sample results, stilling basin sample results, trip blank analytical results, data quality review, and IDW disposal.
- Section 5 Conclusions and Recommendations: provides discussion of the sampling results and recommendations for the Site.
- Section 6 References: lists the references cited in the text.
- Appendix A: presents the Non-Hazardous Waste Manifest.

- Appendix B: presents the laboratory analytical results for the groundwater samples collected during September 2005.
- Appendix C: presents the monitoring well sampling logs from September 2005.

1.3 Site Location and Facility Description

The Red Hill FSF project site is located in Halawa Heights on Oahu, Hawaii. Access is via Halawa Valley Road, located north of the project site. Primary highways in the vicinity of the project site are Interstate Highways H-1 and H-3. Land adjacent to the north of the project site is occupied by Halawa High and Medium Security Facility and private businesses. Land to the south and west of the project site includes the Coast Guard Reservation. Moanalua Valley is located east of the facility (Figure 1, *Site Vicinity Map*).

The Red Hill FSF consists of 20 active USTs operated by Navy FISC Pearl Harbor. Each UST has a capacity of 12.5 million gallons. The facility is located approximately 100 feet above the basal aquifer. Approximately 1,550 feet hydraulically downgradient from the tank farm, the Navy PWC operates a potable water infiltration tunnel (Figure 2, *Site Plan*).

1.4 Previous Environmental Actions/Studies

From 1998 to 2001, the Navy conducted an investigation at the facility to assess potential releases from the fuel storage facility. In February 2001, the Navy installed a one-inch diameter sentinel well (MW-V1D) to monitor for contamination of the basal aquifer underlying the storage facility (AMEC Earth and Environmental, Inc. [AMEC], 2002). Sentinel well MW-V1D was installed and completed at approximately 100 feet below grade (fbg). At the time of well completion, depth to water in MW-V1D was measured at 86 fbg. The groundwater at the project site fluctuates from dry season to wet season (AMEC, 2002).

A second monitoring well (MW-V2S) was installed and completed above the water-bearing zone at approximately 52 fbg. This monitoring well is located southwest of sentinel well MW-V1D and does not contain either groundwater or product. MW-V2S was intentionally completed above the water-bearing zone in order to avoid creation of a possible direct conduit to the basal aquifer (AMEC, 2002).

In February 2001, groundwater samples collected from sentinel well MW-V1D contained TPH concentrations ranging from 0.883 milligrams per liter (mg/L) to 1.05 mg/L and total lead ranging from 0.0104 mg/L to 0.015 mg/L. The maximum total lead concentration in the samples was equal to the primary drinking water standard of 0.015 mg/L for lead and exceeded the State of Hawaii Department of Health (HDOH) Tier 1 groundwater action level (GWAL) of 0.0056 mg/L (US Navy, 2004).

Following discussions with HDOH, a program was initiated to monitor the sentinel well MW-V1D and the PWC potable water stilling basin for indications of contamination from the upgradient tank farm. The recommended parameters for analyses were TPH; BTEX; 1,2 DCA; PAHs; total lead; and EDB (US Navy, 2004).

2. DATA QUALITY OBJECTIVES

Environmental data are needed to: 1) determine if groundwater contamination is present at the project site; 2) determine the best course of action; and 3) characterize IDW wastewater for disposal.

Chemical data must be of sufficient quality and quantity to confirm the presence or absence of contaminants of potential concern (COPC) in the groundwater beneath the Red Hill FSF. The COPCs for this investigation include TPH as diesel and as gasoline; BTEX; MtBE; 1,2 DCA; total lead; and EDB. The data quality objectives were designed to comply with the HDOH's *Technical Guidance Manual for Underground Storage Tank Closure and Release Response, Second Edition* (HDOH, 2000) and *Risk-Based Corrective Action and Decision Making at Sites With Contaminated Soil and Groundwater, Volume 1 and II* (HDOH, 1996).

The screening levels for this investigation will draw on the HDOH Tier 1 GWALs for sites receiving less than 200 centimeters of rainfall per year and threatening a drinking water source (HDOH, 2000).

For reference purposes, the HDOH Environmental Action Levels (EALs) for sites greater than 150 meters from a surface water body where groundwater is a current or potential source of drinking water (HDOH, 2005) have been included. However, it should be noted that the 2000 Tier 1 GWALs are the governing guidelines for the site as required by the HDOH's UST regulations.

To evaluate the absence or presence of contaminants, the following quality criteria will be followed:

1) Laboratory analytical methods will provide reporting limits that are lower than regulatory action levels,

2) Chemical analyses of COPC will be performed using EPA publication SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Third Edition methodology (EPA, 1998), and

3) Laboratory chemical data will be used to assess each analyte's concentration exceeding HDOH Tier 1 GWALs.

.

This page intentionally left blank.

-

3. METHODOLOGIES AND PROCEDURES

3.1 Equipment Decontamination

All water-level measuring and water sampling equipment was decontaminated at the start and end of the project, as well as between locations, to reduce the possibility of cross-contamination. The equipment was first washed in potable water and non-phosphate detergent. Then it was rinsed in potable water, rinsed in deionized/distilled water, sprayed with isopropyl alcohol, and rinsed with deionized/distilled water. Decontamination washwater was placed in a Department of Transportation (DOT)-approved, steel, 30-gallon drum and handled appropriately as described in detail in Section 5.3, *Investigation Derived Waste*.

3.2 Laboratory Analysis

The laboratory used standard analytical methods as outlined in the EPA's publication SW846 – Test Methods for Evaluating Solid Waste, Third Edition (EPA, 1998). The laboratory followed the EPA's method-specific quality control procedures as outline in SW846.

The groundwater samples collected from the stilling basin and the sentinel well were analyzed by Columbia Analytical Services for the following parameters:

- TPH as Diesel and TPH as Gasoline using EPA Method 8015M;
- BTEX, 1,2-DCA, and MtBE using EPA Method 8260B;
- EDB using EPA Method 504.1;
- PAHs using EPA Method 8270C SIM/PAHs; and
- Total Lead by EPA Method 6020.

The analytical methods were requested by the NAVFAC PACIFIC in the Statement of Work (SOW) (U.S. Navy, 2004) and are industry standards. Site investigation activities were conducted in accordance with the WP/FSP (DAWSON, 2005b) and the Project Procedures Manual, U.S. Navy PACDIV Installation Restoration Program (IRP) (PACDIV, 1998). Copies of laboratory reports and chain-of-custody records for groundwater samples are included in Appendix B, Laboratory Reports and Chain-of-Custody Records for Primary and QC Groundwater and Stilling Basin Samples.

3.3 Stilling Basin Sampling Methodology

Previously when sampling the stilling basin, no entry was permitted due to the characteristics of the stilling basin, which identified it as a permit-required confined space. Prior to this event, samples at the stilling basin were collected by lowering a sampling system which was a combination of a polyvinyl chloride (PVC) casing and a disposable bailer, where the bailer was inserted inside the PVC casing, and an IP probe was attached to the outside of the PVC casing. Together, the assembly was lowered to approximately six inches above the water surface, and then the bailer was lowered into the water to collect a sample. Once full, the bailer was raised into the PVC casing and the assembly was raised up through the entrance hatch, where the sample bottles were filled.

3.3.1 Installation of Temporary Well Conduit

On 28 June 2005, a temporary well conduit was installed at the PWC potable water stilling basin to increase the repeatability of sample collection, and to allow more efficient sampling of the groundwater. In order to install this conduit, entry into the stilling basin was allowed. A confined space entry permit was completed (Appendix C), the air within the stilling basin area was monitored (for combustible gases, oxygen, carbon dioxide, and methane), and a safety retrieval line with tripod and fall protection harness was used by the entrant. Each section of the conduit was lowered by rope to the entrant from the entrance hatch.

The bottom of the conduit was comprised of a 4-inch PVC end cap and 25 feet (5-foot sections) of factory-slotted (0.010), 2-inch diameter, schedule-40 polyvinyl chloride (PVC) screen. The sections, once lowered, were assembled by the entrant at the catwalk and secured to the outer side of the base of the ladder cage with heavy duty cable ties. The bottom of the screened interval was installed to be flush with the bottom of the PWC stilling basin. According to measurements taken from the catwalk, the screen was set in 23.1 feet of water.

Attached to the top of the screened PVC section was approximately 60 feet of 2-inch diameter, schedule-40 PVC (10-foot sections) casing. The sections were lowered to the entrant who attached them to the already-in-place sections of screen. Every 5 feet, the conduit was secured to the outer side of the ladder cage with heavy duty cable ties. The top of the conduit was secured with a monitoring well compression cap.

Once the conduit installation was completed, the safety retrieval line with tripod and fall protection harness was disassembled. The conduit was installed at a height so that future entry into the stilling basin can be avoided.

3.3.2 Surface Water Sampling Methodology

Access to the stilling basin requires opening an entrance hatch (approximately 24 inches in diameter). A lockout/tagout procedure was used to prevent accidental closure. From the open entrance hatch, the depth-to-water to the nearest 0.01 foot was measured using an interface probe (IP) through the well conduit. The measurement and time were recorded on the Surface Water Field Sampling Log (Appendix D, *Monitoring Well Sampling Forms*).

The samples were then collected using a new weighted, disposable, single-check valve bailer that remained sealed in plastic (by the manufacturer) until use. The bailer was equipped with a bottom-discharging device. The bailer was lowered to the water surface through the well conduit and the bottom was submerged in the surface water. Once full, the bailer was raised through the well conduit and through the entrance hatch, where the samples bottles were filled. This procedure was repeated until all required primary and field duplicate (QC) samples were collected.

3.3.3 Field Quality Control Sampling

Surface water field duplicate (QC) samples were collected once per sampling event, following the sample collection procedures listed in Section 6.2.2, *Surface Water Sampling Methodology*.

A laboratory-supplied trip blank was placed in the sample cooler containing the VOC samples to be shipped to the laboratory.

A temperature blank was placed in one sample cooler per shipment to be shipped to the laboratory.

3.4 Sentinel Well Sampling Methodology

This section describes the sampling methodology employed to collect groundwater samples.

3.4.1 Measurement of Static Water Level and Detection of an Immiscible Phase

Before sampling, the depth to standing water, depth to an immiscible layer (if any), and the total depth of the well were measured to the nearest 0.01 foot using an IP to provide baseline data. The data were recorded on the Monitoring Well Field Sampling Log (Appendix B).

In accordance with the SOW, if an immiscible phase is detected with the IP, the Project Manager and the Navy RPM/NTR are to be notified immediately. No groundwater sample is collected unless otherwise directed by the Project Manager and/or Navy RPM/NTR.

If no immiscible phase is detected with the IP, the measurements of depth to water and total depth of the well are used to calculate the volume of water in the well and the amount of water to be purged, as well as provide information on the integrity of the well (e.g., identification of siltation problems).

3.4.2 Well Purging Methodology

Purging was accomplished by removing groundwater from the well using a dedicated bailer approximately 12 feet in length and 0.5 inch in diameter attached to a new, dedicated rope. The bailer was lowered into the well with as little disturbance of the water as possible to minimize aeration of the water in the well. Once the bailer was full, it was slowly brought out of the water and the water was transferred to a clean container for evaluation of field parameters. The purge water was evaluated on a regular basis during purging and analyzed in the field for temperature, pH, specific conductivity, salinity, dissolved oxygen, redox potential, and turbidity using a YSI® water quality meter. At least four readings were taken during the purging process. The purging procedure was repeated until the calculated purge volume was removed or when three consecutive field parameter measurements had stabilized to within approximately 10 percent. All information was recorded on the Monitoring Well Field Sampling Log (Appendix B). The purge water was placed in the 30-gallon, steel drum located onsite.

3.4.3 Sample Collection Procedures

The sentinel well was sampled when groundwater within it was representative of aquifer conditions and after it had recovered sufficiently to provide enough volume for the groundwater sample. A period of no more than two hours elapsed between purging and sampling to prevent groundwater interaction with the casing and atmosphere. Depth to water was measured and recorded prior to sampling to demonstrate the degree of recovery of the well.

The bailer was lowered as described in Section 3.4.2, and once the bailer was full, it was brought out of the water and the water transferred directly into the laboratory-supplied containers. This procedure was repeated until all required primary and field duplicate (QC) samples were collected.

- - - - -

3.4.4 Field Quality Control Sampling

Groundwater field duplicate (QC) samples were collected once per sampling event, following the sample collection procedures listed in Section 3.4.3, Sample Collection Procedures.

A laboratory supplied trip blank was placed in the sample cooler containing the VOC samples to be shipped to the laboratory.

A temperature blank was placed in one sample cooler per shipment to be shipped to the laboratory.

3.5 Storage of Investigation Derived Waste

IDW generated during this investigation included monitoring well purge water and decontamination wastewater. Wastewater was stored in a DOT-approved, steel, 30-gallon drum. The drum was labeled and marked and stored within the Red Hill Fuel Storage Facility near MW-V1D. IDW management practices are described in detail in the WP/FSP (DAWSON, 2005b).

4. INVESTIGATION RESULTS

4.1 Stilling Basin Water Sample Results

Three surface water samples (two primary and one duplicate) were collected from the PWC potable water stilling basin and analyzed for TPH-D, TPH-G, 1,2-DCA, BTEX, MtBE, dissolved Lead, and EDB on 8 September 2005. The results are presented in *Table 1, Summary of Groundwater Sample Results* of this report. The laboratory analytical reports are presented in *Appendix A, Laboratory Reports and Chain-of-Custody Records for Primary and QC Groundwater and Stilling Basin Samples.*

4.1.1 Dissolved Lead

Lead samples were collected in the field with a bailer and transferred to unpreserved sample bottles. Those sample bottles were brought to the Dawson office and transferred to a preserved sample bottles using a peristaltic pump and new polyethylene tubing to filter the samples. Lead was detected above the laboratory method reporting limits (MRLs) at concentrations ranging from 0.00003 mg/L to 0.00027 mg/L (Table 1). These concentrations were below the HDOH GWAL of 0.0056 mg/L (HDOH, 2000) and the HDOH drinking water standard of 0.015 mg/L (HDOH, 2002).

4.1.2 Total Petroleum Hydrocarbons (TPH)

TPH as diesel was not detected above the laboratory MRLs in the any of the stilling basin samples (Table 1).

TPH as gasoline was not detected above the laboratory MRL in any stilling basin samples (Table 1).

4.1.3 1,2-Dibromoethane (EDB)

EDB was not detected above the laboratory MRLs in any stilling basin samples (Table 1).

4.1.4 Volatile Organic Compounds (VOCs)

No VOCs were detected above the laboratory MRLs in any stilling basin samples (Table 1).

4.1.5 Polynuclear Aromatic Hydrocarbons (PAHs)

Napthalene was detected above the laboratory MRL in sample RH-B-007 (0.000085 mg/L) and in the duplicate sample RH-B-009 (0.000045 mg/L). No other PAHs were detected above the laboratory MRL in any stilling basin samples (Table 1).

4.2 Sentinel Well Groundwater Sample Results

Two groundwater samples (one primary and one duplicate) were collected from the sentinel well, MW-V1D and analyzed for TPH-D, TPH-G, 1,2-DCA, BTEX, MtBE, dissolved Lead, and EDB on 8 September 2005. The results are presented in Table 2, *Summary of Groundwater Sample Results, MW-V1D*, of this report. The laboratory analytical reports are presented in Appendix A.

4.2.1 Dissolved Lead

Lead samples were collected in the field with a bailer and transferred to unpreserved sample bottles. Those sample bottles were brought to the Dawson office and transferred to a preserved sample bottles using a peristaltic pump and new polyethylene tubing to filter the samples. Lead was detected above the laboratory MRL at concentrations of 0.00021 mg/L and 0.000050 mg/L in the primary and duplicate samples (Table 2). Both of these results were below the HDOH GWAL of 0.0056 mg/L (HDOH, 2000) and below the HDOH drinking water standard of 0.015 mg/L (HDOH, 2002).

4.2.2 Total Petroleum Hydrocarbons (TPH)

TPH as diesel was detected at concentrations of 0.950 mg/L and 1.100 mg/L (Table 2). The laboratory report noted that both of the chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.

4.2.3 1,2-Dibromoethane (EDB)

EDB was not detected above the laboratory MRLs in the sentinel well sample (Table 2).

4.2.4 Volatile Organic Compounds (VOCs)

VOCs were not detected above the laboratory MRLs in any sentinel well samples (Table 2).

4.2.5 Polynuclear Aromatic Hydrocarbons (PAHs)

- Naphthalene was detected above the laboratory MRL at concentrations of 0.00083 mg/L and 0.00078 mg/L.
- 2-Methylnaphthalene was detected above the laboratory MRL in both samples at a concentration of 0.000038 mg/L.
- Acenaphthene was detected above the laboratory MRL at concentrations of 0.000054 mg/L and 0.000056 mg/L.
- Dibenzofuran was detected above the laboratory MRL in both samples at a concentration of 0.00013 mg/L.
- Fluorene was detected above the laboratory MRL in both samples at a concentration of 0.000064 mg/L.
- Phenanthrene was detected above the laboratory MRL at concentrations of 0.00011 mg/L and 0.00012 mg/L.
- Fluoranthene was detected above the laboratory MRL at concentrations of 0.000025 mg/L and 0.000049 mg/L.
- Pyrene was detected above the laboratory MRL at concentrations of 0.000030 mg/L and 0.000058 mg/L.
- Benz(a)anthracene was detected above the laboratory MRL in one sample at a concentration of 0.000025 mg/L (duplicate sample).
- Chrysene was detected above the laboratory MRL at concentrations of 0.000022 mg/L and 0.000036 mg/L (Table 2).

4.3 Trip Blank Analytical Results

One trip blank sample was submitted and analyzed for VOCs by EPA Method 8260b. The results are presented in Table 3, Summary of Trip Blank Results. The laboratory analytical reports are presented in Appendix A.

No VOCs were detected at concentrations above the laboratory MRLs in the trip blank sample.

4.4 Data Quality Review

4.4.1 Field Quality Assurance/Quality Control

Quality Assurance/Quality Control (QA/QC) checks employed during the collection of field data and sampling activities included the following:

- Collection of samples and field measurements by DAWSON. DAWSON personnel were familiar with EPA protocols concerning equipment decontamination, sample collection, sample and project documentation, and QA/QC procedures.
- Use of certified clean laboratory sample containers.
- Preservation of sample integrity by chilling samples in the field and maintaining proper temperature until receipt at the laboratory.

