Final Third Quarter 2013 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells

Red Hill Bulk Fuel Storage Facility Joint Base Pearl Harbor-Hickam, Oahu, Hawaii

DOH Facility ID: 9-102271 DOH Release ID: 990051, 010011, and 020028

September 2013

Department of the Navy Naval Facilities Engineering Command, Hawaii 400 Marshall Road JBPHH, HI 96860-3139

Contract Number N62742-12-D-1853, CTO 0002

Final Third Quarter 2013 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells

Red Hill Bulk Fuel Storage Facility Joint Base Pearl Harbor-Hickam, Oahu, Hawaii

DOH Facility ID: 9-102271 DOH Release ID: 990051, 010011, and 020028

September 2013

Prepared for:

Department of the Navy Naval Facilities Engineering Command, Hawaii 400 Marshall Road JBPHH, HI 96860-3139

Prepared by:

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734

Prepared under:

Contract Number N62742-12-D-1853, CTO 0002

FINAL THIRD QUARTER 2013 - QUARTERLY GROUNDWATER MONITORING REPORT OUTSIDE TUNNEL WELLS RED HILL BULK FUEL STORAGE FACILITY

Long-Term Groundwater and Soil Vapor Monitoring Red Hill Bulk Fuel Storage Facility Joint-Base Pearl Harbor-Hickam, Oahu, Hawaii

Prepared for:

Department of the Navy Commanding Officer, Naval Facilities Engineering Command, Hawaii 400 Marshall Road JBPHH, HI 96860-3139

> Prepared by: Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734 (808) 261-0740

Prepared under: Contract Number: N62742-12-D-1853 Contract Task Order: 0002

Approval Signature:

Darren Uchima, Navy Technical Representative Date

Approval Signature:

Robert Chong, ESI Project Manager

Date

Tis on des Z

Approval Signature:

Iris van der Zander, ESI QA Manager

Date

TABLE OF CONTENTS

<u>Section</u>	Title	Page
ES	EXECUTIVE SUMMARY	ES-1
1.0	INTRODUCTION	1-1
1.1	Site Description	1-1
1.2	Physical Settings	1-2
1.3	Background	1-3
2.0	GROUNDWATER SAMPLING	2-1
2.1	Groundwater Sampling	2-1
2.2	Analytical Results	2-1
2.3	Waste Disposal	2-2
3.0	DATA QUALITY ASSESSMENT	3-1
3.1	Data Validation and Assessment	3-1
3.2	Data Assessment and Usability Conclusions	3-4
4.0	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	4-1
5.0	FUTURE WORK	5-1
6.0	REFERENCES	6-1

LIST OF TABLES

<u>Number</u>	Title	Page
1.1	Current Status of USTs	1-2
2.1	Analytical Results for Groundwater Sampling (July 24, 2013)	2-3
3.1	Quality Control Results for Groundwater Sampling (July 24, 2013)	3-5

LIST OF FIGURES

<u>Number</u>	<u>Title</u>
1	Site Location
2	Site Layout

APPENDICES

<u>Appendix</u>	<u>Title</u>
А	Groundwater Sampling Logs
В	Field Notes

- Laboratory Reports С
- Historical Groundwater Exceedance Trends D
- Е Waste Disposal Manifest

ACRONYMS AND ABBREVIATIONS

ACRONYMS/ ABBREVIATIONS	DEFINITION/MEANING
% COPC DLNR	percent Contaminant of Potential Concern State of Hawaii Department of Land and Natural Resources
DOH	State of Hawaii Department of Land and Natural Resources State of Hawaii Department of Health
DON EAL	Department of the Navy Environmental Action Level
EPA	Environmental Protection Agency
ESI F-76	Environmental Science International
ID	Marine Diesel Fuel Identification
JBPHH	Joint Base Pearl Harbor-Hickam
JP-5 JP-8	Jet Fuel Propellant-5 Jet Fuel Propellant-8
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD LOQ	Limit of Detection Limit of Quantitation
µg/L	micrograms per liter
MS MSD	Matrix Spike Matrix Spike Duplicate
NAVFAC	Naval Facilities Engineering Command
NAVSUP FLC	Naval Supply Systems Command Fleet Logistics Center
N.D. PAH	Not Detected Polycyclic Aromatic Hydrocarbons
PARCCS	Precision, Accuracy, Representativeness, Completeness, Comparability,
рН	and Sensitivity hydrogen activity
QC	Quality Control
RHSF	Red Hill Bulk Fuel Storage Facility
RPD SAP	Relative Percent Difference Sampling and Analysis Plan
TEC	The Environmental Company, Inc.
TPH-d TPH-g	Total Petroleum Hydrocarbons as diesel Total Petroleum Hydrocarbons as gasoline
U.S.	United States of America
UST VOC	Underground Storage Tank
WP	Volatile Organic Compounds Work Plan

EXECUTIVE SUMMARY

This quarterly monitoring report presents the results of the third quarter 2013 groundwater sampling event conducted on July 24, 2013, at the outside tunnel wells of the Red Hill Bulk Fuel Storage Facility [RHSF], Joint Base Pearl Harbor-Hickam [JBPHH], Hawaii. The RHSF is located in Halawa Heights on the Island of Oahu. There are 18 active and 2 inactive underground storage tanks [USTs] located at the RHSF. The State of Hawaii Department of Health [DOH] Facility Identification [ID] number is 9-102271. The DOH Release ID numbers are 990051, 010011, and 020028.