4.4.2 Laboratory/Quality Control Data Assessment

As part of the QC of this project, the DAWSON completed a desktop review of the data packages received from Columbia Analytical Services. The desktop review included a review of the hold times, reagent blanks, surrogate recoveries, sample duplicates, matrix spike/matrix spike duplicates recoveries, relative percent differences, blank spike recovery and reporting limits. DAWSON concluded that the laboratory analyses meet QC criteria and can be used for the intended purpose. The duplicate results were consistent with all primary sample results and thus valid and useable.

Laboratory Data Assessment

No anomalies associated with the analysis of these samples were observed.

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/ Laboratory Control Sample Duplicate (LCS/LCSD) was analyzed and reported in lieu of the MS/MSD for these samples.

na in ante ante in ante ante. Dete Dissempenaies

Data Discrepancies

The relative percent differences between the primary and duplicate sample concentrations are presented in Tables 1 and 2. There were no significant data discrepancies between the primary and duplicate sample results. Columbia Analytical Services performed analyses on both the primary and duplicate samples.

4.5 IDW Disposal

All IDW generated during the June through September 2005 were determined to be non-hazardous wastes and were taken to an offsite recycling facility on 16 September 2005. The Non-Hazardous Waste Manifest is presented in Appendix A of this report.

in a series and the second second

معجور مرد مجور مامه

5. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions are based on the data collected during this investigation.

Stilling Basin

• Concentrations of lead were detected above the laboratory method reporting limits (MRLs). No constituents were detected at concentrations above the HDOH Tier 1 GWALs or HDOH drinking water standard.

Sentinel Well

- Concentrations of TPH as diesel, naphthalene, 2-methylnaphthalene, acenaphthene, dibenzofuran, fluorene, phenanthrene, fluoranthene, pyrene, benz(a)anthracene, and chrysene were detected above laboratory MRLs. No constituents were detected at concentrations above the HDOH Tier 1 GWALs.
- Lead was detected at concentrations above the laboratory MRL. The concentrations were below both the HDOH Tier 1 GWAL and the HDOH drinking water standard in the sentinel well samples. The September 2005 results were also less than the corresponding 2001 investigation results (AMEC, 2002). This was the first time since the samples have been collected at MW-V1D that the lead concentrations have been below the HDOH Tier 1 GWAL and HDOH drinking water standard. Previous samples collected from MW-V1D had not been filtered prior to lead analysis.
- The groundwater in the upgradient sentinel well (MW-V1D) shows evidence of contamination in the basal aquifer by contaminants of potential concern.

Based on the findings during this investigation, DAWSON recommends the following actions:

- Installation of a dedicated pump within MW-V1D to avoid cross-contamination, to facilitate low-flow sampling methodology, to more efficiently sample the monitoring well, and to contribute to the repeatability of sampling methods.
- Continue to filter lead samples during collection and prior to analysis.
- Continue sampling at the stilling basin and the sentinel well during the next quarter (October through December 2005).

,

This page intentionally left blank.

6. REFERENCES

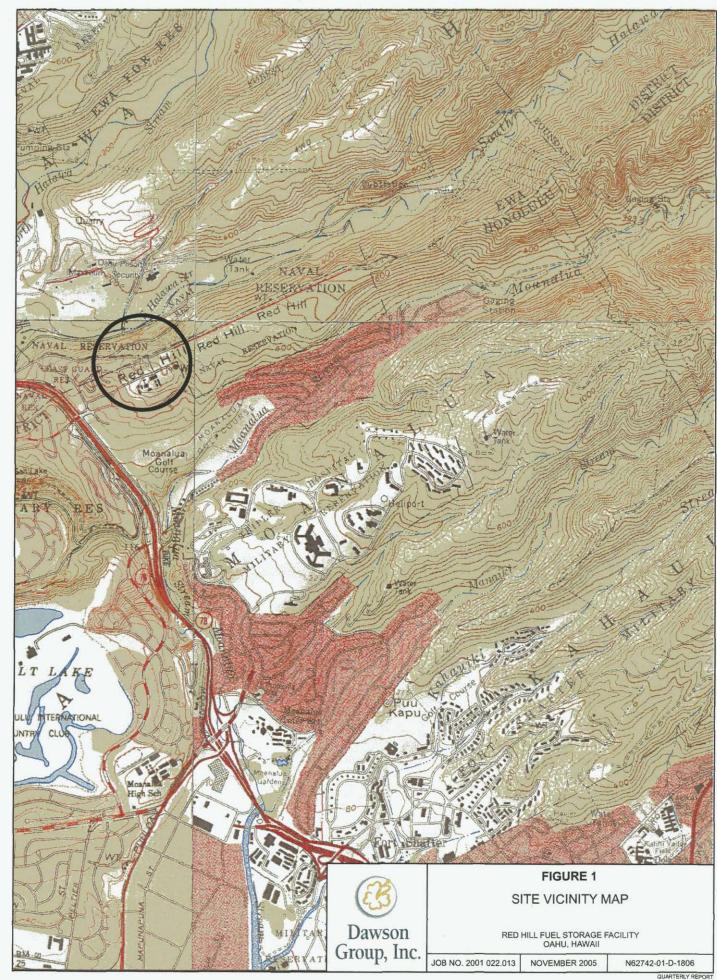
- AMEC Earth and Environmental, Inc., 2002. Red Hill Bulk Fuel Storage Facility Investigation Report, Volume I of III (Final) for Fleet Industrial Supply Center (FISC), Oahu, Hawaii. August 2002.
- Code of Federal Regulations, 2005. Hazardous Waste Operations and Emergency Response: Title 29, Part 1910, Section 120. Office of Federal Register, National Archives and Record Administration. United States Government Printing Office, Washington DC.
- Dawson Group, Inc., 2005a. Site Health and Safety Plan, Groundwater Sampling, Red Hill Fuel Storage Facility, Hawaii. February 2005.
- Dawson Group, Inc., 2005b. Work Plan/Field Sampling Plan, Groundwater Sampling, Red Hill Fuel Storage Facility, Hawaii. February 2005.
- State of Hawaii Department of Health, 1996. Risk-based Corrective Action and Decision Making at Sites with Contaminated Soil and Groundwater, Volume I and II.
- State of Hawaii Department of Health, 2000. Technical Guidance Manual for Underground Storage Tank Closure and Release Response, Second Edition. March 2000.
- State of Hawaii Department of Health, 2002. Hawaii Administrative Rules, Title 11 Chapter 20, Rules Relating to Potable Water Systems. November 2002.
- State of Hawaii Department of Health, 2005. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Volume 1: Summary Tier 1 Lookup Tables. Interim Final May 2005.
- United States Department of the Army, 1996. Safety and Health Requirements Manual. EM 385-1-1. 3 September 1996
- United States Environmental Protection Agency, 1998. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Third Edition.
- United States Navy, 1998. Project Procedures Manual, U.S. Navy PACDIV Installation Restoration Program (IRP). October 1998.

United States Navy, 2004. Statement of Work - 10 May 2004. May 2004.

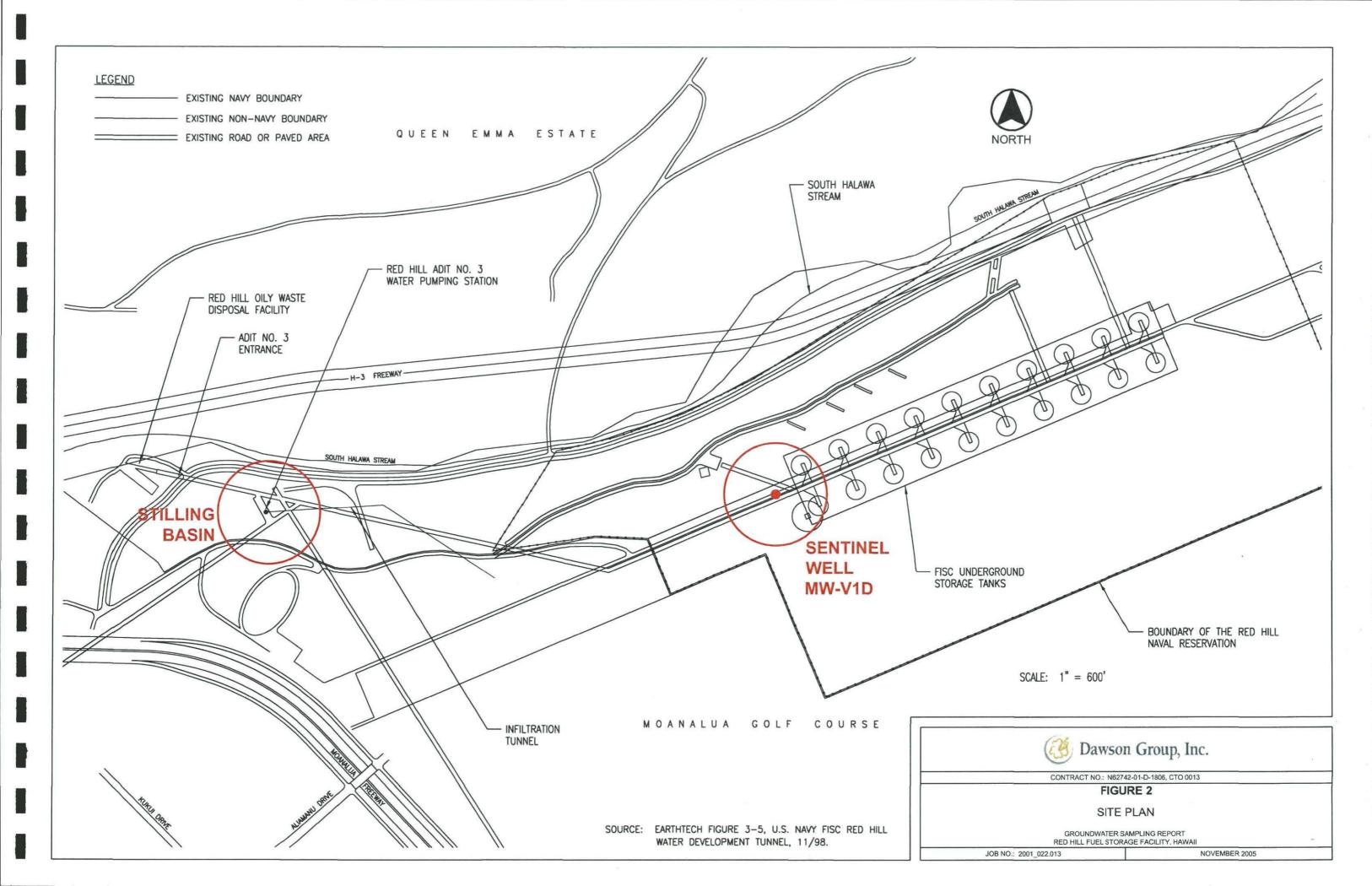
This page intentionally left blank.

.

FIGURES


Site Vicinity Map – Figure 1 Site Plan– Figure 2

.


This page intentionally left blank.

,

•

QUARTERLT REP

TABLES

Summary of Groundwater Sample Results: Stilling Basin - Table 1

•

- Summary of Groundwater Sample Results: MW-V1D Table 2
 - Summary of Trip Blank Results Table 3

•

.

.

.

.

This page intentionally left blank.

TABLE 1Summary of Groundwater Sample ResultsStilling BasinRed Hill Fuel Storage FacilityRed Hill, Oahu, Hawaii

	SAMPLE IDENTIFICATION			Pumps Offline	Pumps	Offline	Relative Pumpe Offline Percent RH-8-007			r	
				RH-8-001	RH-8-004	RH-8-005					1
SAMPLE TYPE			Primary	Pnmary	* Dupiicate	Difference (RPD)	Primary				
			DATE COLLECTED	02/16/2005	06/28/2005	06/28/2005	(10-0)	09/08/2005	HDOH Tier 1 Groundwater Action	Environmental Action	
	ANALYSIS	EPA METHOD	MRL					a the second	Levels	Levels	UNITS
Metals.	Total Lead	6020	0 000050	0 00033	0.000952	0.000549	54%	0.00005 ④	0.0056	0.015 DQ	mg/L
Hydrocarbons.	TPH as Diesel	8015M	0 052	ND	0.043 J	0.067 Z	44%	0.045 J	NE	0 100 D	mg/L
	TPH as Residual Range	8015M	0 100	ND	NA	NA	NA	0 059 J	NE	0.100 D	mg/L
	TPH as Gasoline	8015M	0 050	ND	<0.050	<0.050	NA	<0.050	NE	0.100 D	mg/L
EDB:	1,2-Dibromoethane (EDB)	504,1	0 0000095	ND	<0.0000095	<0.0000097	NA	<0.0000095	NE	0.00012 😨	mg/L
VOCs:	Benzene	8260B	0 00050	ND	<0.00050	<0.00050	NA	<0 00050	1.70 3	0.0050 O	mg/L
	Methyl tert-Butyl Ether	8260B	0.00050	ND	<0.00050	<0.00050	NA	<0.00050	0.02 3	0.0050 D	mg/L
	Toluene	8260B	0.00050	0.001	<0.00050	<0.00050	NA	<0.00050	21 (3)	0.040 D	mg/L
	Ethylbenzene	8260B	0 00050	ND	<0.00050	<0.00050	NA	<0.00050	0.14 3	0.030 D	mg/L
	m,p-Xylenes	8260B	0 00050	ND	<0.00050	<0.00050	NA	<0 00050	10.0 3	0.020 D	mg/L
	o-Xylene	8260B	0.00050	ND	<0 00050	<0.00050	NA	<0 00050	100 30	0 020 D	mg/L
	1,2-Dichloroethane (1,2-DCA)	8260B	0 00050	ND	<0 00050	<0.00050	NA	<0.00050	0.005 Ø	0.00012 D	mg/L
PAHs	Naphthalene	8270C SIM	0 000020	ND	<0.000020	<0.000020	NA	0.000085	0.24	0.0062 D	mg/L
	2-Methylnaphthalene	8270C SIM	0 000020	ND	<0.000020	<0.000020	NA	<0.000020	NE	0.010 D	mg/L
	Acenaphthylene	8270C SIM	0 000020	ND	<0.000020	<0.000020	NA	<0 000020	NE	0.240 O	mg/L
	Acenaphthene	8270C SIM	0 000020	ND	<0 000020	<0.000020	NA	<0 000020	0.32	0 020 O	mg/L
	Dıbenzofuran	8270C SIM	0 000020	ND	<0 000020	<0.000020	NA	<0.000020	NE	NE	mg/L
	Fluorene	8270C SIM	0 000020	ND	<0 000020	<0.000020	NA	<0.000020	NE	0 240 O	mg/L
	Phenanthrene	8270C SIM	0 000020	ND	<0.000020	<0.000020	NA	<0.000020	NE	0.0077 D	mg/L
	Anthracene	8270C SIM	0 000020	ND	<0.000020	<0.000020	NA	<0.000020	NE	NE	mg/L
	Fluoranthene	8270C SIM	0 000020	ND	<0.000020	<0.000020	NA	<0.000020	0.01	0 040 D	mg/L
	Pyrene	8270C SIM	0 000020	ND	<0 000020	<0.000020	NA	<0.000020	NE	0 002 0	mg/L
	Benz(a)anthracene	8270C SIM	0 000020	ND	<0.000020	<0 000020	NA	<0.000020	NE	0.000027 ①	mg/L
	Chrysene	8270C SIM	0 000020	ND	<0.000020	<0.000020	NA	<0 000020	NE	0.00035 O	mg/L

TABLE 1Summary of Groundwater Sample ResultsStilling BasinRed Hill Fuel Storage FacilityRed Hill, Oahu, Hawaii

			Pumps Offline	Pumpa	Offline	Deletius	Pumps Offline			
	SAM	PLE IDENTIFICATION	RH-8-001	RH-B-004	RH-B-005	Relative Percent	RH-B-007			
		SAMPLE TYPE	Pnmary	Primary	Duplicate	Difference (RPD)	Primary			
		DATE COLLECTED	02/16/2005	06/28/2005	06/28/2005	(((1)))	09/08/2005	HDOH Tier 1	E	
ANALYSIS	EPA METHOD	MRL	ala a ta ta ta	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		ENFR WEREN		Groundwater Action Levels	Environmental Action	UNITS
Benzo(b)fluoranthene	8270C SIM	0 000020	ND	<0.000020	<0 000020	NA	<0.000020	NE	0.000092 D	mg/L
Benzo(k)fluoranthene	8270C SIM	0.000020	ND	<0.000020	<0.000020	NA	<0 000020	NE	0.00040 D	mg/L
Benzo(a)pyrene	8270C SIM	0 000020	ND	<0.000020	<0 000020	NA	<0 000020	0 0002	0.000014 D	mg/L
Indeno(1,2,3-cd)pyrene	8270C SIM	0 000020	ND	<0.000020	<0.000020	NA	<0 000020	NE	0.000092 D	mg/L
Dibenz(a,h)anthracene	8270C SIM	0 000020	ND	<0.000020	<0 000026 ı	NA	<0.000020	NE	0.0000092 D	mg/L
Benzo(g,h,i)perylene	8270C SIM	0.000024	ND	<0.000024 1	<0 000020	NA	<0.000020	NE	0.0001 D	mg/L

в

Bold

VOCs

NE

ND

Stilling Basin

none established

volatile organic carbons

value is greater than regulatory action level

not detected at or above laboratory MRL

Acronyms and Abbreviations

EPA	United States Environmental Protection Agency

RH Red Hill Fuel Station Facility

PAHs polynuclear aromatic hydrocarbons

mg/L milligrams per liter

MRL method reporting limit

< less than

J the result is an estimated concentration that is less than the MRL but greater than or equal to the MDL

Z the chromatographic fingerprint does not resemble a petroleum product

the MRL/MDL has been elevated due to a chromatographic interference

RPD relative percent difference between primary and duplicate sample results

RPD = Absolute value (primary - duplicate) / average (primary duplicate)

Notes

U	State of Hawaii Department of Health, 200!	Screening for Environmental Concerns At Sites with Contaminated Soil and Groundwater Vi	olume 1, May 2005
U U	State or nawaii Department or nearth, 200	Screening for Environmental Concerns At Sites with Containinated Soli and Groundwater Ar	CIUITIE 1, May

2 State of Hawaii, Department of Health, 2002 Hawaii Administrative Rules Chapter 11, Title 20 Potable Water Drinking Water Standards

State of Hawaii Department of Health, 2000 Hawaii Underground Storage Tank (UST) Technical Guidance Manual March 2000.

④ Lead samples were filtered in the field

Dawson Group, Inc.

				Pumps	a Online		Pumps Online			
	•	8A1	PLE IDENTIFICATION	RH-8-002	RH-B-003	Relative Percent	RH-8-006			
			SAMPLE TYPE	Pnmary	Duplicate	Difference (RPD)	Primary	1		
			DATE COLLECTED	02/16/2005	02/16/2005	(RFO)	06/28/2005	HDOH Tier 1 Groundwater Action	Environmental Action	
	ANALYSIS	EPA METHOD	EPA METHOD MRL			深 秦莽		Levels	Levels	UNITS
Metals	Total Lead	6020	0.000050	0 00006	0.00005	18% -	0.000129	0.0056	0.015 QQ	mg/L.
Hydrocarbons [.]	TPH as Diesel	8015M	0 052	ND [0 053]	ND	NA	0.058 Z	NE	0.100 D	mg/L
	TPH as Residual Range	8015M	0 100	ND ^[011]	ND	NA	NA	NE	0 100 D	mg/L
	TPH as Gasoline	8015M	0 050	ND	ND	NA	<0 050	NE	0.100 D	mg/L
EDB.	1;2-Dibromoethane (EDB)	504.1	0.0000095	ND 10 00000811	ND [0 000082]	NA	<0.000095	NE	0.00012 Ø	mg/L
VOCs'	Benzene	8260B	0 00050	ND	ND	NA	<0.00050	1.70 3	0 0050 D	mg/L
	Methyl tert-Butyl Ether	8260B	0 00050	ND	ND	NA	<0.00050	0 02 3	0.0050 O	mg/L
	Toluene	8260B	0.00050	0 0012	0 00081	39%	<0.00050	2.1 3	0 040 D	mg/L
	Ethylbenzene	8260B	0.00050	ND	ND	NA	<0.00050	014 3	0.030 D	mg/L
	m,p-Xylenes	8260B	0 00050	ND	ND	NA	<0.00050	10.0 3	0.020 D	mg/L
	o-Xylene	8260B	0 00050	ND	ND	NA	<0.00050	100 3	0.020 D	mg/L
	1,2-Dichloroethane (1,2-DCA)	8260B	0 00050	ND	ND	NA	<0.00050	0 005 Ø	0 00012 O	mg/L
PAHs.	Naphthalene	8270C SIM	0 000020	ND	ND	NA	<0.000021	0.24	0.0062 O	mg/L
	2-Methylnaphthalene	8270C SIM	0 000020	ND	ND	NA	<0,000021	NE	0 010 D	mg/L
	Acenaphthylene	8270C SIM	0.000020	ND	ND	NA	<0.000021	NE	0.240 O	mg/L
	Acenaphthene	8270C SIM	0 000020	ND	ND	NA	<0 000021	0.32	0.020 ①	mg/L
	Dibenzofuran	8270C SIM	0.000020	ND	ND	NA	<0.000021	NE	NE	mg/L
	Fluorene	8270C SIM	0 000020	ND	ND	NA	<0 000021	NE	0.240 ①	mg/L
	Phenanthrene	8270C SIM	0 000020	ND	ND	NA	<0.000021	NE	0 0077 ①	mg/L
	Anthracene	8270C SIM	0 000020	ND	ND	NA	<0 000021	NE	NE	mg/L
	Fluoranthene	8270C SIM	0 000020	ND	ND	NA	<0.000021	0 01	0.040 O	mg/L
	Pyrene	8270C SIM	0 000020	ND	ND	NA	<0 000021	NE	0.002 O	mg/L
	Benz(a)anthracene	8270C SIM	0 000020	ND	ND	NA	<0.000021	NE	0 000027 D	mg/L
	Chrysene	8270C SIM	0 000020	ND	, ND	NA	<0.000021	NE	0.00035 D	mg/L

31 14

.

•			Pumpe	Online	Relative	Pumpe Online			
	SAMP	LE IDENTIFICATION	RH-B-002	RH-8-003	Percent	RH-8-006	1		
		SAMPLE TYPE	Primary	Duplicate	Difference (RPD)	Pnmary			
			02/16/2005	02/18/2005		06/28/2005	HDOH Tier 1		
ANALYSIS	EPA METHOD	MRL	Hard Hard Contraction of the Con	Mikováni – Ali		1. An	Groundwater Action Levels	Environmental Action Levels	UNITS
Benzo(b)fluoranthene	8270C SIM	0.000020	ND	ND	NA	<0.000021	NE	0.000092 D	mg/L
Benzo(k)fluoranthene	8270C SIM	0 000020	ND	ND	NA	<0.000021	NE	0.00040 D	mg/L
Benzo(a)pyrene	8270C SIM	0 000020	ND	ND	NA	<0 000021	0.0002	0 000014 O	mg/L
Indeno(1,2,3-cd)pyrene	8270C SIM	0 000020	ND	ND	NA	<0.000021	NE	0 000092 D	mg/L
Dibenz(a,h)anthracene	8270C SIM	0 000020	ND	ND	NA	<0.000021	NE	0.0000092 D	mg/L
Benzo(g,h,i)perylene	8270C SIM	0 000024	ND	ND	NA	<0 000021	NE	0 0001 D	mg/L

в

Bold

VQCs

NE

ND

Stilling Basin

none established

volatile organic carbons

value is greater than regulatory action level

not detected at or above laboratory MRL

Acronyms and Abbreviations

EPA United States Environmental Protection Agency

лÌ.

- Red Hill Fuel Station Facility RH
- polynuclear aromatic hydrocarbons PAHs
- mg/L milligrams per liter
- MRL method reporting limit
- < less than
- the result is an estimated concentration that is less than the MRL but greater than or equal to the MDL
- Z the chromatographic fingerprint does not resemble a petroleum product
- the MRL/MDL has been elevated due to a chromatographic interference
- RPD relative percent difference between primary and duplicate sample results
 - RPD = Absolute value (primary duplicate) / average (primary duplicate)

Notes

Т

- 9009 State of Hawaii Department of Health, 2005 Screening for Environmental Concerns At Sites with Contaminated Soil and Groundwater. Volume 1, May 2005
- State of Hawaii, Department of Health, 2002 Hawaii Administrative Rules Chapter 11, Title 20 Potable Water Drinking Water Standards,
- State of Hawaii Department of Health, 2000 Hawaii Underground Storage Tank (UST) Technical Guidance Manual March 2000

Lead samples were filtered in the field

Page 4 of 6

Dawson Group, Inc.

.

e

.

i.

				Pumps	Online				
		SAN	APLE IDENTIFICATION	RH-8-008	RH-B-009	Relative Percent			
			SAMPLE TYPE	Pamery	Duplicate	Difference (RPD)			
			DATE COLLECTED	09/08/2005	09/08/2005	(((+))	HDOH Tier 1 Groundwater Action	Environmental Action	
<u> </u>	ANALYSIS	EPA METHOD	MRL		جون		Lovels	Lovois	UNITS
Metals.	Total Lead	6020	0 000050	0.00003 ④	0.00027 (160%	0.0056	0015 QQ	mg/L
Hydrocarbons.	TPH as Diesel	8015M	0 052	<0.050	<0.050	NA	NE	0.100 D	mg/L
	TPH as Residual Range	8015M	0 100	<0 100	<0.100	NA	NE	0 100 OD	mg/L
	TPH as Gasoline	8015M	0 050	<0.050	<0.050	NA	NE	0.100 D	mg/L
EDB	1,2-Dibromoethanc (EDB)	504.1	0.0000095	<0 0000095	<0.0000095	NA	NE	0.00012 Ø	mg/L
VOCs.	Benzene	8260B	0.00050	<0 00050	<0 00050	NA	1.70 ()	0.0050 D	mg/L
	Methyl tert-Butyl Ether	8260B	0.00050	<0.00050	<0.00050	NA	0 02 3	0 0050 Q	mg/L
	Toluene	8260B	0.00050	<0.00050	<0 00050	NA	2.1 3	0.040 D	mg/L
	Ethylbenzene	8260B	0 00050	<0.00050	<0 00050	NA	0.14 3	0.030 D	mg/L
	m,p-Xylenes	8260B	0.00050	<0.00050	<0.00050	NA	100 ()	0.020 D	mg/L
	o-Xylene	8260B	0 00050	<0.00050	<0.00050	NA	10.0 3	0.020 D	mg/L
	1,2-Dichloroethane (1,2-DCA)	8260B	0.00050	<0.00050	<0.00050	NA	0.005 🖉	0.00012 O	mg/L
PAHs:	Naphthalene	8270C SIM	0 000020	<0.000020	0.000045	NA	0.24	0.0062 D	mg/L
	2-Methylnaphthalene	8270C SIM	0 000020	<0 000020	<0 000020	NA	NE	0.010 D	mg/L
	Acenaphthylene	8270C SIM	0 000020	<0.000020	<0 000020	NA	NE	0.240 O	mg/L
	Acenaphthene	8270C SIM	0.000020	<0.000020	<0.000020	NA	0 32	0 020 D	mg/L
	Dibenzofuran	8270C SIM	0.000020	<0.000020	<0 000020	NA	NE	NE	mg/l
	Fluorene	8270C SIM	0 000020	<0.000020	<0.000020	NA	NE	0.240 D	mg/l
	Phenanthrene	8270C SIM	0.000020	<0 000020	<0.000020	NA	NE	0.0077 D	mg/l
	Anthracene	8270C SIM	0 000020	<0.000020	<0.000020	NA	NE	NE	mg/l
	Fluoranthene	8270C SIM	0 000020	<0.000020	<0.000020	NA	0 0 1	0 040 D	mg/l
	Pyrene	8270C SIM	0 000020	<0.000020	<0.000020	NA	NE	0.002 O	mg/l
	Benz(a)anthracene	8270C SIM	0 000020	<0 000020	<0.000020	NA	NE	0.000027 ①	mg/l
	Chrysene	8270C SIM	0 000020	<0.000020	<0.000020	NA	NE	0.00035 O	mg/I

			Pumps	Online	D-1-11-1				
	8A1	IPLE IDENTIFICATION	RH-8-008	RH-B-009	- Relative Percent				
	SAMPLE TYPE DATE COLLECTED				Difference				
					- (RPD)	HDOH Tier 1			
ANALYSIS	ANALYSIS EPA METHOD MRL					Groundwater Action Levels	Environmental Action Levels	UNITS	
Benzo(b)fluoranthene	8270C SIM	0 000020	<0 000020	<0.000020	NA	NE	0.000092 ①	mg/L	
Benzo(k)fluoranthene	8270C SIM	0 000020	<0 000020	<0.000020	NA	NE	0 00040 O	mg/L	
Benzo(a)pyrene	8270C SIM	0 000020	<0.000020	<0.000020	NA	0.0002	0 000014 D	mg/L	
Indeno(1,2,3-cd)pyrene	8270C SIM	0.000020	<0 000020	<0 000020	NA	NE	0.000092 D	mg/L	
Dibenz(a,h)anthracene	8270C SIM	0 000020	<0.000020	<0.000020	NA	NE	0 0000092 D	mg/L	
Benzo(g,h,i)perylene	8270C SIM	0 000024	<0 000020	<0.000020	NA	NE	0.0001 D	mg/L	

Acronyms and Abbreviations

EPA	United States	Environmental	Protection Agency
-----	---------------	---------------	--------------------------

RH Red Hill Fuel Station Facility

PAHs polynuclear aromatic hydrocarbons

mg/L milligrams per liter

MRL method reporting limit <

less than

J the result is an estimated concentration that is less than the MRL but greater than or equal to the MDL

z the chromatographic fingerprint does not resemble a petroleum product

the MRL/MDL has been elevated due to a chromatographic interference н RPD

relative percent difference between primary and duplicate sample results

RPD = Absolute value (primary - duplicate) / average (primary duplicate)

Notes

0 State of Hawaii Department of Health, 2005 Screening for Environmental Concerns At Sites with Contaminated Soil and Groundwater Volume 1, May 2005

© 3 State of Hawaii, Department of Health, 2002 Hawaii Administrative Rules Chapter 11, Title 20 Potable Water Drinking Water Standards

State of Hawaii Department of Health, 2000 Hawaii Underground Storage Tank (UST) Technical Guidance Manual March 2000

ē Lead samples were filtered in the field.

Page 6 of 6

				MW	-1VD		MW	-1VD				
		SAMPLE	IDENTIFICATION	RH-W-001 ③	RH-W-002	Relative Percent	RH-W-003	RH-W-004	Relative Percent			
			SAMPLE TYPE	Primary	Duplicate	Difference (RPD)	Рппалу	Duplicate	Difference (RPD)			
		ι Ο /	ATE COLLECTED	02/17/2005	02/17/2005	((()))	06/28/2005	06/28/2005	(10-0)	HDOH Tier 1 Groundwater	Environmental Action	,
	ANALYSIS	EPA METHOD	MRL			5 x % \	4 - 45 - 7 -	×		Action Levels	Levels	UNITS
Metals:	Total Lead	6020	0.000050	0.0102	0.0119	15%	0.006700	0.006980	4%	0 0056	0.015 00	mg/L
Hydrocarbons:	TPH as Diesel	8015M	0 052	1.4 ^Y	1.5	7%	1 300 Z	1.100 Z	17%	NE	0.100 O	mg/L
ľ	TPH as Residual Range	8015M	0.100	0.77 ⁰	0.89	14%	ND	NA	NA	NE	0.100 O	mg/L
	TPH as Gasoline	8015M	0 05	ND	ND	NA	<0.050	<0 050	NA	NE	0.100 O	mg/L
EDB:	1,2-Dibromoethane (EDB)	504.1	0 0000095	ND	ND ^[0 0000082]	NA	<0.0000095	<0.0000095	NA	NE	0.00012 🖉	mg/L
BTEX	Benzene	8260B	0 00050	ND	ND	NA	<0.00050	<0 00050	NA	1.70 3	0.0050 O	mg/L
	Methyl tert-Butyl Ether	8260B	0 00050	ND	ND	NA	<0.00050	<0 00050	NA	0.02 3	0.0050 O	mg/L
	Toluene	8260B	0 00050	ND	ND	NA	<0.00050	<0 00050	NA	2.1 3	0 040 O	mg/L
	Ethylbenzene	8260B	0 00050	ND	ND	NA	<0.00050	<0 00050	NA	0.14 3	0.030 O	mg/L
	m,p-Xylenes	8260B	0 00050	ND	ND	NA	<0.00050	<0 00050	NA	10.0 3	0.020 O	mg/L
1	o-Xylene	8260B	0 00050	ND	ND	NA	<0.00050	<0 00050	NA	10.0 3	0.020 O	mg/L
	1,2-Dichloroethane (1,2-DCA)	8260B	0 00050	ND	ND	NA	<0.00050	<0 00050	NA	0.005 Ø	0.00012 ①	mg/L
PAHs	Naphthalene	8270C SIM	0 000020	0 00025	0.00021	17%	0.000073	0 000055	28%	0.24	0 0062 O	mg/L
	2-Methylnaphthalene	8270C SIM	0 000020	0 00014	0.000057	84%	0.000054	0.000051	6%	NE	0.010 D	mg/L
	Acenaphthylene	8270C SIM	0 000020	ND	ND	NA	<0.000020	<0.000020	NA	NÉ	0 240 O	mg/L
	Acenaphthene	8270C SIM	0 000020	0.000052	0.000054	4%	0.000061	0.000061	0%	0 32	0.020 D	mg/L
	Dibenzofuran	8270C SIM	0 000020	0.00013	0.00011	17%	0.00012	0.00012	0%	NE	NE	mg/L
	Fluorene	8270C SIM	0 000020	0.000053	0.000043	21%	0 000041	0.000039	5%	NE	0.240 O	mg/L
	Phenanthrene	8270C SIM	0 000020	0.00012	0.000082	38%	0.00014	0.00010	33%	NE	0.0077 O	mg/L
	Anthracene	8270C SIM	0.000020	ND	ND	NA	<0.000020	<0.000020	NA	NE	NE	mg/L
	Fluoranthene	8270C SIM	0.000020	0.000035	0.000021	50%	0.000093	0.000064	37%	0.01	0.040 D	mg/L
	Pyrene	8270C SIM	0 000020	0.000056	0.000029	64%	0.00011	0.000072	42%	 NE	0.002 D	mg/L
	Benz(a)anthracene	8270C SIM	0 000020	ND	ND	NA	0.000047	0.000033	35%	NE	0.000027 D	mg/L
	Chrysene	8270C SIM	0 000020	0.00002	ND	NA	0.000062	0.000044	34%	NE	0.00035 D	mg/L

t,

			MW	1-1VD	Relative	MW-1VD		Relative			
	SAMPLE	DENTIFICATION	RH-W-001 3	RH-W-002	Percent	RH-W-003	RH-W-004	Percent		1	
		SAMPLE TYPE	Primary Duplicate D		Difference Pnmary (RPD)		Duplicate Differenc				ĺ
	DATE COLLECTED			02/17/2005	(KPD)	06/28/2005	06/28/2005	(RPD)	HDOH Tier 1		
ANALYSIS	ANALYSIS EPA METHOD MRL			190 E A		NE CALL		21.	Groundwater Action Levels	Environmental Action Levels	UNITS
Benzo(b)fluoranthene	8270C SIM	0 000020	0.000025	ND	NA	0.00004	0.000028	35%	NE	0.000092 ①	mg/L
Benzo(k)fluoranthene	8270C SIM	0 000020	ND	ND	NA	0.000051	0.000035	37%	NÉ	0.00040 D	mg/L
Benzo(a)pyrene	8270C SIM	0 000020	0.000022	ND	NA	0.000045	0.000031	37%	0.0002	0 000014 D	mg/L
Indeno(1,2,3-cd)pyrene	8270C SIM	0 000020	ND	ND	NA	0.000037	0.000024	43%	NÉ	0 000092 D	mg/L
Dibenz(a,h)anthracene	8270C SIM	0 000020	ND	ND	NA	<0 000020	<0 000020	NA	NE	0.0000092 D	mg/L
Benzo(g,h,i)perylene	8270C SIM	0 000020	ND	ND	NA	0.000034	0 000022	43%	NE	0.0001 O	mg/L

Acronyms and Abbreviations

EPA	United States Environmental Protection Agency	Bold	value is greater than regulatory action level
RH	Red Hill Fuel Station Facility	NE	none established
PAHs	polynuclear aromatic hydrocarbons	VOCs	volatile organic carbons
mg/L	milligrams per liter	ND	not detected at or above the laboratory MRL
MRL	method reporting limit		
в	Stilling Basin at PWC Potable Water Facility		
<	less than		
Z	the chromatographic fingerprint does not resemble a petroleum product.		
Y	The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correc		
	carbon range, but the elution pattern does not match the calibration standard		
Ó	The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard		
RPD	relative percent difference between primary and duplicate sample results		
	RPD = Absolute value (primary - duplicate) / average (primary duplicate		

Notes

- State of Hawaii Department of Health, 2005 Screening for Environmental Concerns At Sites with Contaminated Soil and Groundwater Volume 1, May 2005
- 0000 State of Hawaii, Department of Health, 2002 Hawaii Administrative Rules Chapter 11, Title 20 Potable Water Dinking Water Standards

State of Hawaii Department of Health, 2000. Hawaii Underground Storage Tank (UST) Technical Guidance Manual March 2000

Lead samples were filtered in the field

1

Page 2 of 4

Dawson Group, Inc.