The groundwater sampling was conducted as part of the long-term groundwater and soil vapor monitoring at the RHSF, under Naval Facilities Engineering Command [NAVFAC] Contract Number N62742-12-D-1853. The sampling was conducted in accordance with the approved Work Plan [WP]/Sampling and Analysis Plan [SAP] prepared by Environmental Science International [ESI].

On July 24, 2013, ESI personnel collected groundwater samples from two outside tunnel monitoring wells (wells HDMW2253-03 and OWDFMW01). A summary of the analytical results is provided below.

- **HDMW2253-03** Naphthalene (0.03 micrograms per liter [µg/L]) was detected. The Contaminant of Potential Concern [COPC] was not detected at a concentration above the DOH Environmental Action Levels [EALs] for drinking water toxicity or gross contamination.
- OWDFMW01 Total Petroleum Hydrocarbons as diesel [TPH-d] (470 and 340 μg/L), acetone (88 and 83 μg/L), naphthalene (0.081 and 0.12 μg/L), and benzene (0.42 and 0.44 μg/L) were detected in both the primary and duplicate samples. TPH-d (470 and 340 μg/L) was detected at concentrations above the DOH EALs for both drinking water toxicity and gross contamination in both samples.

TPH-d was not detected in well HDMW2253-03 during this round of quarterly sampling. TPH-d concentrations last exceeded the DOH EALs for both drinking water toxicity and gross contamination in January 2013 (600 μ g/L). Naphthalene was detected but remained at a low concentration, below the DOH EALs and consistent with historical results.

With the exception of TPH-d in well OWDFMW01, groundwater contaminant concentrations remained at low concentrations and did not change significantly, or were not detected. TPH-d concentrations detected during this round of sampling were above the DOH EALs for both drinking water toxicity and gross contamination, but decreased significantly from the last event, and were the lowest they have been since July 2012.

Based on the results of the assessment, continued groundwater monitoring at the RHSF is recommended. If the TPH-d concentrations significantly increase, the monitoring frequency

should be increased to monthly, even though the two outside wells are not included in the RHSF Groundwater Protection Plan.

SECTION 1 – INTRODUCTION

This quarterly monitoring report presents the results of the third quarter 2013 groundwater sampling event conducted on July 24, 2013, at the outside tunnel wells of the RHSF, JBPHH, Hawaii. The RHSF is located in Halawa Heights on the Island of Oahu. The purpose of the sampling is to (1) assess the condition of groundwater beneath and in the vicinity of the RHSF with respect to chemical constituents associated with jet fuel propellant and marine diesel fuel, and (2) to ensure the Navy remains in compliance with DOH UST release response requirements as described in Hawaii Administrative Rules 11-281 Subchapter 7, Release Response Action (DOH, 2000). The DOH Facility ID number for the RHSF is 9-102271. The DOH Release ID numbers are 990051, 010011, and 020028.

The groundwater sampling was conducted as part of the long-term groundwater and soil vapor monitoring at the RHSF, under NAVFAC Contract Number N62742-12-D-1853. The sampling was conducted in accordance with the approved WP/SAP prepared by ESI (ESI, 2012).

1.1 SITE DESCRIPTION

The RHSF is located on federal government land (zoned F1- Military and Federal), located in Halawa Heights, approximately 2.5 miles northeast of Pearl Harbor (Figure 1). It is located on a low ridge on the western edge of the Koolau Mountain Range that divides Halawa Valley from Moanalua Valley. The RHSF is bordered on the north by Halawa Correctional Facility and private businesses, on the west by the United States of America [U.S.] Coast Guard reservation, on the south by residential neighborhoods, and on the east by Moanalua Valley. A quarry is located less than a quarter mile away to the northwest. The RHSF occupies 144 acres of land and the majority of the site is at an elevation of approximately 200 to 500 feet above mean sea level.

The RHSF contains 18 active and 2 inactive USTs, which are operated by Naval Supply Systems Command Fleet Logistics Center [NAVSUP FLC] Pearl Harbor (formerly Fleet and Industrial Supply Center). Each UST has a capacity of approximately 12.5 million gallons. The RHSF is located approximately 100 feet above the basal aquifer. The USTs contain Jet Fuel Propellant-5 [JP-5], Jet Fuel Propellant-8 [JP-8], and Marine Diesel Fuel [F-76]. The current status of each of the USTs is summarized in Table 1.1.

Two groundwater monitoring wells (well HDMW2253-03 and OWDFMW01) are located outside of the RHSF tunnel system (Figure 2). Well HDMW2253-03 is located at the Halawa Correctional Facility (outside the RHSF) and well OWDFMW01 is located at the Oily Waste Disposal Facility near Adit 3. Five groundwater monitoring wells (wells RHMW01, RHMW02, RHMW03, RHMW05, and RHMW2254-01) are located within the RHSF lower access tunnel. Monitoring data for the five wells located inside the tunnel are included in a separate report.