				MW-	1VD	Relative			
		SAMPLE	IDENTIFICATION	RH-W-005	RH-W-006	Percent			1
			SAMPLE TYPE	Pnmary	Duplicate	Difference (RPD)			
		D/	TE COLLECTED	09/08/2005	09/08/2005	(((''''))	HDOH Tier 1 Groundwater	Environmental Action	
	ANALYSIS	EPA METHOD	MRL		s, set is t		Action Levels	Levels	UNITS
Metals:	Total Lead	6020	0.000050	0.00021 ④	0.000050 ④	123%	0.0056	0.015 02	mg/L
Hydrocarbons:	TPH as Diesel	8015M	0 052	0.950 Y	1.100 Y	15%	NE	0.100 D	mg/L
	TPH as Residual Range	8015M	0 1 00	0.540 O	0.720 O	25%	NE	0 100 D	mg/L
	TPH as Gasoline	8015M	0 05	<0.050	<0 050	NA	NE	0.100 O	mg/L
EDB [.]	1,2-Dibromoethane (EDB)	504.1	0 0000095	<0.0000096	<0.000094	NA	NE	0.00012 2	mg/L
BTEX [.]	Benzene	8260B	0.00050	<0.00050	<0.00050	NA	1.70 3	0.0050 ①	mg/L
	Methyl tert-Butyl Ether	8260B	0 00050	<0.00050	<0 00050	NA	0.02 3	0 0050 O	mg/L
	Toluene	8260B	0 00050	0.00015 J	0 00015 J	0%	21 3	0.040 0	mg/L
	Ethylbenzene	8260B	0 00050	<0.00050	<0.00050	NA	0.14 3	0.030 D	mg/L
	m,p-Xylenes	8260B	0.00050	<0.00050	<0.00050	NA	10.0 Ø	0.020 D	mg/L
	o-Xylene	8260B	0 00050	<0.00050	<0.00050	NA	10.0 3	0.020 D	mg/L
	1,2-Dichloroethane (1,2-DCA) 8260B	0.00050	<0.00050	<0.00050	NA	0.005 Ø	_0.00012 ①	mg/L
PAHs:	Naphthalene	8270C SIM	0 000020	0.00083	0 00078	6%	0.24	0 0062 O	mg/L
	2-Methylnaphthalene	8270C SIM	0.000020	0.000038	0.000038	0%	NE	0.010 O	mg/L
	Acenaphthylene	8270C SIM	0.000020	<0.000020	<0 000020	NA	NE	0.240 O	mg/L
	Acenaphthene	8270C SIM	0 000020	0.000054	0.000056	4%	0 32	0.020 D	mg/L
	Dibenzofuran	8270C SIM	0 000020	0.00013	0 00013	0%	NE	NE	mg/L
	Fluorene	8270C SIM	0 000020	0.000064	0.000064	0%	NE	0.240 ①	mg/L
	Phenanthrene	8270C SIM	0 000020	0.00011	0.00012	9%	NE	0 0077 O	mg/L
	Anthracene	8270C SIM	0 000020	<0.000020	<0 000020	NA	NE	NE	mg/L
	Fluoranthene	8270C SIM	0 000020	0.000025	0.000049	65%	0.01	0.040 ①	mg/L
	Pyrene	8270C SIM	0 000020	0.000030	0.000058	64%	NE	0.002 ①	mg/L
	Benz(a)anthracene	8270C SIM	0.000020	<0.000020	0.000025	NA	NE	0.000027 O	mg/L
	Chrysene	8270C SIM	0 000020	0.000022	0.000036	48%	NE	0 00035 D	mg/L

			MW-	1VD	Relative			
	SAMPLE	DENTIFICATION	RH-W-005	RH-W-006	Percent		1	
 		SAMPLE TYPE	Pnmary	Duplicate	Difference			
	DA	TE COLLECTED	09/08/2005	09/08/2005	(RPD)	HDOH Tier 1		
ANALYSIS	EPA METHOD	MRL				Groundwater Action Levels	Environmental Action	UNITS
Benzo(b)fluoranthene	8270C SIM	0 000020	<0.000020	<0 000020	NA	NE	0.000092 D	mg/L
Benzo(k)fluoranthene	8270C SIM	0 000020	<0.000020	<0.000020	NA	NE	0.00040 D	mg/L
Benzo(a)pyrene	8270C SIM	0 000020	<0.000020	<0.000020	NA	0.0002	0.000014 ①	mg/L
Indeno(1,2,3-cd)pyrene	8270C SIM	0 000020	<0.000020	<0.000020	NA	NE	0.000092 ①	mg/L
Dibenz(a,h)anthracene	8270C SIM	0 000020	<0.000020	<0.000020	NA	NE	0.0000092 ①	mg/L
Benzo(g,h,1)perylene	8270C SIM	0.000020	<0.000020	<0.000020	NA	NE	0.0001 O	mg/L

Acronyms and Abbreviations

recongine e	
EPA	United States Environmental Protection Agency
RH	Red Hill Fuel Station Facility
PAHs	polynuclear aromatic hydrocarbons
mg/L	milligrams per liter
MRL	method reporting limit
в	Stilling Basin at PWC Potable Water Facility
<	less than
Z	the chromatographic fingerprint does not resemble a petroleum product
¥	The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correc
	carbon range, but the elution pattern does not match the calibration standard
o	The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard
RPD	relative percent difference between primary and duplicate sample results
	RPD = Absolute value (primary - duplicate) / average (primary duplicate)

Notes

- 0 State of Hawaii Department of Health, 2005 Screening for Environmental Concerns At Sites with Contaminated Soil and Groundwater Volume 1, May 2005
- 0 State of Hawaii, Department of Health, 2002 Hawaii Administrative Rules Chapter 11, Title 20 Potable Water Drinking Water Standards

0 C State of Hawaii Department of Health, 2000 Hawaii Underground Storage Tank (UST) Technical Guidance Manual March 2000

Lead samples were filtered in the field

[2001022.013 Red Hill]

Page 4 of 4

TABLE 3 Summary of Trip Blank Results Stilling Basin Red Hill Fuel Storage Facility Red Hill, Oahu, Hawaii

	ة اع دا		IPLE IDENTIFICATION SAMPLE TYPE DATE COLLECTED	02/17/2005	Trip Blank *	Trip Blank Trip Blank 09/08/2005	HDOH Tier 1 Groundwater Action Levels	Environmental Action Levela	
	ANALYSIS	EPA METHOD	MRL						UNITS
Hydrocarbons.	TPH as Gasoline	8015M	0 05	NA	<0.050	NA	NE	0.100 O	mg/L
BTEX:	Benzene	8260B	0 00050	ND	<0.00050	<0.00050	1.70 Û	0.0050 O	mg/L
	Methyl tert-Butyl Ether	8260B	0 00050	ND	<0 00050	<0.00050	0.02 O	0.0050 D	mg/L
	Toluene	8260B	0 00050	0.0014	0.00054	<0.00050	2.1 O	0.040 D	mg/L
	Ethylbenzene	8260B	0.00050	ND	<0 00050	<0.00050	0.14 O	0 030 O	mg/L
	m,p-Xylenes	8260B	0.00050	ND	<0.00050	<0.00050	10.0 O	0.020 D	mg/L
	o-Xylene	8260B	0 00050	ND	<0.00050	<0.00050	10.0 O	0.020 D	mg/L
	1,2-Dichloroethane (DCA)	8260B	0 00050	ND	<0.00050	<0.00050	0.005 ②	0.005 ②	mg/L

not detected at or above the laboratory MRL

ND

Acronyms and Abbreviations

EPA United States Environmental Protection Agency PAHs polynuclear aromatic hydrocarbons

2

1

i,

 $T_{\rm c}$ ł

mg/L milligrams per liter MRL method reporting limit

less than <

Bold value is greater than regulatory action level

NE none established

VOCs volatile organic compounds

Notes

0 State of Hawaii Department of Health, 2005 Screening for Environmental Concerns At Sites with Contaminated Soil and Groundwater Volume 1, May 2005

0 State of Hawaii, Department of Health, 2002 Hawaii Administrative Rules Chapter 11, Title 20 Potable Water Dinking Water Standards

.

APPENDIX A

Non-Hazardous Waste Manifest

.

.

This page intentionally left blank.

5.,

- -

- ..

NON-HAZARDOUS	1. Generator's U	S EPA ID No.	Manifest Document No.	2. Pc	sge 1							
WASTE MANIFEST		0. 0. 5. 0. 4. 0.	<u>1 ·05R07 ·</u>	01			1576-01					
		HAWAII, CODI		ONAL	ENV. D	BPT.						
850 TICONDEROGA STREET, S PEARL HARBOR, HI 96860-5		ATTN: AMANUA	A MANUI									
4. Generator's Phone ()808-473-41												
5. Transporter 1 Company Name	Transporter 1 Company Name 6. US EPA ID Number											
PACIFIC COMMERCIAL SERVIC	CES, LLC.	HIROOO	0 9 7 8 2	4			08-545-459	9				
7. Transporter 2 Company Name		8. US EPA ID			unsporter's l		15 057 177					
MATSON NAVIGATION COMPANY 9. Designated facility Name and Site Address		<u>GADOG</u> 10. USEPAID			cility's Phon		<u>15-957-477</u>					
 Designated Facility Name and Site Address CLEAN HARBORS ARAGONITE, 11600 NORTH APTUS ROAD 	LLC											
ARAGONITE, UT 84029	7			01-323-810								
11. Waste Shipping Name and Description					12. Con No.		13. Total	14. Unit Wt/Va				
A MATERIAL NOT REGULATED BY	DOT		··_			1.700	Quantity	<u> / vo</u>				
(MONITORING WELL WATER)					_							
					001	DM	. 00050	P				
а ь.							1					
a b.												
c.		<u> </u>						1				
		0										
	&				_ _ · · ·	<u> </u>						
d.						[
D. Additional Descriptions for Materials Listed Abov	re	5		E. Ho	andling Cod	as for W	astes Listed Abov	•				
11A NR CH12/804		1X39G					1					
11C *						0-	+					
11D *		<u> </u>	510+228				1					
15. Special Handling, Instructions and Additional Inf	ormation				SEND	COPY	TO:					
24 HR EMBRGENCY RESPONSE	# :	ER	3#	PCS LLC								
1-800-645-8265		•					235117 HI 96823					
JOB#	1576				HONOD	, 0410	ni 70023					
	**											
				9								
16. GENERATOR'S CERTIFICATION: I certify the mo	remain described abo	Sigeatule	of subject to tederal r	aguila pins	tor reporting	proper o	Alaoth Day	s Wosle, Year				
Smanna L. Ma	noi	1 Stra	na N	UN4	mn		0911	106				
17. Transporter 1 Acknowledgement of Receipt of Ma	aterials							\sim				
Printed/Typed Name JINGBO CHANG		Signature	5 K	1	K ·		Month Day	Year				
18. Transporter 2 Acknowledgement of Réceipt of Ma							107100	05				
Brinted /Thead Marrie 1		Signature					Menth Day	Year				
gail Unonse	<u></u>		Du	\sim			- 1092	725				
19. Discrepancy indication Space							/					
20. Facility Owner or Operator: Certification of receip	pt of waste materi	ials covered by this ma	nifest except as not	ed in Ite	m 19.			·				
	pt of waste materi		nifest except as not	ed in Iter	m 19.							
20. Facility Owner or Operator: Certification of receip Printed/Typed Name TRAVIS L. GMJTH		ials covered by this ma	nifest except as not	ed in Iter	m 19.		Mgath Day	Yacı Vacı				

the second second S. Hant & Stand

(1,1)

A Strategy and the second secon

シンチュー ジャー・シン Station of the

مان بر میرد کار ^{بر} میروند از میروند از میروند از میروند از میروند. مراجع

and the second 4

APPENDIX B

Laboratory Reports and Chain-of-Custody Records for Primary and QC Groundwater and Stilling Basin Samples

٦

.

This page intentionally left blank.

aunaunauna utaur uu≂s uusausu

.

.

October 14, 2005

Service Request No: K0503851

Heather Kerr Dawson Group, Incorporated 3375 Koapaka Street, Suite B200 Honolulu, HI 96819

RE: Red Hill GW Sampling Event 3/2001022.013

Dear Heather:

Enclosed are the results of the sample(s) submitted to our laboratory on September 12, 2005. For your reference, these analyses have been assigned our service request number K0503851.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAC standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3260.

Respectfully submitted,

Columbia Analytical Services, Inc.

Harvey Jacky Project Chemist

HJ/jeb

Page 1 of _____

RECEIVED OCT 1 8 2005

Acronyms

•

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
ТРН	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

•

Inorganic Data Qualifiers

- The result is an outlier. See case narrative
- # The control limit criteria is not applicable. See case narrative
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference
- X See case narrative

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- The duplicate analysis not within control limits. See case narrative.
- The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides)
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.

· 000(3

PREASER (1) 1 9 2005

- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard
- Z The chromatographic fingerprint does not resemble a petroleum product.

Case Narrative

| RECEIVED CCT 1 8 2005 - 00004

COLUMBIA ANALYTICAL SERVICES, INC.

Client: Project: Sample Matrix: Dawson Group, Inc. Red Hill GW Sampling Event 3/2001022.013 Water Service Request No.: Date Received: K0503851 9/12/05

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), and Laboratory Control Sample (LCS).

Sample Receipt

Five water samples were received for analysis at Columbia Analytical Services on 9/12/05. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Total Metals

No anomalies associated with the analysis of these samples were observed.

Diesel Range Organics by EPA Method 8015B

No anomalies associated with the analysis of these samples were observed.

Gasoline Range Organics by EPA Method 8015B

No anomalies associated with the analysis of these samples were observed.

EDB by EPA Method 504.1

No anomalies associated with the analysis of these samples were observed.

Volatile Organic Compounds by EPA Method 8260B

No anomalies associated with the analysis of these samples were observed.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C

Sample Notes and Discussion

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

RECEIVED OCT 1 8 2005

H Date 10/17/05

00005

Approved by_____

Chain of Custody Documentation

LEBERSIVED OCT 1 3 2005

: 000(**:6**

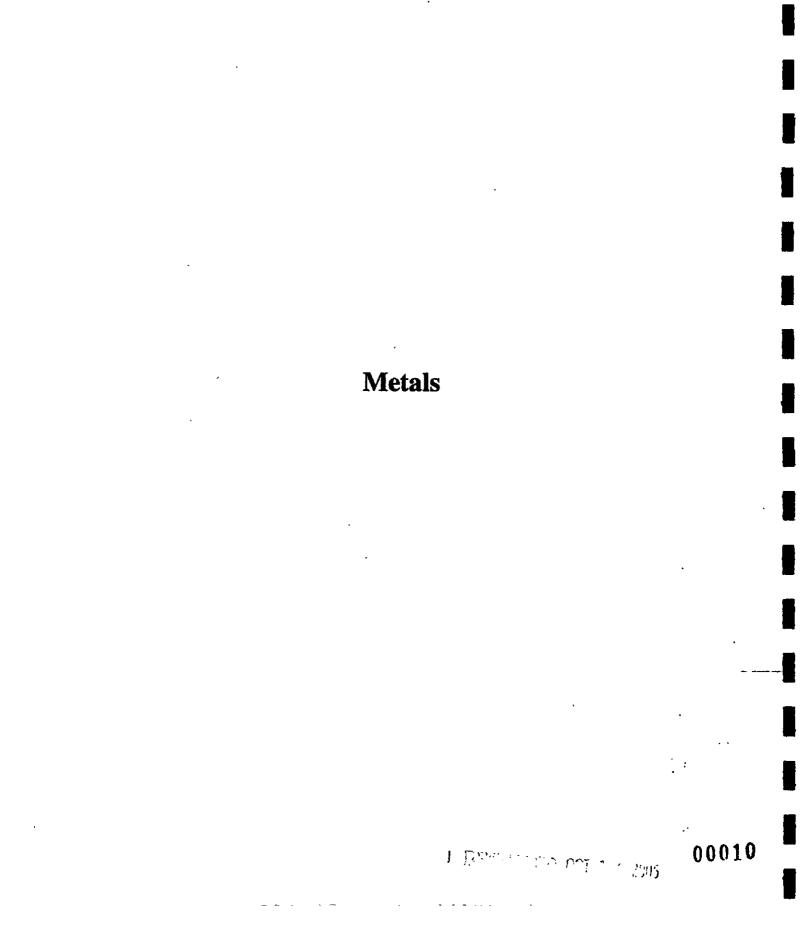
•• •

	OF	1						
			_ COC #_					
PROJECT NAME RED HILL GAAL CANAPLING - EVENIC3	1	1	TT	11/1				
PROJECT NUMBER 2001022.013	v ka		/ -/					
PROJECT MANAGER HEATHER KERP		18	504	//Φ				
OROJECT NUMBER 200102.2.013 PROJECT NUMBER 200102.2.013 PROJECT MANAGER HEATHER_KERP. COMPANY/ADDRESS DAWSON GROUP, INC. 33715 KOAPAKA ST. STE. B200 CITV/STATE/2/P HONOLULM, III 96019 E-MAIL ADDRESS HKERP.@dawson Ba.com PHONES HKERP.@dawson Ba.com PHONES HKERP.@dawson Ba.com	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hethod 5060	45	// 🖗				
COMPANYADDRESS DAWSON GEOUP, INC 33375 KOAPAKA ST. STE. B200 UTVSTATE/2P HONOLULU, III 96019 STYSTATE/2P	"~01 å ∮ ≩1 5	ة / J	5//					
LITVISTATEOP HONOLULU, III 96019		Method		// [
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ž	' / /					
COMPANY/ADDRESS DAWSON GEOUP, INC 3375 KOAPAKA ST. STE. B200 CITVISTATE/ZP HONOLULU, III 96019 EMAIL ADDRESS HKERE@dawson&a.com PHONE* (2002) 536-5500 FAX* (BOD) 536-5500	1 & /	a]		/ 2				
PROJECT MANAGER LOO 102.2.013 PROJECT MANAGER HEATHER. KERR- COMPANY/ADDRESS DAWSON GROUP, INC 3375 KOAPAKA ST. STE. B200 ITV/STATE/2P HONOLULU, III 96019 ITV/STATE/2P HONOLULU, III 96019 INAIL ADDRESS HKERR @dawson 8a.com PHONE* (2002) 536-5500 SAMPLE I.D. DATE TIME LABID.	TOX 9020			4				
SAMPLE I.D. DATE TIME LABI.D. MATRIX 2 / 0 28/2000 8 28/2000 2 28/2000 2 28/2000	21	<u> </u>						
RH-W-005 916/05 0940 Wate 13 XX XX	\mathbb{N}							
PH W-006 9/5/05 0945 Nate 13 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	\mathbb{X}							
RH-B-007 918105 1255 Water 13 XX XX	\bowtie	1		<u> </u>				
RH-B-008 918105 1345 Water 13 XX	\mathbb{X}	1						
PH-B-009 918105 1350 Water 12 XX XX	X	1		NO DRO, ONNOR				
Temp Blank Water I	2			C.L.				
TRIP Blank	F1 5			AR.				
			-					
NO. FURTHER ENTRY CAR		+	FT					
REPORT REQUIREMENTS			.	· · · · · · · · · · · · · · · · · · ·				
REPORT REQUIREMENTS P.O. # 2001022.013.002 I. Routine Report: Method Bill To: DAWSON GROUP, UL Total Metals: AI As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo	Ni K Ag	g Na	Se Sr Tl	Sn V Zn Hg				
Blank, Surrogate, as 3375 KOAPALA ST. BZOD Dissolved Metals AI As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo	NIK A	g Na	Se Sr Ti	Sn V Zn Hg				
required HON.; HI 96019 INDICATE STATE HYDROCARBON PROCEDURE: AK CA WI NORTHWE				RCLE ONE)				
II. Report Dup., MS, MSD as TURNAROUND REQUIREMENTS SPECIAL INSTRUCTIONS/COMMENTS;			<u> </u>					
required24 hr48 hr [1. please email hkerr@dawson8a.com upon sample	. Recu	ept.	•					
		•						
IV CLP Deliverable Report Provide FAX Results 3. Follow with hardcopy of final.								
V. EDD Requested Report Date A. please call with questions. H250	215							
RELINQUISHED BY: RECEIVED BY: RELINQUISHED BY:		₿,E	ECEIVED B	Y: /				
steathaten 1/4/05 0955 from store 9/9/05 0955 from score 9/9/05	dreur	Kai	k	9/12/10-1000				
	gnature	Hu	Dat	er time				
Protect Name and Protect are Protect and Protect Protect and Prote	Na	Ine						

Cooler Receipt and Preservation Form

Cooler Receipt and Preservation Form	
Project/Client DANSON Work Order K05 385	7
Cooler received on $\frac{9}{10}$ $\frac{10}{05}$ and opened on $\frac{9}{10}$ $\frac{65}{5}$ by $\frac{10}{10}$	
1. Were custody seals on outside of coolers? <i>IF</i>	F(6 p
2. Were custody seals intact?	R/ N
3. Were signature and date present on the custody seals?	Ϋ́Ν Ν
4. Is the shipper's airbill available and filed? If no, record airbill number:	' Y A
5. COC#	
Temperature of cooler(s) upon receipt: (°C)	
Temperature Blank: (°C)	
Were samples hand delivered on the same day as collection?	Y N
6. Were custody papers properly filled out (ink, signed, etc.)?	Ω N
7. Type of packing material present <u>BIMPAD</u> , MESH, ILE	- · · ·
8. Did all bottles arrive in good condition (unbroken)?	<i>©</i> N
9. Were all bottle labels complete (i.e analysis, preservation, etc.)?	🕑 N 📕
10. Did all bottle labels and tags agree with custody papers?	Y (N)
11. Were the correct types of bottles used for the tests indicated?	60 N =
12. Were all of the preserved bottles received at the lab with the appropriate pH?	Y N.
13. Were VOA vials checked for absence of air bubbles, and if present, noted below?	Y N
14. Did the bottles originate from CAS/K or a branch laboratory?	Y N
15. Are CWA Microbiology samples received with $>1/2$ the 24hr. hold time remaining from collection?	Y N
16. Was C12/Res negative?	Y N
Explain any discrepancies: DO NOT BELEIVE ALL SAMPLOS, PELEIVED: 5	50 and And 50
FOR -005, -006, -007 . RELEAVED: 500mi RED FUR -005, -006,	-007, -008, -001
RECIEIVED 2, 1 CF AMBER FOR -006, -007 . FULLE VOD 1 LT AMBER 1	FOR - OUS.

.


RESOLUTION:

Samples that required preservation or received out of temperature:

Sample ID	Reagent	Volume	Lot Number	Bottle Type	Rec'd out of Temperature	Înitials	
					·		
						2006	
				RECEIV	ed oct 1 8	ZUU3 0 ())(8)

Cooler Receipt and Preservation Form		
Project/Client DAWAN Work Order K05 385/		
Cooler received on <u>9/12/11</u> and opened on <u>9/12/12</u> by TBlack		
Cooler received on <u>III UN</u> and opened on <u>III UN</u> by <u>III Cooler</u>		
1. Were custody seals on outside of coolers? If yes, how many and where? Iffmut	Ŕ	N
2. Were custody seals intact?	Ø	N
3. Were signature and date present on the custody seals?	\mathbf{Q}	N
4. Is the shipper's airbill available and filed? If no, record airbill number: 8329718 98/20	.Υ	\odot
5. COC#		
Temperature of cooler(s) upon receipt: (°C) <u>3.5</u>	<u> </u>	
Temperature Blank: (°C) <u>2.0</u>		
Were samples hand delivered on the same day as collection?	Y	N
6. Were custody papers properly filled out (ink, signed, etc.)?	\heartsuit	N
7. Type of packing material present lot & ill - msch howay		
8. Did all bottles arrive in good condition (unbroken)?	Ŷ	N
9. Were all bottle labels complete (i.e analysis, preservation, etc.)?	Ð	N
10. Did all bottle labels and tags agree with custody papers?	Ø	N
11. Were the correct types of bottles used for the tests indicated?	Ø	N
12. Were all of the preserved bottles received at the lab with the appropriate pH?	Ð	N
13. Were VOA vials checked for absence of air bubbles, and if present, noted below?	Ð	N
14. Did the bottles originate from CAS/K or a branch laboratory?	Ø	N
15. Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection?	-¥	<u> N </u>
16. Was C12/Res negative?	Ø,	N
Explain any discrepancies:	<u></u>	
RESOLUTION:		
Samples that required preservation or received out of temperature:		

Sample ID	Reagent	Volume	Lot Number	Bottle Type	Rec'd out of Temperature	Initials	
					· · · · · · · · · · · · · · · · · · · ·		
			······································				
			0 - Series				0000
L		L		· RECEIVI	ED OCT 1 8	2005	[]] 00009

- Cover Page -**INORGANIC ANALYSIS DATA PACKAGE**

Dawson Group, Incorporated Client:

Service Request: K0503851

.

Project No.: 2001022.013

Project Name: Red Hill GW Sampling Event 3

Sample No.	Lab Sample ID.
RH-W-005	K0503851-001
RH-W-005D	K0503851-001D
RH-W-0055	K0503851-001s
RH-W-006	K0503851-002
RH-B-007	K0503851-003
RH-B-008	K0503851-004
RH-B-009	K0503851-005
Method Blank	K0503851-MB
ينفننك ويستحدثنا ويوري باعتكان والمستكان والمتكان والمتكال والمتكان والمتكافية والمتكافية والمتكافية والمتكافية	

W	ICP interelement corrections applied?	Yes/No	YES
-		Yes/No	YES
	If yes-were raw data generated before application of background corrections?	Yes/No	NO

Comments:

	· · · · · · · · · · · · · · · · · · ·			······	
<u> </u>	·····				
_					·
		·	<u> </u>		

32 nature: ______ Date: _____ Date: _____ 10/13/05

-1-

INORGANIC ANALYSIS DATA SHEET

Client:	Dawson Group, Incorporated	Service Request:	K0503851
Project No.:	2001022.013	Date Collected:	09/08/05
Project Name:	Red Hill GW Sampling Event 3	Date Received:	09/12/05
Matrix:	WATER	Units:	µG/L
		Basis:	NA

Sample Name: RH-W-005

Lab Code: K0503851-001

- 7

Analyte	Analysis Method	MRL	MDL	Dil.	Date Extracted	Date Analyzed	Result	с	Q
Lead	6020	0.02	0.01	1	9/15/05	10/10/05	0.21		

% Solids: 0.0

Comments:

RECEIVED OCT 1 8 2005

÷= .

۰.

00012

. .

-1-

INORGANIC ANALYSIS DATA SHEET

Client:	Dawson Group, Incorporated	Service Request:	K0503851
Project No.:	2001022.013	Date Collected:	09/08/05
Project Name:	Red Hill GW Sampling Event 3	Date Received:	09/12/05
Matrix:	WATER	Units:	µG/L
-		Basis:	NA

Sample Name: RH-W-006

Lab Code: K0503851-002

Analyte	Analysis Method	MRL	MDL	Dil.	Date Extracted	Date Analyzed	Result	с	Q
Lead	6020	0.02	0.01	1	9/15/05	10/10/05	0.05		

% Solids: 0.0

omments:

RECEIVED COT 1 8 Aug

-1-

INORGANIC ANALYSIS DATA SHEET

		Basis:	NA 🕓
Matrix:	WATER	Units:	µG/L
Project Name	Red Hill GW Sampling Event 3	Date Received:	09/12/05
Project No.:	2001022.013	Date Collected:	09/08/05
Client:	Dawson Group, Incorporated	Service Request:	K0503951

Sample Name: RH-B-007

.

Lab Code: K0503851-003

Analyte	Analysis Method	MRL	MDL	Dil.	Date Extracted	Date Analyzed	Result	с	Q
Lead	6020	0.02	0.01	1	9/15/05	10/10/05	0.05		

With an end of the States

% Solids: 0.0

~, · -- _

-.-

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

•

Client:	Dawson Group, Incorporated	Service Request:	K0503851
Project No.:	2001022.013	Date Collected:	09/08/05
Project Name:	Red Hill GW Sampling Event 3	Date Received:	09/12/05
fatrix:	WATER	Units:	µG/L
		Basis:	NA

Sample Name: RH-B-008

Lab Code: K0503851-004

Analyte	Analysis Method	MRL	MDL	Dil.	Date Extracted	Date Analyzed	Result	с	Q
Lead	6020	0.02	0.01	1	9/15/05	10/10/05	0.03		

% Solids: 0.0
% omments:

en mark of the 2005

-1-

INORGANIC ANALYSIS DATA SHEET

Client:	Dawson Group, Incorporated	Service Request:	K0503851
Project No.:	2001022.013	Date Collected:	09/08/05
Project Name:	Red Hill GW Sampling Event 3	Date Received:	09/12/05
Matrix:	WATER	Units:	µG/L
		Basis:	NA

Sample Name: RH-B-009

Lab Code: K0503851-005

Analyte	Analysis Method	MRL	MDL	Dil.	Date Extracted	Date Analyzed	Result	с	Q
Lead	6020	0.02	0.01	1	9/15/05	10/10/05	0.27		

% Solids: 0.0

Comments:

் **'** 95

-1-

INORGANIC ANALYSIS DATA SHEET

_Client:	Dawson Group, Incorporated	Service Request:	K05038 51
Project No.:	2001022.013	Date Collected:	
Project Name:	Red Hill GW Sampling Event 3	Date Received:	
Matrix:	WATER	Units:	µG/L
		Basis:	NA

Sample Name: Method Blank

Lab Code: K0503851-MB

Analyte	Analysis Method	MRL	MDL	Dil.	Date Extracted	Date Analyzed	Result	с	Q
Lead	6020	0.02	0.01	1	9/15/05	10/10/05	0.01	υ	

RECEIVED OCT 1 8 2005

i.

% Solids: 0.0

omments:

00017

-

METALS - 5a -SPIKE SAMPLE RECOVERY

Client:	Dawson Group, Incorporated	Service Request:	K0503851
Project No.:	2001022.013	Units:	µg/L
Project Name:	Red Hill GW Sampling Event 3	Basis:	NA
Matrix:	WATER	<pre>% Solids:</pre>	0.0

Sample Name: RH-W-005S

Lab Code: K0503851-001S

	Analyte	Control Limit %R	Spike C Result C	Sample Result C	Spike Added	₽R	ð	Method
j	Lead	59 - 127	18.3	0.21	20.0	9 0		6020

RECEIVED CCT 1 8 2005

An empty field in the Control Limit column indicates the control limit is not applicable.

Form V (PART 1) - IN

-00018

METALS -6-DUPLICATES

Client:	Dawson Group, Incorporated	Service Request: K0503851
Project No.:	2001022.013	Units: µg/L
Project Name:	Red Hill GW Sampling Event 3	Basis: NA
Matrix:	WATER	% Solids: 0.0

Sample Name:RH-W-005D

Lab Code: K0503851-001D

	Analyte	Control Limit(%)	Sample (S)	с	Duplicate (D) C	:	RPD	Q	Method
_	Lead	20	0.21		0.20		4		6020

METALS -7-

LABORATORY CONTROL SAMPLE

Client: Dawson Group, Incorporated

Service Request: K0503851

Project No.: 2001022.013

Project Name: Red Hill GW Sampling Event 3

Aqueous LCS Source: Inorganic Ventures

Solid LCS Source:

	Aque	ous ug/L		Solid (mg/kg)					
Analyte	True	Found	8 R	True	Found	с	Limits	₿R	
Lead	20.	0 19.8	99	ľ					

,

Diesel & Residual Range Organics

RECEIVED OCT 1 8 20

Client:	Dawson Group, Incorporated
Project:	Red Hill GW Sampling Event 3/2001022.013
Sample Matrix:	Water

Diesel and Residual Range Organics

Sample Name:	RH-W-005	Units:	-
Lab Code:	K0503851-001	Basis:	
Extraction Method: Analysis Method:	EPA 3510B 8015M	Level:	Low

Analata Noma	Bomilt O	MRL	MDL	Dilution	Date	Date	Extraction	Note
Analyte Name	Result Q	MIRL	INTDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	950 Y	52	20	1	09/14/05	09/18/05	KWG0516001	
Residual Range Organics (RRO)	540 O	110	29	1	09/14/05	09/18/05	KWG0516001	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	•	
o-Terphenyl	106	52-128	09/18/05	Acceptable		•
n-Triacontane	112	50-15 0	09/18/05	Acceptable		_

RECEIVED OCT 1 8 2005

Comments:

Dawson Group, Incorporated
Red Hill GW Sampling Event 3/2001022.013
Water

Diesel and Residual Range Organics

Sample Name:	RH-W-006	Units:	-
Lab Code:	K0503851-002	Basis:	
Extraction Method: Analysis Method:	EPA 3510B 8015M	Level;	Low

Analyte Name	Result	Q	MRL I	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	1100	Y	50 .	19	1	09/14/05	09/18/05	KWG0516001	
Residual Range Organics (RRO)	720	0	100	28	1	09/14/05	09/18/05	KWG0516001	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
-Terphenyl	104	52-128	09/18/05	Acceptable	
n-Triacontane	112	50-150	09/18/05	Acceptable	

RELEATED (C) 1 C LUIS

omments:

Printed: 09/20/2005 14:11:45 Sicalth/Crystal rpt/Form 1m rpt

Merged

Form 1A - Organic

00023 Page 1 of 1 RR52239 SuperSet Reference:

Client:	Dawson Group, Incorporated
Project:	Red Hill GW Sampling Event 3/2001022.013
Sample Matrix:	Water

Diesel and Residual Range Organics

Sample Name:	RH-B-007	Units:	-
Lab Code:	K0503851-003	Basis:	
Extraction Method: Analysis Method:	EPA 3510B 8015M	Level:	Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	45 J	50	19	1	09/14/05	09/18/05	KWG0516001	
Residual Range Organics (RRO)	59 J	100	28	1	09/14/05	09/18/05	KWG0516001	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
o-Terphenyl	103	52-128	09/18/05	Acceptable		
n-Triacontane	108	50-150	09/18/05	Acceptable		-

Comments:

1

Page 1 of 1

00024

RECEIVED OCT 1 8 2005

ливнунсан кссонно

Client:	Dawson Group, Incorporated
Project:	Red Hill GW Sampling Event 3/2001022.013
Sample Matrix:	Water

Diesel and Residual Range Organics

Sample Name:	RH-B-008	Units:	-
Lab Code:	K0503851-004	Basis:	
Extraction Method: Analysis Method:	EPA 3510B 8015M	Level:	Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	50	19	1	09/14/05	09/18/05	KWG0516001	
esidual Range Organics (RRO)	ND U	100	28	1	09/14/05	09/18/05	KWG0516001	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
-Terphenyl n-Triacontane	100 106	52-128 50-150	09/18/05 09/18/05	Acceptable Acceptable	-

1

RECEIVED CCT 1 8 2005 .

omments:

Printed: 09/20/2005 14:11:48

Form 1A - Organic

Client:	Dawson Group, Incorporated
Project:	Red Hill GW Sampling Event 3/2001022.013
Sample Matrix:	Water

J

Diesel and Residual Range Organics

Sample Name: Lab Code:	Method Blank KWG0516001-5	`	Units: Basis:	•
Extraction Method: Analysis Method:	EPA 3510B 8015M		Level:	

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	50	19	1	09/14/05	09/18/05	KWG0516001	
Residual Range Organics (RRO)	ND U	100	28	1	09/14/05	09/18/05	KWG0516001	

Surrogate Name	· %Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl n-Triacontane	102 110	52-128 50-150	09/18/05 09/18/05	Acceptable Acceptable	

Comments:

.