Monitoring wells RHMW01, RHMW02, RHMW03, and RHMW05 are located inside the underground tunnels. Monitoring well RHMW2254-01 is located inside the infiltration gallery of

the Department of the Navy [DON] Well 2254-01. DON Well 2254-01 is located approximately 2,400 feet downgradient of the USTs and provides approximately 24 percent [%] of the potable water to the Pearl Harbor System, which serves approximately 52,200 military customers. NAVFAC Public Works Department operates the infiltration gallery and DON Well 2254-01.

Red Hill Bulk Fuel Storage Facility April 2013 Quarterly Monitoring Report											
Tank Identification	Fuel Type	Status	Capacity								
F-1	None	Inactive	12.5 million gallons								
F-2	JP-8	Active	12.5 million gallons								
F-3	JP-8	Active	12.5 million gallons								
F-4	JP-8	Active	12.5 million gallons								
F-5	JP-8	Active	12.5 million gallons								
F-6	JP-8	Active	12.5 million gallons								
F-7	JP-5	Active	12.5 million gallons								
F-8	JP-5	Active	12.5 million gallons								
F-9	JP-5	Active	12.5 million gallons								
F-10	JP-5	Active	12.5 million gallons								
F-11	JP-5	Active	12.5 million gallons								
F-12	JP-5	Active	12.5 million gallons								
F-13	F-76	Active	12.5 million gallons								
F-14	F-76	Active	12.5 million gallons								
F-15	F-76	Active	12.5 million gallons								
F-16	F-76	Active	12.5 million gallons								
F-17	JP-5	Active	12.5 million gallons								
F-18	JP-5	Active	12.5 million gallons								
F-19	None	Inactive	12.5 million gallons								
F-20	JP-5	Active	12.5 million gallons								

TABLE 1.1 Current Status of the USTs Red Hill Bulk Fuel Storage Facility April 2013 Quarterly Monitoring Report

F-76 Marine Diesel Fuel

JP-5 Jet Fuel Propellant-5

JP-8 Jet Fuel Propellant-8

1.2 PHYSICAL SETTINGS

Climatological conditions in the area of the RHSF consist of warm to moderate temperatures and low to moderate rainfall. The RHSF is leeward of the prevailing northeasterly trade winds. The average annual precipitation is approximately 40 inches, which occurs mainly between November and April (State of Hawaii Department of Land and Natural Resources [DLNR], 1986). Annual pan evaporation is approximately 75 inches (DLNR, 1985). Average temperatures range from the low 60's to high 80's (degrees Fahrenheit) (Atlas of Hawaii, 1983).

Oahu consists of the eroded remnants of two shield volcanoes, Waianae and Koolau. The RHSF is located on the southwest flank of the Koolau volcanic shield. Lavas erupted during the shield-building phase of the volcano belong to the *Koolau Volcanic Series* (Stearns and Vaksvik, 1935). Following formation of the Koolau shield, a long period of volcanic quiescence occurred, during which the shield was deeply eroded. Following this erosional period, eruptive activity resumed. Lavas and pyroclastic material erupted during this period belong to the *Honolulu Volcanic Series* (Stearns and Vaksvik, 1935).

In the immediate area of the RHSF, Koolau Volcanic Series lavas dominate, although there are consolidated and unconsolidated non-calcareous deposits in the vicinity that consist of alluvium generated during erosion of the Koolau volcanic shield. South-southwest of the Site, and in isolated exposures to the west, are pyroclastic deposits formed during eruptions from three Honolulu Volcanic Series vents, Salt Lake, Aliamanu, and Makalapa (Stearns and Vaksvik, 1935). Based on established geology and records of the drilled wells (Stearns and Vaksvik, 1938), the RHSF is underlain by Koolau Volcanic Series basalts. The area of the RHSF is classified as *Rock Land*, where 25 to 90% of the land surface is covered by exposed rock and there are only shallow soils (Foote, et al., 1972).

Groundwater in Hawaii exists in two principal types of aquifers. The first and most important type, in terms of drinking water resources, is the basal aquifer. The basal aquifer exists as a lens of fresh water floating on and displacing seawater within the pore spaces, fractures, and voids of the basalt that forms the underlying mass of each Hawaiian island. In parts of Oahu, groundwater in the basal aquifer is confined by the overlying caprock and is under pressure. Waters that flow freely to the surface from wells that tap the basal aquifer are referred to as *artesian*.

The second type of aquifer is the caprock aquifer, which consists of various kinds of unconfined and semi-confined groundwater. Commonly, the caprock consists of a thick sequence of nearly impermeable clays, coral, and basalt, which separates the caprock aquifer from the basal aquifer. The impermeable nature of these materials and the artesian nature of the basal aquifer severely restrict the downward migration of groundwater from the upper caprock aquifer. In the area of the RHSF, there is no discernible caprock.

Groundwater in the area of the RHSF is part of the *Waimalu Aquifer System* of the *Pearl Harbor Aquifer Sector*. The aquifer is classified as a basal, unconfined, flank-type; and is currently used as a drinking water source. The aquifer is considered fresh with less than 250 milligrams per liter of chloride and is considered an irreplaceable resource with a high vulnerability to contamination (Mink and Lau, 1990).