Form 1A - Organic

SuperSet Reference: RR52239

يوني ان ا

00026

1 of 1

Page

۰.

Client: Project: Sample Matrix:

Red Hill GW Sampling Event 3/2001022.013 Water

Dawson Group, Incorporated

Surrogate Recovery Summary Diesel and Residual Range Organics

Extraction Method: EPA 3510B Analysis Method: 8015M Units: PERCENT Level: Low

Sample Name	<u>Lab Code</u>	<u>Sur1</u>	<u>Sur2</u>
RH-W-005	K0503851-001	106	112
RH-W-006	K0503851-002	104	112
RH-B-007	K0503851-003	103	108
H-B-008	K0503851-004	100	106
Aethod Blank	KWG0516001-5	102	110
Batch QC	K0503875-001	104	107
Batch QCMS	KWG0516001-2	108	114
ab Control Sample	KWG0516001-3	102	110
Duplicate Lab Control Sample	KWG0516001-4	108	109

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl ur2 = n-Triacontane 52-128 50-150

And the state of the state of the state

eaults flagged with an asterisk (*) Indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 09/20/2005 14:11:53

Form 2A - Organic

SuperSet Reference: RR52239

00027 Page 1 of 1

Client:	Dawson Group, Incorporated
Project:	Red Hill GW Sampling Event 3/2001022.013
Sample Matrix:	Water

 Service Request:
 K0503851

 Date Extracted:
 09/14/2005

 Date Analyzed:
 09/18/2005

Matrix Spike Summary Diesel and Residual Range Organics

Sample Name:	Batch QC
Lab Code:	K0503875-001
Extraction Method:	EPA 3510B
Analysis Method:	8015M

Units: Basis:	÷	
Level: Extraction Lot:		

	Sample	KV	atch QCMS VG0516001- Matrix Spike		%Rec	
Analyte Name	Result	Result	Expected	%Rec	Limits	
Diesel Range Organics (DRO)	23	3410	3200	106	57-158	
Residual Range Organics (RRO)	ND	1620	1600	101	45-157	

RELEASEN UNI 1 8 2005

_ _+

. . .

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

VANAC REDOL

	· · · ·		
Client:	Dawson Group, Incorporated	Service Request:	K0503851
Project:	Red Hill GW Sampling Event 3/2001022.013	Date Extracted:	09/14/2005
Sample Matrix:	Water	Date Analyzed:	09/18/2005

Lab Control Spike/Duplicate Lab Control Spike Summary **Diesel and Residual Range Organics**

Extraction Method: Analysis Method:	EPA 3510B 8015M							B	asis: evel:	ug/L NA Low KWG0516001
	_	KW	Control Samp /G0516001-3 Control Spik		- KV	Lab Control 3 VG0516001-4 e Lab Control	•	%Rec		RPD
nalyte Name	_	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	
Diesel Range Organics (DRO)	1530	1600	96	1630	1600	102	67-151	6	30
Residual Range Organic	s (RRO)	749	800	94	753	800	94	59-146	1	30

· RECEIVED OCT 1 8 2005

suits flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00029

Printed. 09/20/2005 14:11:59 n Stealth/Crystal rpt/Form3DLC rpt

Form 3C - Organic

SuperSet Reference-RR52239 Page

1 of 1

- -.

Gasoline Range Organics

Anatytical results

				маауы	car result	S					
Client: Project: Sample Matrix:	Dawson Grou Red Hill GW Water			2001022.01	3			Service Rea Date Colle Date Rec	ected:	K05038 09/08/20 09/12/20	005
				Gasoline R	ange Org	ranics					
Sample Name: Lab Code:	RH-W-005 K0503851-00	1							Units: Basis:	-	
Extraction Method: Analysis Method:	EPA 5030B 8015B		-					1	Level:	Low	
Analyte Name		Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed		raction Lot	Note
Gasoline Range Organic	s (GRO)	ND	U	50	13	1	09/21/05	09/21/05	KŴG	0516380	
Surrogate Name		%Rec	Contro Limit		ate lyzed	Note					
1,4-Difluorobenzene		103	75-12	0 09/2	21/05	Acceptable	•				

omments:

Printed: 09/23/2005 15:19.21

Merged

.

Form 1A - Organic

,

.

.

Page 1 of 1 SuperSet Reference: RR 52404

ı.

.

Client: Project: Sample Matrix:	Dawson Groug Red Hill GW S Water			001022.01	3			Service Re Date Coll Date Rec	ected:	K050385 09/08/20 09/12/20	05 -
			G	asoline R	ange Org	ganics					
Sample Name: Lab Code:	RH-W-006 K0503851-002	2							Units: Basis:		
Extraction Method: Analysis Method:	EPA 5030B 8015B							:	Level:	Low	
Analyte Name		Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed		raction Lot	Note
Gasoline Range Organic	s (GRO)	ND	U	50	13	1	09/22/05	09/22/05	KWG	0516380	
Surrogate Name		%Rec	Control Limits	_	ate dyzed	Note					
1,4-Difluorobenzene	<u>, , , , , , , , , , , , , , , , , , , </u>	103	75-120	09/	22/05	Acceptable					

Comments:

.

Form 1A - Organic

,

00032 Page 1 of 1

1) jane

.

Dawson Group, Incorporated Service Request: K0503851 Client: Project: Red Hill GW Sampling Event 3/2001022.013 Date Collected: 09/08/2005 Date Received: 09/12/2005 Water Sample Matrix: **Gasoline Range Organics** Units: ug/L Sample Name: RH-B-007 Lab Code: K0503851-003 Basis: NA **Extraction Method:** EPA 5030B Level: Low Analysis Method: 8015B Dilution Extraction Date Date MRL MDL Analyzed Lot Note Analyte Name Result Q Factor Extracted Gasoline Range Organics (GRO) ND U 50 13 1 09/22/05 09/22/05 KWG0516380 Control Date %Rec Limits urrogate Name Note Analyzed 09/22/05 4-Difluorobenzene 103 75-120 Acceptable

RECEIVED OCT 1 8 2005

· • '

mments:

Client: Project: Sample Matrix:	Dawson Group Red Hill GW Water				01022.01	3			Service Re Date Coll Date Rec	lected:	09/08/2	005
				Ga	asoline Ra	ange Org	;anics					
Sample Name: Lab Code:	RH-B-008 K0503851-00	4								Units: Basis:	-	
Extraction Method: Analysis Method:	EPA 5030B 8015B									Level:	Low	
Analyte Name		Result	Q		MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed		traction Lot	Note
Gasoline Range Organics	3 (GRO)	ND	_		50	13	1	09/22/05	09/22/05		G0516380	
Surrogate Name		%Rec		Control Limits	_	ate lyzed	Note					
1,4-Difluorobenzene		103		75-120	09/2	22/05	Acceptable					

Comments:

Printed: 09/23/2005 15:19:25 u.\Stealth\Crystal.rpt\Form1m.rpt

.

Form IA - Organic

Page 1 of 1

00034

.

					Analytic	at Kesuta	•					
Client: Project: Sample Matrix:	Dawson Group Red Hill GW 3 Water				01022.01	3			Service Red Date Colle Date Rec	ected:	K05038: 09/08/20 09/12/20	05
1				G	soline Ra	ange Org	anics					
Sample Name: Lab Code:	RH-B-009 K0503851-00	5								Units: Basis:	ug/L NA	
Extraction Method: Analysis Method:	EPA 5030B 8015B								1	Level:	Low	
Analyte Name		Result	Q		MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed		raction Lot	Note
Gasoline Range Organic:	s (GRO)	ND	U		50	13	1	09/22/05	09/22/05	KWG	0516380	
Surrogate Name	,	%R ec		Control Limits		ate lyzed	Note					
1,4-Difluorobenzene		103		75-120	09/2	22/05	Acceptable					

```
RECEIVED OCT 1 8 Ands
```

.

1

Printed: 09/23/2005 15:19:26 u-Stealth/Crystal rpt/Form1m rpt

omments:

Merged

Form IA - Organic

SuperSet Reference RR52404

rmanyucar resums

Client: Project: Sample Matrix:	Dawson Gro Red Hill GW Water			01022.013	3	`		Service Re Date Coll Date Rec	ected:	K050385 NA NA	51
			Ga	solinc Ra	inge Org	anics					1
Sample Name: Lab Code:	Method Blar KWG051633								Units: Basis:	-	
Extraction Method: Analysis Method:	EPA 5030B 8015B								Level:	Low	
Analyte Name		Result (0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed		raction Lot	Note
Gasoline Range Organic	s (GRO)	ND (J	50	13	1	09/21/05	09/21/05	KWG	0516380	
Surrogate Name		%Rec	Control Limits		ate lyzed	Note		,			1
1,4-Difluorobenzene		103	75-120	09/2	1/05	Acceptable	<u></u>				

Comments:

,

Form 1A - Organic

.

00036

Dawson Group, Incorporated Red Hill GW Sampling Event 3/2001022.013 Water

Surrogate Recovery Summary Gasoline Range Organics

Extraction Method: EPA 5030B Analysis Method: 8015B Units: PERCENT Level: Low

Sample Name	Lab Code	<u>Sur1</u>
RH-W-005	K0503851-001	103
RH-W-006	K0503851-002	103
RH-B-007	K0503851-003	103
RH-B-008	K0503851-004	103
H-B-009	K0503851-005	103
Method Blank	KWG0516380-4	103
Batch QC	K0503875-001	103
Batch QCMS	KWG0516380-1	114
Lab Control Sample	KWG0516380-3	109
Duplicate Lab Control Sample	KWG0516380-5	108

hrrogate Recovery Control Limits (%)

Surl = 1,4-Difluorobenzene

75-120

I RECEIVED OCT 1 8 7005

suits flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 09/23/2005 15:19:32 u \Stealth\Crystal rpt\Form2 rpt Form 2A - Organic

.

Client:	Dawson Group, Incorporated
Project:	Red Hill GW Sampling Event 3/2001022.013
Sample Matrix:	Water

Matrix Spike Summary Gasoline Range Organics

Sample Name:	Batch QC	Units:	v
Lab Code:	K0503875-001	Basis:	
Extraction Method:	EPA 5030B	Level:	
Analysis Method:	8015B	Extraction Lot:	

		KV	atch QCMS VG0516380- Matrix Spike		
Analyte Name	Sample Result	Result	Expected	%Rec	%Rec Limits
Gasoline Range Organics (GRO)	ND	1090	1000	109	69-128

CT 1 8 2005

00038

1

l of

Page

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/23/2005 15:19:35 u \Steelth\Crystal rpt\Form3MS rpt Form 3A - Organic

SuperSet Reference: RR52404

QAVQC Report Dawson Group, Incorporated Service Request: K0503851 lient: **Project:** Red Hill GW Sampling Event 3/2001022.013 Date Extracted: 09/21/2005 Sample Matrix: Water Date Analyzed: 09/21/2005 Lab Control Spike/Duplicate Lab Control Spike Summary **Gasoline Range Organics** EPA 5030B **Extraction Method:** Units: ug/L Analysis Method: 8015B **Basis:** NA Level: Low Extraction Lot: KWG0516380 Lab Control Sample **Duplicate Lab Control Sample** KWG0516380-3 KWG0516380-5 Lab Control Spike **Duplicate Lab Control Spike** %Rec RPD Limits RPD Limit nalyte Name %Rec %Rec Result Expected Result Expected Gasoline Range Organics (GRO) 538 500 108 534 500 107 71-128 1 30

RECEIVED OCT I. B WIA

ults flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/23/2005 15:19:38 u3Stealth/Crystal rpt/Form3DLC rpt Form 3C - Organic

SuperSet Reference: RR52404

EPA Method 504.1

1 1 pr 00040

I.

				Analyti	cal Results					
Client: Project: Sample Matrix:	Dawson Grou Red Hill GW Water			001022.01	3			Service Red Date Colle Date Reco	ected: 09/08	2005
				EPA M	ethod 504.1	l				
Sample Name: Lab Code:	RH-W-005 K0503851-00	1			-				U nits: ug/L Basis: NA	
Extraction Method: Analysis Method:	METHOD 504.1							1	Level: Low	
Analyte Name		Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (E	DB)	ND	ប	0.0096	0.00096	1	09/14/05	09/14/05	KWG051606	5
Surrogate Name		%Rec	Control Limits		r	Note				

Comments:

-

Form IA - Organic

00041 Page 1 of 1 SuperSet Reference: RR52123

.

Analytical Results

Client: Project: Sample Matrix:	Dawson Group, Incon Red Hill GW Sampli Water		001022.01	13			Service Ro Date Col Date Ro	lected:	09/08/20	005
			EPA M	ethod 504.1	L					1
Sample Name: Lab Code:	RH-W-006 K0503851-002							Units: Basis:		
Extraction Method: Analysis Method:	METHOD 504.1							Level:	Low	
Analyte Name	Resul	t Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	-	raction Lot	Note
1,2-Dibromoethane (E	DB) NI	ט ט	0.0094	0.00096	1	09/14/05	09/14/05	KWG	0516066	
Surrogate Name	%Rec	Control Limits		1	Note					

Comments:

•

Form 1A - Organic

SuperSet Reference RR52123

•

1

• • •

.

.

٠

Page 1 of 1

0004

1 1000

	ļ					Analytı	cai Kesults						
	Client: Project: Sample Matrix:	Dawson Grou Red Hill GW Water				01022.01	3			Service Rea Date Colla Date Reca	ected:	K05038 09/08/20 09/12/20	05
						EPA M	ethod 504.1	l					
	Sample Name: Lab Code:	RH-B-007 K0503851-00)3								Units: Basis:	ug/L NA	
	Extraction Method: Analysis Method:	METHOD 504.1]	Level:	Low	
	Analyte Name		Result	Q		MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed		raction Lot	Note
	1,2-Dibromoethane (E	DB)	ND	U		0.0095	0.00096	1	09/14/05	09/14/05	KWG	0516066	
	Surrogate Name		%Rec		Control Limits		P	Note					
1													

Comments:

.

.

ι

Analytical Results

Client: Project: Sample Matrix:	Dawson Grou Red Hill GW Water			001022.01	3			Service Red Date Colli Date Rec	ected:	K0503851 09/08/200 09/12/200)5
				EPA M	ethod 504,1	l					1
Sample Name: Lab Code:	RH-B-008 K0503851-00	4							Units: Basis:	ug/L NA	1
Extraction Method: Analysis Method:	METHOD 504.1							J	Level:	Low	
Analyte Name		Result	Q	MRL	MDL.	Dilution Factor	Date Extracted	Date Analyzed		raction Lot	Note
1,2-Dibromoethane (E	DB)	ND		0.0095	0.00096	1	09/14/05	09/14/05	KWG	0516066	
Surrogate Name		%Rec	Control Limits		I	Note]

Comments:

Form 1A - Organic

٠

			Analyti	cal Kesults					
			001022.01	3			Date Colle	cted: 09/08/2	005
			EPA M	ethod 504.1					
RH-B-009 K0503851-005	5								
METHOD 504.1							L	evel: Low	
	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
DB)	ND	U	0.0095	0.00096	1	09/14/05	09/14/05	KWG0516066	
	%Rec	Control Limits		r	Note				
	Red Hill GW S Water RH-B-009 K0503851-005 METHOD 504.1 DB)	Red Hill GW Sampling Water RH-B-009 K0503851-005 METHOD 504.1 Result DB) ND	Water RH-B-009 K0503851-005 METHOD 504.1 <u>Result Q</u> DB) ND U Control	Dawson Group, Incorporated Red Hill GW Sampling Event 3/2001022.01 Water EPA Ma RH-B-009 K0503851-005 METHOD 504.1 <u>Result Q MRL</u> DB) ND U 0.0095	Red Hill GW Sampling Event 3/2001022.013 Water EPA Method 504.1 RH-B-009 K0503851-005 METHOD 504.1 Result Q MRL MDL DB) ND U 0.0095 0.00096	Dawson Group, Incorporated Red Hill GW Sampling Event 3/2001022.013 Water EPA Method 504.1 RH-B-009 K0503851-005 METHOD 504.1 <u>Result Q MRL MDL Factor</u> DB) ND U 0.0095 0.00096 1	Dawson Group, Incorporated Red Hill GW Sampling Event 3/2001022.013 Water EPA Method 504.1 RH-B-009 K0503851-005 METHOD 504.1 $\frac{Result \ Q}{DB} ND \ U 0.0095 \ 0.00096 \ 1 09/14/05$	Dawson Group, Incorporated Red Hill GW Sampling Event 3/2001022.013 Water EPA Method 504.1 RH-B-009 K0503851-005 METHOD 504.1 L Result Q MRL MDL Factor Extracted Analyzed DB) ND U 0.0095 0.00096 1 09/14/05 09/14/05	Dawson Group, Incorporated Red Hill GW Sampling Event 3/2001022.013 Water EPA Method 504.1 RH-B-009 K0503851-005 METHOD 504.1 Units: ug/L Basis: NA Level: Low S04.1 DB) ND U 0.0095 0.00096 1 09/14/05 09/14/05 KWG0516066

Comments:

RECEIVED OCT 1 8 2005

.

/

00045

>

Analytical Results

				Analyt	ical Results						
Client: Project: Sample Matrix:	Dawson Gro Red Hill GW Drinking wa	Sampling		01022.03	13			Service Re Date Coll Date Rec	ected:	NA	l
				ЕРА М	ethod 504.1		ş				
Sample Name: Lab Code:	Method Bian KWG05160								Units: Basis:		
Extraction Method: Analysis Method:	METHOD 504.1								Level:	Low	
Analyte Name		Result		MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed]	action	Not
1,2-Dibromoethane (E	DB)	ND I	J	0.011	0.00096	1	09/14/05	09/14/05	KWG	0516066	
Surrogate Name		%Rec	Control Límits		ſ	Note					
					······					÷	
N,											
							-				
										-	
					·					. •	
							RECEN	AED (C)	8 1 1	7003 -	
Comments:		<u>. </u>									
						·····				000	46

Printed: 09/15/2005 16:25:34 u \Stealth\Crystal.pt\Form1m rpt

Merged

Form 1A - Organic

SuperSet Reference RR52123

Page 1 of 1

				QAVQC	Report			
Client: Project: Sample Matrix:	Dawson Gro Red Hill GV Drinking wa	Sampling		001022.013			Service Request: Date Extracted: Date Analyzed:	K0503851 09/14/2005 09/14/2005
ł			I	Matrix Spike EPA Meth		ry		
Sample Name: Lab Code:	Batch QC K0503674-0	02					Units: Basis:	ug/L NA
Extraction Method: Analysis Method:	METHOD 504. l						Level: Extraction Lot:	Low KWG0516066
1		Sample	KV	atch QCMS VG0516066- Matrix Spike	1	%Rec		
Analyte Name		Result	Result	Expected	%Rec	Limits		
1,2-Dibromoethane (E	(DB)	ND	0.0816	0.0678	120	65-135		

tesuits flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

ercent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/15/2005 16:25:38 Stealth/Crystal rpt/Form3MS rpt Form 3A - Organic

00047 Page 1 of 1 RR52123

all the second second

Client: Project: Sample Matrix:	Dawson Gro Red Hill GW Drinking wa	/ Sampling	orated Event 3/200	1022.013		Service Request: Date Extracted: Date Analyzed:	09/14/2005
				Control S EPA Met	pike Summary hod 504.1		
Extraction Method: Analysis Method:	METHOD 504.1					Units: Basis: Level; Extraction Lot:	NA Low
		KW	Control Samp /G0516066-2 Control Spik	ł	%Rec		
Analyte Name	-	Result	Expected	%Rec	Limits		
1,2-Dibromocthane (E	DB)	0.0673	0.0714	94	70-130		

Printed: 09/15/2005 16:25:41 u \Stealth\Crystal mt\FormBLCS mt

1

Results flagged with an asterisk (*) indicate values outside control criteria.

.

Form 3C - Organic

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

SuperSet Reference: RR52123

1

00048

,均均

Volatile Organic Compounds EPA Method 8260B

RECEIVED OCT 1 8 2005

.

Client:	Dawson Group, Incorporated
Project:	Red Hill GW Sampling Event 3/2001022.013
Sample Matrix:	Water

 Service Request:
 K0503851

 Date Collected:
 09/08/2005

 Date Received:
 09/12/2005

Volatile Organic Compounds

Sample Name:	RH-W-005	Units:	•
Lab Code:	K0503851-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	ND	U	0.50	0.14	1	09/20/05	09/20/05	KWG0516329	
Methyl tert-Butyl Ether	ND	U	0.50	0.20	1	09/20/05	09/20/05	KWG0516329	
Гоциене	0.15	J	0.50	0.11	1	09/20/05	09/20/05	KWG0516329	
Ethylbenzene	ND	U	0.50	0.13	1	09/20/05	09/20/05	KWG0516329	
n,p-Xylenes	ND	U	0.50	0.22	1	09/20/05	09/20/05	KWG0516329	
-Xylene	ND	U	0.50	0.11	1	09/20/05	09/20/05	KWG0516329	
1,2-Dichloroethane (EDC)	ND	U	0.50	0.12	1	09/20/05	09/20/05	KWG0516329	· · · · · · · · · · · · · · · · · · ·

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	98	80-119	09/20/05	Acceptable
Toluene-d8	108	83-113	09/20/05	Acceptable
4-Bromofluorobenzene	100	72-114	09/20/05	Acceptable

Comments:

Printed: 09/22/2005 15:38:45

u.\Stealth\Crystal.rpt\Formil.us.rpt

RECEIVED OCT 1 8 2005

ľ

00050

Page 1 of 1

Merged

Froject: Simple Matrix:

Dawson Group, Incorporated Red Hill GW Sampling Event 3/2001022.013 Water
 Service Request:
 K0503851

 Date Collected:
 09/08/2005

 Date Received:
 09/12/2005

Volatile Organic Compounds

Sample Name:	RH-W-006 K0503851-002	Units: Basis:	•
traction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			,		Dilution	Date	Date	Extraction	
Analyte Name	Result (Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
anzene	ND I	U	0.50	0.14	1	09/20/05	09/20/05	KWG0516329	
thyl tert-Butyl Ether	ND U	U	0.50	0.20	i	09/20/05	09/20/05	KWG0516329	
roluene	0.15 J	J	0.50	0.11	1	09/20/05	09/20/05	KWG0516329	
Ethylbenzene	ND I	U	0.50	0.13	<u> </u>	09/20/05	09/20/05	KWG0516329	
-Xylenes	ND I	U	0.50	0.22	i	09/20/05	09/20/05	KWG0516329	
-Xylene	ND I	ប	0.50	0.11	1	09/20/05	09/20/05	KWG0516329	
2-Dichloroethane (EDC)	ND (U	0.50	0.12	1	09/20/05	09/20/05	KWG0516329	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dipromofluoromethane	96	80-119	09/20/05	Acceptable	
Duene-d8	107	83-113	09/20/05	Acceptable	
4-Bromofluorobenzene	103	72-114	09/20/05	Acceptable	

Comments:

RECEIVED OCT 1 8 2005

00051

:

Client:	Dawson Group, Incorporated
Project:	Red Hill GW Sampling Event 3/2001022.013
Sample Matrix:	Water

Volatile Organic Compounds

Sample Name: Lab Code:	RH-B-007 K0503851-003	Units: Basis:	-	-
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low	

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	ND	U	0.50	0.14	1	09/20/05	09/20/05	KWG0516329	
Methyl tert-Butyl Ether	ND	U	0.50	0.20	i	09/20/05	09/20/05	KWG0516329	
Toluene	ND	U	0.50	0.11	1	09/20/05	09/20/05	KWG0516329	
Ethylbenzene	ND	U	0.50	0.13	1	09/20/05	09/20/05	KWG0516329	
m,p-Xylenes	ND	U	0.50	0.22	l	09/20/05	09/20/05	KWG0516329	
o-Xylene	ND	U	0.50	0.11	l	09/20/05	09/20/05	KWG0516329	
1,2-Dichloroethane (EDC)	ND	U	0.50	0.12	1	09/20/05	09/20/05	KWG0516329	·····

Surrogate Name	%Rec	Control . Limits	Date Analyzed	Note	
Dibromofluoromethane	95	80-119	09/20/05	Acceptable	
Toluene-d8	106	83-113	09/20/05	Acceptable	
4-Bromofluorobenzene	96	72-114	09/20/05	Acceptable	

RECEIVED OUT 1 8 2005

 $_{Pag} 0 0 0 5 2_{1}$

Comments:

ł

Form IA - Organic

Fient: Project: Emple Matrix:

Dawson Group, Incorporated Red Hill GW Sampling Event 3/2001022.013 Water

Volatile Organic Compounds

Sample Name:	RH-B-008	Units:	•
Lab Code:	K0503851-004	Basis:	
traction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Penzene	ND	U	0.50	0.14	1	09/20/05	09/20/05	KWG0516329	
thyl tert-Butyl Ether	ND	U	0.50	0.20	1	09/20/05	09/20/05	KWG0516329	
Toluene	ND	U	0.50	0.11	1	09/20/05	09/20/05	KWG0516329	
Ethylbenzene	ND	U	0.50	0.13	1	09/20/05	09/20/05	KWG0516329	
-Xylenes	ND	U	0.50	0.22	1	09/20/05	09/20/05	KWG0516329	
o-Xylene	ND	U	0.50	0.11	1	09/20/05	09/20/05	KWG0516329	
1.2-Dichloroethane (EDC)	ND	U	0.50	0.12	1	09/20/05	09/20/05	KWG0516329	

Sorrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dipromofluoromethane	96	80-119	09/20/05	Acceptable	
Tuluenc-d8	107	83-113	09/20/05	Acceptable	
4-Bromofluorobenzene	94	72-114	09/20/05	Acceptable	

F BECZTYTO ON 1 -: ;

Comments:

Client:	Dawson Group, Incorporated
Project:	Red Hill GW Sampling Event 3/2001022.013
Sample Matrix:	Water

 Service Request:
 K0503851

 Date Collected:
 09/08/2005

 Date Received:
 09/12/2005

Volatile Organic Compounds

Sample Name:	RH-B-009	Units:	-
Lab Code:	K0503851-005	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	ND U	0.50	0.14	1	09/20/05	09/20/05	KWG0516329	INDIC
Methyl tert-Butyl Ether	ND U	0.50	0.20	1	09/20/05	09/20/05	KWG0516329	
Toiuene	ND U	0.50	0.11	1	09/20/05	09/20/05	KWG0516329	
Ethylbenzene	ND U	0.50	0.13	1	09/20/05	09/20/05	KWG0516329	
m,p-Xylenes	ND U	0.50	0.22	1	09/20/05	09/20/05	KWG0516329	
o-Xylene	ND U	0.50	0.11	1	09/20/05	09/20/05	KWG0516329	
1,2-Dichloroethane (EDC)	ND U	0.50	0.12	1	09/20/05	09/20/05	KWG0516329	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	99	80-119	09/20/05	Acceptable	 •
Toluene-d8	107	83-113	09/20/05	Acceptable	
4-Bromofluorobenzene	95	72-114	09/20/05	Acceptable	

00054

1

1 of

Page

Comments:

,

Form 1A - Organic

Dawson Group, Incorporated Red Hill GW Sampling Event 3/2001022.013 Water

Volatile Organic Compounds

Sample Name:	Trip Blank	Units: ug/L
Leb Code:	K0503851-006	Basis: NA
traction Method: Analysis Method:	EPA 5030B 8260B	Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Renzene	ND	U	0.50	0.14	1	09/20/05	09/20/05	KWG0516329	
the thyl tert-Butyl Ether	ND	U	0.50	0.20	1	09/20/05	09/20/05	KWG0516329	
Toluene	ND	ប	0.50	0.11	1	09/20/05	09/20/05	KWG0516329	
Ethylbenzene	ND	υ	0.50	0.13	1	09/20/05	09/20/05	KWG0516329	
n b-Xylenes	ND	U	0.50	0.22	1	09/20/05	09/20/05	KWG0516329	
o-Xylene	ND	U	0.50	0.11	1	09/20/05	09/20/05	KWG0516329	
1.2-Dichloroethane (EDC)	ND	U	0.50	0.12	l	09/20/05	09/20/05	KWG0516329	

Serrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	96	80-119	09/20/05	Acceptable	
Tuene-d8	109	83-113	09/20/05	Acceptable	
4-Bromofluorobenzene	97	72-114	09/20/05	Acceptable	

* 8

.

Client:	Dawson Group, Incorporated
Project:	Red Hill GW Sampling Event 3/2001022.013
Sample Matrix:	Water

Volatile Organic Compounds

Sample Name:	Method Blank	Units:	-
Lab Code:	KWG0516329-2	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	ND	U	0.50	0.14	1	09/20/05	09/20/05	KWG0516329	
Methyl tert-Butyl Ether	ND	U	0.50	0.20	1	09/20/05	09/20/05	KWG0516329	
Toluene	ND	U	0.50	0.11	1	09/20/05	09/20/05	KWG0516329	
Ethylbenzene	ND	U	0.50	0.13	1	09/20/05	09/20/05	KWG0516329	<u> </u>
m,p-Xylenes	ND	ប	0.50	0.22	1	09/20/05	09/20/05	KWG0516329	
o-Xylene	ND	ប	0.50	0.11	1	09/20/05	09/20/05	KWG0516329	
1,2-Dichloroethane (EDC)	ND	U	0.50	0.12	<u> </u>	09/20/05	09/20/05	KWG0516329	

Surrogate Name	. %Rec	Control Limits	Date Analyzed	Note	1
Dibromofluoromethane	94	80-119	09/20/05	Acceptable	
Toluene-d8	107	83-113	09/20/05	Acceptable	
4-Bromofluorobenzene	94	72-114	09/20/05	Acceptable	1

Comments:

.

Service Request: K0503851

Project: mple Matrix:

Dawson Group, Incorporated Red Hill GW Sampling Event 3/2001022.013 Water

Surrogate Recovery Summary **Volatile Organic Compounds**

EPA 5030B Extraction Method: nalysis Method: 8260B

Units:	PERCENT
Level:	Low

د بر د به ب ..

Page

1

1 of

<u>Sample Name</u>	Lab Code	<u>Sur1</u>	<u>Sur2</u>	<u>Sur3</u>	
I-W-005	K0503851-001	98	108	100	
RH-W-006	K0503851-002	96	107	103	
<u>PH</u> -B-007	K0503851-003	95	106	96	
B-008	K0503851-004	96	107	94	
RA-B-009	K0503851-005	9 9	107	95	
Trip Blank	K0503851-006	96	109	97	
thod Blank	KWG0516329-2	94	107	94	
H-B-007MS	KWG0516329-3	103	109	100	
RH-B-007DMS	KWG0516329-4	102	110	102	
I Control Sample	KWG0516329-1	101	108	100	

•	Surrogate	Recovery	Control	Limits	(%)
---	-----------	----------	---------	--------	-----

S 1 = Dibromofluoromethane	80-119		
Sur2 = Toluene-d8	83-113		
Sur3 = 4-Bromofluorobenzene	72-114		

Results flagged with an asterisk (*) indicate values outside control criteria.

ilts flagged with a pound (#) indicate the control criteria is not applicable.

Client:	Dawson Group, Incorporated
Project:	Red Hill GW Sampling Event 3/2001022.013
Sample Matrix:	Water

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:	RH-B-007	Units:	-
Lab Code:	K0503851-003	Basis:	
Extraction Method:	EPA 5030B	Level:	
Analysis Method:	8260B	Extraction Lot:	

	Sample	RH-B-007MS KWG0516329-3 Matrix Spike			RH-B-007DMS KWG0516329-4 Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Benzene	ND	11.4	10.0	114	11.2	10.0	112	75-130	2	30
Methyl tert-Butyl Ether	ND	9.19	10.0	92	9.74	10.0	97	50-152	6	30
Toluene	ND	11.0	10.0	110	10.7	10.0	107	72-132	3	30
Ethylbenzene	ND	11.6	10.0	116	11.5	10.0	115	83-130	L	30
m,p-Xylenes	ND	21.9	20.0	109	22.0	20.0	110	84-132	I	30
o-Xylene	ND	10.9	10.0	109	10.9	10.0	109	83-128	0	30
1,2-Dichloroethane (EDC)	ND	9.83	10.0	98	10.2	10.0	102	74-122	4	30

RECEIVED OCT 1 8 2005

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00058 1 of

l

Page

QA/QC Report

Fient: Project: Fimple Matrix: Dawson Group, Incorporated Red Hill GW Sampling Event 3/2001022.013 Water

Service Request: K0503851 Date Extracted: 09/20/2005 Date Analyzed: 09/20/2005

.

Lab Control Spike Summary Volatile Organic Compounds

Entraction Method: alysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA Level: Low Extraction Lot: KWG0516329

8	Lab Control Sample KWG0516329-1 Lab Control Spike			%Rec	
A alyte Name	Result	Expected	%Rec	Limits	
Benzene	10.7	10.0	107	78-121	
thyl tert-Butyl Ether	9.29	10.0	93	63-132	
Tuene	10.1	10.0	101	76-122	
Ethylbenzene	10.7	10.0	107	84-122	
-Xylenes	20.6	20.0	103	83-125	
lylene	10.1	10.0	101	83-122	
1,2-Dichloroethane (EDC)	9.40	10.0	94	74-121	

PECETTER AT 1 8 1055

Results flagged with an asterisk (*) indicate values outside control criteria.

Permit recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Polynuclear Aromatic Hydrocarbons EPA Method 8270C

, J

Client:	Dawson Group, Incorporated
Project:	Red Hill GW Sampling Event 3/2001022.013
Sample Matrix:	Water

Sample Name: Lab Code:	RH-W-005 K0503851-001			nits: asis:	-
Extraction Method: Analysis Method:	EPA 3520C 8270C SIM	ı	La	evel:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0.83		0.020	1	09/14/05	09/19/05	KWG0515969	
-Methylnaphthalene	0.038		0.020	1	09/14/05	09/19/05	KWG0515969	
Acenaphthylene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Acenaphthene	0.054		0.020	1	09/14/05	09/19/05	KWG0515969	
Dibenzofuran	0.13		0.020	1	09/14/05	09/19/05	KWG0515969	
Fluorene	0.064		0.020	1	09/14/05	09/19/05	KWG0515969	
Phenanthrene	0.11		0,020	1	09/14/05	09/19/05	KWG0515969	
Anthracene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
luoranthene	0.025		0.020	1	09/14/05	09/19/05	KWG0515969	
Pyrene	0.030		0.020	1	09/14/05	09/19/05	KWG0515969	
Senz(a)anthracene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Chrysene	· 0.022		0.020	1	09/14/05	09/19/05	KWG0515969	
Benzo(b)fluoranthene	ND	U	0,020	1	09/14/05	09/19/05	KWG0515969	
Senzo(k)fluoranthene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Benzo(a)pyrene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Indeno(1,2,3-cd)pyrene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Dibenz(a,h)anthracene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Benzo(g,h,i)perylene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	

furrogate Name	%Rec	Control Limits	Date Analyzed	Note	
luorene-d10	62	24-111	09/19/05	Acceptable	
Fluoranthene-d10	57	26-123	09/19/05	Acceptable	
Ferphenyl-d14	38	25-146	09/19/05	Acceptable	

Ξ.

and the second . .

omments:

.