The nearest drinking water supply well is the DON Well 2254-01, located in the infiltration gallery within the RHSF. DON Well 2254-01 is located approximately 2,400 feet downgradient of the USTs (Figure 2).

1.3 BACKGROUND

The RHSF was constructed by the U.S. Government in the early 1940s. Twenty USTs and a series of tunnels were constructed to supply fuel to the Navy. The USTs were constructed of steel and they currently contain JP-5, JP-8, and F-76. Several tanks in the past have stored DON special fuel oil, DON distillate, aviation gasoline, and motor gasoline (Environet, 2010). The fueling system is a self-contained underground unit that was installed into native rock comprised primarily of basalt with some interbedded tuffs and breccias (Environet, 2010). Each

UST measures approximately 245 feet in height and 100 feet in diameter. The upper domes of the tanks lie at depths varying between 100 feet and 200 feet below ground surface.

In response to increasing concentrations of COPCs in the groundwater monitoring wells within the facility (specifically RHMW02) during the 2008 sampling events, quarterly groundwater monitoring was initiated in 2009 at the outside tunnel wells.

In 2009, groundwater samples were collected from wells RHMW04, OWDFMW01, and HDMW2253-03. Samples were collected in August and October 2009. None of the COPCs were detected at concentrations exceeding the gross contamination or drinking water toxicity DOH EALs.

In 2010, groundwater samples were collected from wells RHMW04, OWDFMW01, and HDMW2253-03. Samples were collected from well RHMW04 in January and April 2010. Samples were collected from well OWDFMW01 in January, April, and October 2010. Samples were collected from well HDMW2253-03 in January, April, July and October 2010. The COPCs concentrations exceeding DOH EALs are summarized below.

- **HDMW2253-03** TPH-d was detected at a concentration above the gross contamination and drinking water toxicity DOH EAL in January 2010 (The Environmental Company, Inc. [TEC], 2010a).
- **OWDFMW01** TPH-d was detected at a concentration above the gross contamination and drinking water toxicity DOH EALs in January and April 2010 (TEC, 2010a; TEC, 2010b).

In 2011, groundwater samples were collected from wells OWDFMW01 and HDMW2253-03. Samples were collected in January, April, July, and October 2011. None of the COPCs were detected at concentrations exceeding the gross contamination or drinking water toxicity DOH EALs.

In 2012, groundwater samples were collected from wells OWDFMW01 and HDMW2253-03. Samples were collected in January, April, July, and November 2012. TPH-d was detected at a concentration above the DOH EALs in samples collected from wells HDMW2253-03 and OWDFMW01 (Environet, 2012; ESI, 2013a). The COPCs concentrations exceeding DOH EALs are summarized below.

- **HDMW2253-03** TPH-d was detected at a concentration above the DOH EALs for gross contamination and drinking water toxicity in April and November 2012.
- **OWDFMW01** TPH-d was detected at a concentration above the DOH EALs for gross contamination and drinking water toxicity in April 2012.

In January 2013, groundwater samples were collected from wells OWDFMW01 and HDMW2253-03 (ESI 2013b). TPH-d was detected at a concentration above the DOH EALs in samples collected from wells HDMW2253-03 and OWDFMW01. The COPCs concentrations exceeding DOH EALs are summarized below.

- **HDMW2253-03** TPH-d was detected at a concentration above the DOH EALs for gross contamination and drinking water toxicity in January 2013.
- **OWDFMW01** TPH-d was detected at a concentration above the DOH EALs for gross contamination and drinking water toxicity in January 2013.

In April 2013, groundwater samples were collected from wells OWDFMW01 and HDMW2253-03 (ESI 2013c). TPH-d was detected at a concentration above the DOH EALs in samples collected from well OWDFMW01. The COPC concentrations exceeding DOH EALs are summarized below.

• **OWDFMW01** – TPH-d was detected at a concentration above the DOH EALs for gross contamination and drinking water toxicity in April 2013.

1.3.1 Previous Reports

The following groundwater monitoring reports were previously submitted to the DOH:

- 1. Groundwater Monitoring Report, August 2009 (submitted September 2009).
- 2. Groundwater Monitoring Report, October 2009 (submitted December 2009).
- 3. Groundwater Monitoring Report, January, 2010 (submitted April 2010).
- 4. Groundwater Monitoring Report, April 2010 (submitted May 2010).
- 5. Groundwater Monitoring Report, July 2010 (submitted August 2010).
- 6. Groundwater Monitoring Report, October 2010 (submitted December 2010).
- 7. Groundwater Monitoring Report, January 2011 (submitted March 2011).
- 8. Groundwater Monitoring Report, April 2011 (submitted June 2011).
- 9. Groundwater Monitoring Report, July 2011 (submitted September 2011).
- 10. Groundwater Monitoring Report, October 2011 (submitted December 2011).
- 11. Groundwater Monitoring Report, January 2012 (submitted March 2012).
- 12. Groundwater Monitoring Report, April 2012 (submitted July 2012).
- 13. Groundwater Monitoring Report, July 2012 (submitted August 2012).
- 14. Groundwater Monitoring Report, November 2012 (submitted January 2013).

- 15. Groundwater Monitoring Report, January 2013 (submitted April 2013).
- 16. Groundwater Monitoring Report, April 2013 (submitted July 2013).

SECTION 2 – GROUNDWATER SAMPLING

On July 24, 2013, ESI personnel collected groundwater samples from two monitoring wells (wells OWDFMW01 and HDMW2253-03). The samples were collected in accordance with DOH UST release response requirements and the RHSF Groundwater Protection Plan (TEC, 2008). Prior to purging and sampling, the depth to groundwater and the depth to the bottom of the wells were measured. Well OWDFMW01 was measured by ESI using a Geotech oil/water interface probe. Well HDMW2253-03 was measured by the DLNR using their Geotech oil/water interface probe. The measurements are included in the groundwater sampling logs. No measurable product, sheen, or petroleum hydrocarbon odor was observed in either well.

2.1 GROUNDWATER SAMPLING

Prior to collecting groundwater samples, disposable bailers were used to purge groundwater from the monitoring wells. Wells OWDFMW01 and HDMW2253-03 were purged at a rate of 0.29 and 0.11 liters per minute, respectively.

Water quality parameters were monitored on a periodic basis during well purging. The water quality parameters that were measured included hydrogen activity [pH], temperature, conductivity, dissolved oxygen, and oxidation reduction potential. The water quality parameters were evaluated to demonstrate that the natural characteristics of the aquifer formation water were present within the monitoring well before collecting the sample. At least four readings were collected during the purging process. Purging was considered complete when at least three consecutive water quality measurements stabilized within approximately 10%. The readings were recorded on groundwater monitoring logs which are included in Appendix A. The field notes are included in Appendix B.

When the water quality parameters stabilized, groundwater samples were collected from the wells. The disposable bailers were used to collect the groundwater samples from the monitoring wells. For each monitoring well, the groundwater samples were collected no more than two hours after purging was completed to prevent groundwater interaction with the monitoring well casing and atmosphere. Samples collected for dissolved lead were filtered in the field using a peristaltic pump and a 0.45 micron filter.

2.2 ANALYTICAL RESULTS

The samples were analyzed for TPH-d using U.S. Environmental Protection Agency [EPA] Method 8015M, Total Petroleum Hydrocarbons as gasoline [TPH-g] and Volatile Organic Compounds [VOCs] using EPA Method 8260B, Polycyclic Aromatic Hydrocarbons [PAHs] using EPA Method 8270C SIM, and dissolved lead using EPA Method 6020. The analytical results are summarized below and in Table 2.1. A copy of the laboratory report is included in Appendix C.

HDMW2253-03 – Naphthalene (0.03 μg/L) was detected. The COPC was not detected at a concentration above the DOH EALs.

OWDFMW01 – TPH-d (470 and 340 μg/L), acetone (88 and 83 μg/L), naphthalene (0.081 and 0.012 μg/L), and benzene (0.42 and 0.44 μg/L) were detected in both the primary and duplicate samples. TPH-d (470 and 340 μg/L) was detected at a concentration above the DOH EALs for both drinking water toxicity and gross contamination in both samples.

2.2.1 Groundwater Contaminant Trends

Historical groundwater contaminant concentration trends of COPCs that exceed the DOH EALs are presented in Appendix D. A summary of groundwater contaminant trends is provided below.

- HDMW2253-03 TPH-d was not detected during this round of quarterly sampling. TPH-d concentrations last exceeded the DOH EALs for both drinking water toxicity and gross contamination in January 2013 (600 µg/L). Naphthalene was detected but remained at a low concentration, below the DOH EALs and consistent with historical results.
- **OWDFMW01** With the exception of TPH-d, groundwater contaminant concentrations remained at low concentrations and did not change significantly, or were not detected. TPH-d concentrations detected during this round of sampling were above the DOH EALs for both drinking water toxicity and gross contamination, but decreased significantly from the last event, and were the lowest they have been since July 2012.

2.3 WASTE DISPOSAL

The purged groundwater and decontamination water generated during sampling of the wells was stored in a 55-gallon drum along with the purged water and decontamination water from the inside tunnel wells. The drum was stored onsite at Adit 3. On August 23, 2013, the drum of water was picked up by Pacific Commercial Services, LLC and disposed at Unitek Solvent Services, Inc. The waste disposal manifest is included in Appendix E.

TABLE 2.1 Analytical Results for Groundwater Sampling (July 24, 2013) Red Hill Bulk Fuel Storage Facility July 2013 Quarterly Monitoring Report