Form IA - Organic

Client:	Dawson Group, Incorporated
Project:	Red Hill GW Sampling Event 3/2001022.013
Sample Matrix:	Water

Sample Name:	RH-W-006	Units:	÷
Lab Code:	K0503851-002	Basis:	
Extraction Method: Analysis Method:	EPA 3520C 8270C SIM	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0,78	0.020	1	09/14/05	09/19/05	KWG0515969	
2-Mcthylnaphthalcne	0.038	0.020	1	09/14/05	09/19/05	KWG0515969	
Acenaphthylene	ND U	0.020	1	09/14/05	09/19/05	KWG0515969	
Acenaphthene	0.056	0.020	1	09/14/05	09/19/05	KWG0515969	
Dibenzofuran	0,13	0.020	1	09/14/05	09/19/05	KWG0515969	
Fluorene	0.064	0.020	1	09/14/05	09/19/05	KWG0515969	:
Phenanthrene	0.12	0.020	1	09/14/05	09/19/05	KWG0515969	
Anthracene	ND U	0,020	1	09/14/05	09/19/05	KWG0515969	
Fluorantheae	0.049	0,020	1	09/14/05	09/19/05	KWG0515969	
Pyrene	0.058	0.020	1	09/14/05	09/19/05	KWG0515969	
Benz(a)anthracene	0.025	0.020	1	09/14/05	09/19/05	KWG0515969	
Chrysene	0.036	0.020	1	09/14/05	09/19/05	KWG0515969	
Benzo(b)fluoranthene	ND U	0.020	1	09/14/05	09/19/05	KWG0515969	
Benzo(k)fluoranthene	ND U	0.020	1	09/14/05	09/19/05	KWG0515969	
Benzo(a)pyrene	ND U	0.020	1	09/14/05	09/19/05	KWG0515969	
Indeno(1,2,3-cd)pyrene	ND U	0.020	1	09/14/05	09/19/05	KWG0515969	
Dibenz(a,h)anthracene	ND U	0.020	1	09/14/05	09/19/05	KWG0515969	
Benzo(g,h,i)perylene	ND U	0.020	1	09/14/05	09/19/05	KWG0515969	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	67	24-111	09/19/05	Acceptable	
Fluoranthene-d10	66	26-123	09/19/05	Acceptable	
Terphenyl-d14	53	25-146	09/19/05	Acceptable	

Comments:

.

1 2 1

Client:	
Project:	
Sample Matrix:	

Dawson Group, Incorporated Red Hill GW Sampling Event 3/2001022.013 Water

Polynuclear Aromatic Hydrocarbons

Sample Name:	RH-B-007	Units: ug/L	
Lab Code:	K0503851-003	Basis: NA	
Extraction Method: Analysis Method:	EPA 3520C 8270C SIM	Level: Low	

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0.085		0.020	1	09/14/05	09/19/05	KWG0515969	
2-Methylnaphthalene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Acenaphthylene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Acenaphthene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Dibenzofuran	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Fluorene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Phenanthrene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Anthracene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Fluoranthene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Pyrene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Benz(a)anthracene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Chrysene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Benzo(b)fluoranthene	ND	U	0,020	1	09/14/05	09/19/05	KWG0515969	
Benzo(k)fluoranthene	ND	U	0.020	L	09/14/05	09/19/05	KWG0515969	
Benzo(a)pyrene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Indeno(1,2,3-cd)pyrene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Dibenz(a,h)anthracene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Benzo(g,h,i)perylene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	

furrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Uuorene-d10	73	24-111	09/19/05	Acceptable	
Fluoranthene-d10	83	26-123	09/19/05	Acceptable	
Cerphenyl-d14	92	25-146	09/19/05	Acceptable	

Comments:

EE ١.,

Form 1A - Organic

.

Client:	Dawson Group, Incorporated
Project:	Red Hill GW Sampling Event 3/2001022.013
Sample Matrix:	Water

Sample Name: Lab Code:	RH-B-008 K0503851-004	Units: Basis:	-	
Extraction Method: Analysis Method:	EPA 3520C 8270C SIM	Level:	Low	

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
2-Methylnaphthalene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Acenaphthylene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Acenaphthene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Dibenzofuran	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	i
Fluorene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Phenanthrene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Anthracene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Fluoranthene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Pyrene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Benz(a)anthracene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	1
Chrysene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Benzo(b)fluoranthene	ND	υ	0.020	1	09/14/05	09/19/05	KWG0515969	
Benzo(k)fluoranthene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Benzo(a)pyrene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	4
Indeno(1,2,3-cd)pyrene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Dibenz(a,h)anthracene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	1
Benzo(g,h,i)perylene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	74	24-111	09/19/05	Acceptable	
Fluoranthene-d10	86	26-123	09/19/05	Acceptable	
Terphenyi-d14	96	25-146	09/19/05	Acceptable	

Comments:

Analytical Results

Client:	Dawson Group, Incorporated
Project:	Red Hill GW Sampling Event 3/2001022.013
Sample Matrix:	Water

Polynuclear Aromatic Hydrocarbons

Sample Name:	RH-B-009	Units:	-
Lab Code:	K0503851-005	Basis:	
Extraction Method: Analysis Method:	EPA 3520C 8270C SIM	Level:	Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	0.045		0.020	1	09/14/05	09/19/05	KWG0515969	
-Methylnaphthalene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Acenaphthylene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Acenaphthene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Dibenzofuran	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Fluorene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Phenanthrene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
anthracene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
luoranthene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Pyrene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	<u></u>
enz(a)anthracene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Chrysene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Benzo(b)fluoranthene	ND	U	0,020	1	09/14/05	09/19/05	KWG0515969	
enzo(k)fluoranthene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
enzo(a)pyrene	ND	U	0.020	l	09/14/05	09/19/05	KWG0515969	
Indeno(1,2,3-cd)pyrene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	·····
Dibenz(a,h)anthracene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
enzo(g,h,i)perylene	ND	U_	0.020	1	09/14/05	09/19/05	KWG0515969	

furrogate Name	%Rec	Control Limits	Date Analyzed	Note	
huorene-d10	73	24-111	09/19/05	Acceptable	
Fluoranthene-d10	79	26-123	09/19/05	Acceptable	
erphenyl-d14	76	25-146	09/19/05	Acceptable	

omments:

Client:	Dawson Group, Incorporated
Project:	Red Hill GW Sampling Event 3/2001022.013
Sample Matrix:	Water

Sample Name: Lab Code:	Method Blank KWG0515969-3	Units: Basis:	-	
Extraction Method: Analysis Method:	EPA 3520C 8270C SIM	Level:	Low	-

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzcd	Extraction Lot	Note
Naphthalene	ND		0.020	1	09/14/05	09/19/05	KWG0515969	
2-Methylnaphthalene	ND		0.020	1	09/14/05	09/19/05	KWG0515969	
Acenaphthylene	ND		0.020	i	09/14/05	09/19/05	KWG0515969	
Acenaphthene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Dibenzofuran	ND	U	0.020	1	09/14/05	09/19/0 5	KWG0515969	
Fluorene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	1
Phenanthrene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Anthracene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Fluoranthene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	1
Pyrene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Benz(a)anthracene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Chrysene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Benzo(b)fluoranthene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Benzo(k)fluoranthene	NÐ	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Benzo(a)pyrene	ND	U	0.020	l	09/14/05	09/19/05	KWG0515969	
Indeno(1,2,3-cd)pyrene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	
Dibenz(a,h)anthracene	ND	U	0.020	ľ	09/14/05	09/19/05	KWG0515969	
Benzo(g,h,i)perylene	ND	U	0.020	1	09/14/05	09/19/05	KWG0515969	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	77	24-111	09/19/05	Acceptable	
Fluoranthene-d10	90	26-123	09/19/05	Acceptable	
Terphenyl-d14	103	25-146	09/19/05	Acceptable	

RECEIVED OCT 1 8 2005

Comments:

Form 1A - Organic

٠

Client: Project: Sample Matrix:

Red Hill GW Sampling Event 3/2001022.013 Water

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:EPA 3520CAnalysis Method:8270C SIM

Units: PERCENT Level: Low

<u>Sample Name</u>	Lab Code	<u>Sur1</u>	<u>Sur2</u>	<u>Sur3</u>
RH-W-005	K0503851-001	62	57	38
RH-W-006	K0503851-002	67	66	53
RH-B-007	K0503851-003	73	83	92
RH-B-008	K0503851-004	74	86	96
RH-B-009	K0503851-005	73	79	76
Method Blank	KWG0515969-3	77	90	103
Lab Control Sample	KWG0515969-1	80	92	97
Duplicate Lab Control Sample	KWG0515969-2	76	90	92

Dawson Group, Incorporated

Surrogate Recovery Control Limits (%)

Surl =	Fluorene-d10	24-111
Sur2 =	Fluoranthene-d10	26-123
-Sur3 =	Terphenyl-d14	25-146

tesuits flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

PTEEIKEJ PHE 1 8 2005.

8

00067

.

Client:	Dawson Group, Incorporated
Project:	Red Hill GW Sampling Event 3/2001022.013
Sample Matrix:	Water

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:	EPA 3520C	Units:	ug/L
Analysis Method:	8270C SIM	Basis:	NA
		Level:	Low
		Extraction Lot:	KWG0515969

	KW	Control Samp /G0515969-1 Control Spik	Duplicate Lab Control Sample KWG0515969-2 Duplicate Lab Control Spike			%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	2.23	2.50	89	2.24	2.50	90	32-124	0	30
2-Methylnaphthalene	2.23	2.50	89	2.16	2,50	87	19-133	3	30
Acenaphthylene	2.49	2.50	100	2.49	2.50	100	36-128	0	30
Acenaphthene	2.49	2.50	100	2.48	2.50	99	36-126	0	30
Dibenzofuran	2.47	2.50	99	2.48	2.50	99	10-167	1	30
Fluorene	2.59	2.50	104	2.60	2,50	104	41-130	0	30
Phenanthrene	2.55	2.50	102	2.59	2.50	104	43-129	2	30
Anthracene	2.57	2.50	103	2,53	2.50	101	36-131	1	30
Fluoranthene	2,75	2.50	110	2.84	2.50	114	45-139	3	30
Ругепе	2.83	2.50	113	2.83	2.50	113	38-143	0	30
Benz(a)anthracene	2.61	2.50	105	2.59	2,50	104	45-131	1	30
Chrysene	2.71	2.50	109	2.70	2.50	108	47-132	1	30
Benzo(b)fluoranthene	2.64	2,50	106	2.66	2.50	107	51-135	1	30
Benzo(k)fluoranthene	2,55	2.50	102	2.65	2.50	106	46-139	4	30
Benzo(a)pyrene	2,64	2.50	106	2.62	2,50	105	40-138	1	30
Indeno(1,2,3-cd)pyrene	2.62	2.50	105	2.69	2.50	107	35-148	2	30
Dibenz(a,h)anthracene	2.54	2.50	102	2.59	2,50	104	42-143	2	30
Benzo(g,h,i)perylene	2.60	2.50	104	2.62	2.50	105	42-139	1	30

.... 1 3 2005

. .

•

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

.

00068

APPENDIX C

Monitoring Well Sampling Logs

١

•

This page intentionally left blank.

۱

•

,

SURFACE WATER FIELD SAMPLING LOG

Groundwater Sampling, Red Hill Fuel Storage Facility, Hawan - Potable Water Infiltration Tunnel * PROJECT

N62742-01-D-1806, CTO 0013 JOB NO : 2001_022.013 CONTRACT NO Dawson TIME. _____12:36 CLIMATIC CONDITIONS NA DATE 9/8/2005

Group, Inc. DATE 9/8/2005 PERSONNEL. B Graham, H. Kerr

WELL INFORMATION		PURGE VOLUME	EQUIPMENT
Well Name/Number <u>S</u> Well Location,	tilling Basin	$V_{c} = (d_{c})^{2} \times (h) \times 0.041$	Instrument(s). Solinst Interphase Probe Model 122
Casing Diameter (inches)	<u>NA</u> (d _c)	Volume of water in	Calibration Time NA
Total Well Depth (feet) Initial Depth to Water (feet)	NA 81.28 TOC	casing (gailons) NA (V _c)	Calibration Result / Comments NA
Depth to Product (feet) Height of Water Column (feet)	<u>NA</u> NA (h)	Minimum Purge NA Volume (gallons):	

PURGE LOG Measurements of temperature, pH, specific conductivity, turbidity, dissolved oxygen, and redox will be collected initially, after every well volumne removed, and at the end.

METHOD OF REMOVAL. New, disposable, polyethylene bailer

PUMPING RATE NA

		CUMULATIVE GALLONS	TEMP.		SP COND.	TURBIDITY	DISSOLVED O2	REDOX
DATE	TIME	REMOVED	(°C)	рH		()	()	()
	1							
		/						

SAMPLE INFORMATION

SAMPLE WITHDRAWAL ME	THOD: <u>New, d</u>	sposable, polyethylen	e bailer	<u> </u>	SAMPLED BY	BG, HK
SAMPLE ID	P, QC, OR QA	TIME COLLECTED	DATE COLLECTED		NOTES	
RH-B-007	Р	12:55	9/8/2005	Purnps we	re offline 24 hours p	rior to sample
RH-B-008	Р	13:45	9/8/2005	Pumps online f	for 15-20 minutes (t	urned on at 13:14
RH-B-009	QC	13:50	9/8/2005	Pumps online f	for 15-20 minutes (ta	urned on at 13:14
Notes P = primary sample, QC	= quality control (du)	olicate) sample, QA = qua	ality assurance (triplicate)	sample		
APPEARANCE OF SAMPLE	Color	Clear	Tem	P <u>NA</u>	ĐO	NA
	Turbidity ⁻	NA	pH:	NA	Redox	<u>NA</u>
	Sediment.	None	Sp (Cond <u>NA</u>		
		as gasoline - EPA Metho is - EPA Method 8270C c		(6) Total le	ad - EPA Method 6020	
NUMBER & TYPE OF SAMPI	• • •			(1) 3 40-mL VOAs		
		· · · · · · · · · · · · · · · · · · ·	-			···
2) 3 40-mL VOAS with sodium		(3) 3 40-mL V((4) 2 500-mL Glass	S Amber with HCL	
5) 2 I-L Glass Amber (none)	(6) I 500-mL plastic wit	ih HNO3			
DECONTAMINATION PROCE		ee PACDIV IRP Pr	rocedures			
SAMPLES DELIVERED TO	T. Sober,	Columbia Analytica	al Services		DATE	9/9/2005
					TIME	10:00
					13_3Q05 GW S	Sampling Form.xls

MONITORING WELL FIELD SAMPLING LOG

PROJECT Groundwater Sampling, Red Hill Fuel Storage Facility, Hawaii - downgradient of USTs *

Dawson CONTRACT NO. N62742-01-D-1806, CTO 0013 JOB NO : 2001_022 013 DATE: 9/8/2005 CLIMATIC CONDITIONS. TIME 8 39 NA Group, Inc. PERSONNEL

B. Graham and H. Kerr

WELL INFORMATION			PURGE VOLUME			EQUIPMENT		
Well Name/Number	MW-V1D	,	$V_{\rm c} = (d_{\rm c})^2 \times d_{\rm c}$	(h) x 0.041		Instrument(s)YSI (Pine rental)		
Well Location	+					Oakton T-100 Turbidity Meter		
Casing Diameter (inches):	l	(d _c)	Volume of water in			Calibration Time 646		
Total Well Depth (feet)	100	_	casing (gallons)	0.67	(V _e)	Calibration Result / Comments		
Initial Depth to Water (feet):	83 97					ОК		
Depth to Product (feet).	NMP		Minimum Purge	1.97				
Height of Water Column (feet)	16.03	_(h)	Volume (gallons)					

PURGE LOG Measurements of temperature, pH, specific conductivity, turbidity, dissolved oxygen, and redox will be collected initially, after every well volume removed, and at the end.

METHOD OF REMOVAL

Dedicated Bailer

PUMPING RATE. NA

		CUMULATIVE	TEMP.		SP COND	TURBIDITY	DISSOLVED O2	REDOX
DATE	TIME	MILLILITERS REMOVED	(°C)	pН	(mS/cm)	(NTU)	(mg/L)	(mV)
9/8/2005	8:51	500	24.16	6.91	0.214	608	3.14	-31.1
9/8/2005	8:56	1500	23.63	7.05	0.224	253	2.34	-94.5
9/8/2005	9:09	2500	23.46	7.15	0.226	404	2.94	-87.1
9/8/2005	9:22	3500	23.55	7.25	0.225	552	2.57	-83.7
9/8/2005	9:34	4500	23.42	7.22	0.227	352	2.99	-82.0

SAMPLE INFORMATION

SAMPLE ID	P, QC, OR QA		DATE COLLECTED	NO	TES	
RH-W-005	P	9:40	9/8/2005			
	QC	9:45	9/8/2005		·	
		iplicate) sample, QA = qua		nple	<u></u>	_
PPEARANCE OF SAMP	LE Color		Тетр			
	Turbidity	·	pH		Redox	
	Sodiment:		Sp. Cor	ıd		
		I as gasoline - EPA Metho Hs - EPA Method 8270C o	<u> </u>	 (4) TPH as diesel - EPA M (6) Total lead - EPA Meth 		
			atives, if any)	(1) 3 40-mL VOAs with HCL		
UMBER & TYPE OF SAI	MPLE CONTAINERS	USED (include preserva				
UMBER & TYPE OF SAU		USED (include preserva (3) 3 40-mL VC		(4) 2 500-mL Glass Amber with I	HCL	
	dium thiosulfate		As with HCL	(4) 2 500-mL Glass Amber with I	HCL	
2) 3 40-mL VOAS with so	dium thiosulfate	(3) 3 40-mL VC	DAs with HCL	(4) 2 500-mL Glass Amber with I	HCL	
2) 3 40-mL VOAS with so 5) 2 1-L Glass Amber (nor	dium thiosulfate	(3) 3 40-mL VC (6) 1 500-mL plastic with see PACDIV IRP pro	DAs with HCL	(4) 2 500-mL Glass Amber with I		9/9/2005
2) 3 40-mL VOAS with so 5) 2 1-L Glass Amber (nor ECONTAMINATION PRO	dium thiosulfate	(3) 3 40-mL VC (6) 1 500-mL plastic with see PACDIV IRP pro	DAs with HCL	(4) 2 500-mL Glass Amber with I		<u>9/9/2005</u> 10:00