EPA 8260B T A	Chemical TPH-d TPH-g	DOH Drinking Water Toxicity	EALs Gross		OW	DFMW01 (ES	J34)			OWDF	MW01 (ES035	b) (Dup)			HDM	W2253-03 (ES	5036)	
EPA 8015B T EPA 8260B T A A	TPH-d		Gross			OWDFMW01 (ES034)												
EPA 8260B T A			Contamination	Results	Q	LOQ	LOD	DL	Results	Q	LOQ	LOD	DL	Results	Q	LOQ	LOD	DL
A A	IPH-g	190	100	470	HD	52	21	15	340	HD	52	21	15	N.D.	U	52	21	15
A	Assasshthana	100	100	N.D. N.D.	UU	50	30 0.05	13 0.021	N.D. N.D.	U	50 0.19	30 0.048	13 0.020	N.D. N.D.	U U	50 0.19	30 0.047	13 0.020
	Acenaphthene Acenaphthylene	370 240	20 2,000	N.D. N.D.	U	0.2	0.05	0.021	N.D. N.D.	UU	0.19	0.048	0.020	N.D. N.D.	U	0.19	0.047	0.020
	Anthracene	1.800	2,000	N.D.	U	0.2	0.05	0.018	N.D.	U	0.19	0.048	0.033	N.D.	<u> </u>	0.19	0.047	0.032
	Benzo[a]anthracene	0.092	4.7	N.D.	U	0.2	0.05	0.024	N.D.	U	0.19	0.048	0.023	N.D.	<u> </u>	0.19	0.047	0.022
	Benzo[g,h,i]perylene	1,500	0.13	N.D.	U	0.2	0.05	0.022	N.D.	U	0.19	0.048	0.020	N.D.	U	0.19	0.047	0.021
	Benzo[a]pyrene	0.2	0.81	N.D.	U	0.2	0.05	0.036	N.D.	U	0.19	0.048	0.035	N.D.	U	0.19	0.047	0.034
	Benzo[b]fluoranthene	0.092	0.75	N.D.	U	0.2	0.05	0.025	N.D.	U	0.19	0.048	0.024	N.D.	U	0.19	0.047	0.024
E	Benzo[k]fluoranthene	0.92	0.4	N.D.	U	0.2	0.05	0.023	N.D.	U	0.19	0.048	0.023	N.D.	U	0.19	0.047	0.022
EPA 8270C SIM	Chrysene	9.2	1	N.D.	U	0.2	0.05	0.019	N.D.	U	0.19	0.048	0.018	N.D.	U	0.19	0.047	0.018
L	Dibenzo[a,h]anthracene	0.0092	0.52	N.D.	U	0.2	0.05	0.027	N.D.	U	0.19	0.048	0.026	N.D.	U	0.19	0.047	0.025
	Fluoranthene	1,500	130	N.D.	U	0.2	0.05	0.027	N.D.	U	0.19	0.048	0.026	N.D.	U	0.19	0.047	0.026
	Fluorene	240	950	N.D.	U	0.2	0.05	0.024	N.D.	U	0.19	0.048	0.024	N.D.	U	0.19	0.047	0.023
	Indeno[1,2,3-cd]pyrene	0.092	0.095	N.D.	U	0.2	0.05	0.022	N.D.	U	0.19	0.048	0.021	N.D.	U	0.19	0.047	0.021
	1,-Methylnaphthalene	4.7	10 10	N.D. N.D.	UU	0.2	0.05	0.028	N.D. N.D.	UU	0.19	0.048	0.027	N.D. N.D.	U U	0.19 0.19	0.047	0.027 0.025
	2,-Methylnaphthalene Naphthalene	17	21	N.D. 0.081	J	0.2	0.05	0.026	0.12	J	0.19	0.048	0.026	0.030		0.19	0.047	0.025
	Phenanthrene	240	410	N.D.	U	0.2	0.05	0.030	N.D.	Ű	0.19	0.048	0.022	N.D.	Ű	0.19	0.047	0.029
	Pyrene	180	68	N.D.	U U	0.2	0.05	0.025	N.D.	U	0.19	0.048	0.023	N.D.	<u> </u>	0.19	0.047	0.023
	1,1,1-Trichloroethane	200	970	N.D.	U	5.0	0.5	0.30	N.D.	U	5.0	0.5	0.30	N.D.	U	5.0	0.5	0.30
	1,1,2-Trichloroethane	5	50,000	N.D.	U	1.0	0.5	0.38	N.D.	U	1.0	0.5	0.38	N.D.	U	1.0	0.5	0.38
1	1,1-Dichloroethane	2.4	50,000	N.D.	U	5.0	0.5	0.28	N.D.	U	5.0	0.5	0.28	N.D.	U	5.0	0.5	0.28
	1,1-Dichloroethylene	7	1,500	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43
	1,2,3-Trichloropropane	0.6	50,000	N.D.	U	5.0	1.0	0.64	N.D.	U	5.0	1.0	0.64	N.D.	U	5.0	1.0	0.64
	1,2,4-Trichlorobenzene	70	3,000	N.D.	U	5.0	1.0	0.5	N.D.	U	5.0	1.0	0.5	N.D.	U	5.0	1.0	0.5
	1,2-Dibromo-3- chloropropane	0.04	10	N.D.	U	10	2.0	1.2	N.D.	U	10	2.0	1.2	N.D.	U	10	2.0	1.2
	1,2-Dibromoethane	0.04	50,000	N.D.	U	1.0	0.5	0.36	N.D.	U	1.0	0.5	0.36	N.D. N.D.	U	1.0	0.5	0.36
	1,2-Dichlorobenzene 1,2-Dichloroethane	600 0.15	10 7,000	N.D. N.D.	UU	1.0	0.5 0.5	0.46	N.D. N.D.	UU	1.0	0.5	0.46	N.D. N.D.	U U	1.0 1.0	0.5	0.46
	1,2-Dichloropropane	5	10	N.D.	U	5.0	0.5	0.42	N.D.	U	5.0	0.5	0.24	N.D.	U	5.0	0.5	0.42
	1,3-Dichlorobenzene	180	5	N.D.	U	1.0	0.5	0.4	N.D.	Ŭ	1.0	0.5	0.4	N.D.	U	1.0	0.5	0.4
	1,3-Dichloropropene (total of cis/trans)	0.43	50,000	N.D.	U	1.0	0.5	0.25	N.D.	U	1.0	0.5	0.25	N.D.	U	1.0	0.5	0.25
1	1,4-Dichlorobenzene	75	5	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43
A	Acetone	22,000	20,000	88		20	10	6.0	83		20	10	6.0	N.D.	U	20	10	6.0
E	Benzene	5	170	0.42	J	1.0	0.5	0.14	0.44	J	1.0	0.5	0.14	N.D.	U	1.0	0.5	0.14
	Bromodichloromethane	0.12	50,000	N.D.	U	5.0	0.5	0.21	N.D.	U	5.0	0.5	0.21	N.D.	U	5.0	0.5	0.21
	Bromoform	80	510	N.D.	U	10	1.0	0.50	N.D.	U	10	1.0	0.50	N.D.	U	10	1.0	0.50
	Bromomethane	8.7	50,000	N.D.	U	20	5.0	3.9	N.D.	U	20	5.0	3.9	N.D.	U	20	5.0	3.9
	Carbon Tetrachloride	5 100	520	N.D. N.D.	U	1.0	0.5	0.23	N.D.	U	1.0	0.5	0.23	N.D.	U	1.0	0.5	0.23
	Chlorobenzene Chloroethane	21,000	50 16	N.D.	UU	5.0 10	0.5 5.0	0.17 2.3	N.D. N.D.	UU	5.0 10	5.0	0.17 2.3	N.D. N.D.	U U	5.0 10	0.5 5.0	0.17 2.3
	Chloroform	70	2,400	N.D.	U	5.0	0.5	0.46	N.D.	U	5.0	0.5	0.46	N.D.	U	5.0	0.5	0.46
	Chloromethane	1.8	50,000	N.D.	U U	10	2.0	1.8	N.D.	U	10	2.0	1.8	N.D.	<u> </u>	10	2.0	1.8
	cis-1,2-Dichloroethylene	70	50,000	N.D.	U	1.0	0.5	0.48	N.D.	U	1.0	0.5	0.48	N.D.	U	1.0	0.5	0.48
	Dibromochloromethane	0.16	50,000	N.D.	U	1.0	0.5	0.25	N.D.	U	1.0	0.5	0.25	N.D.	U	1.0	0.5	0.25
E	Ethylbenzene	700	30	N.D.	U	1.0	0.5	0.14	N.D.	U	1.0	0.5	0.14	N.D.	U	1.0	0.5	0.14
	Hexachlorobutadiene	0.86	6	N.D.	U	1.0	0.5	0.32	N.D.	U	1.0	0.5	0.32	N.D.	U	1.0	0.5	0.32
	Methyl ethyl ketone (2-Butanone)	7,100	8,400	N.D.	U	10	5.0	2.2	N.D.	U	10	5.0	2.2	N.D.	U	10	5.0	2.2
	Methyl isobutyl ketone (4-Methyl-2-Pentanone)	2,000	1300	N.D.	U	10	5.0	4.4	N.D.	U	10	5.0	4.4	N.D.	U	10	5.0	4.4
	Methyl tert-butyl Ether	12 4.8	5 9,100	N.D. N.D.	U	1.0	0.5	0.31	N.D.	UU	1.0	0.5	0.31	N.D. N.D.	U	1.0	0.5	0.31
	Methylene chloride Styrene	4.8	9,100	N.D. N.D.	UU	5.0 1.0	1.0 0.5	0.64	N.D. N.D.	U	5.0	1.0 0.5	0.64	N.D. N.D.	U U	5.0 1.0	1.0 0.5	0.64
	Tetrachloroethane, 1,1,1,2-	0.52	50,000	N.D.	U	1.0	0.5	0.17	N.D.	U	1.0	0.5	0.17	N.D.	U	1.0	0.5	0.17
	Tetrachloroethane, 1,1,2,2-	0.067	500	N.D.	UJ	1.0	0.5	0.40	N.D.	UJ	1.0	0.5	0.40	N.D.	UJ	1.0	0.5	0.40
	Tetrachloroethylene	5	170	N.D.	U	5.0	0.5	0.39	N.D.	U	5.0	0.5	0.39	N.D.	U	5.0	0.5	0.39
	Toluene	1,000	40	N.D.	U	1.0	0.5	0.24	N.D.	U	1.0	0.5	0.24	N.D.	U	1.0	0.5	0.24
ti	trans-1,2- Dichloroethylene	100	260	N.D.	U	1.0	0.5	0.37	N.D.	U	1.0	0.5	0.37	N.D.	U	1.0	0.5	0.37
Т	Trichloroethylene	5	310	N.D.	U	1.0	0.5	0.37	N.D.	U	1.0	0.5	0.37	N.D.	U	1.0	0.5	0.37
	Vinyl chloride	2	3,400	N.D.	U	1.0	0.5	0.30	N.D.	U	1.0	0.5	0.30	N.D.	U	1.0	0.5	0.30
	Xylenes	10,000	20	N.D.	U	11	1.5	0.23	N.D.	U	11	1.5	0.23	N.D.	U	11	1.5	0.23
EPA 6020 E	Dissolved Lead	15	50,000	N.D.	U	1.0	0.2	0.0898	N.D.	U	1	0.2	0.0898	N.D.	U	1	0.2	0.0898

 Image: Disponse Lead
 15
 50,000
 N.D.
 U
 1.0
 0.2

 The data are in micrograms per liter (µg/L). Shaded values exceeded the DOH EALs.
 DOH EALs
 DOH Tier 1 Environmental Action Levels for groundwater where groundwater is a current drinking water source and surface water is greater than 150 meters from the site (DOH, Fall 2011).
 DL
 Detection Limit or Method Detection Limit (MDL)

 EPA
 Environmental Protection Agency
 HD
 The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
 J
 Analyte was detected at a concentration below the LOQ and above the DL. Reported value is estimated.
 LOD
 Limit of Detection

Limit of Quantitation Not Detected Qualifiers

LOQ N.D.

Q TPH-g TPH-d

Total Petroleum Hydrocarbons as gasoline Total Petroleum Hydrocarbons as diesel Undetected at DL and is reported as less than the LOD.

U

SECTION 3 – DATA QUALITY ASSESSMENT

A data quality assessment, which consists of a review of the overall groundwater sample collection and analysis process, was performed in order to determine whether the analytical data generated meet the quality objectives for the project. The field Quality Control [QC] program consisted of standardized sample collection and management procedures, and the collection of field duplicate samples, matrix spike samples, and trip blank samples. The laboratory quality assurance program consisted of the use of standard analytical methods and the preparation and analyses of Matrix Spike [MS]/Matrix Spike Duplicate [MSD] samples, surrogate spikes, blanks, Laboratory Control Samples [LCS] and Laboratory Control Sample Duplicate [LCSD].

3.1 Data Validation and Assessment

The objective of data validation is to provide data of known quality for project decisions. Data quality is judged in terms of Precision, Accuracy, Representativeness, Completeness, Comparability, and Sensitivity [PARCCS]. A number of factors may affect the quality of data, including: sample collection methods, sample analysis methods, and adherence to established procedures for sample collection, preservation, management, shipment, and analysis.

Precision

Precision is defined as the reproducibility of replicate measurements. Precision is evaluated by Relative Percentage Difference [RPD] of field duplicates and laboratory LCS/LCSD or MS/MSD results. Field duplicate and MS/MSD samples were collected at a rate of approximately 10% of project samples. Field duplicates were sent to the laboratory along with the primary samples.

The RPDs of detected analytes for the primary and field duplicate samples (ES034 and ES035) are provided in Table 3.1. A precision of less than 50% for duplicate pairs is required by the DoN Project Procedures Manual to be considered acceptable (DoN 2007). For this monitoring event, the RPDs for duplicate sample pairs were all within the acceptable range except for TPH-d (32%) and naphthalene (39%). In samples ES034 and ES035, TPH-d was detected at concentrations approximately double the DOH EALs, and naphthalene was detected approximately two order of magnitude below the DOH EALs. Therefore, this slight reduction in precision is unlikely to affect data usability. The naphthalene concentrations detected in the samples were below the respective limits of quantitation [LOQs] implying a higher uncertainty for these results than for values detected above the LOQs (i.e. estimated, J-flagged). Consequently, the assigned RPDs signified the anticipated decrease in precision is considered acceptable based on the sample duplicated evaluation.

The RPD of the MS/MSD results for benzo[b]fluoranthene, dibenzo[a,h]anthracene, flourene, phenanthrene, and 1,1,2,2-tetrachloroethane were above the acceptable maximum of 20%. Only 1,1,2,2-tetrachloroethane was above 50%, an RPD recommended in the NAVFAC Project

Procedures Manual [DON 2007]. None of these COPCs were detected during this sampling event or have been historically detected. Therefore, this is unlikely to affect data usability.

Accuracy

Accuracy is defined as the degree of conformity of a measurement to a standard or true value. Accuracy is evaluated through measurement of the percent recovery of an analyte in a reference standard or spiked sample. Accuracy limits for surrogates, laboratory control spike, MS, and MSD samples are established by the individual laboratory. The acceptance criteria for accuracy are dependent on the analytical method and are based on historical laboratory data.

Results for TPH-d in samples ES034 and ES035 were flagged "HD." The laboratory indicated a mismatch between the calibration standard and the TPH-d chromatographic profile. Mismatches of this type are not uncommon. The chromatograms are not part of the standard laboratory package and were not reviewed by ESI.

With the exception of acetone, all of the LCS and surrogate spike recoveries for analyzed constituents were within acceptable percent recovery limits. The MS and/or MSD recoveries were below the control limits for 1,1,2,2-tetrachloroethane and the associated sample results may be biased low. Sample results for 1,1,2,2-tetrachloroethane were flagged "UJ." 1,1,2,2-Tetrachloroethane was not detected in any of the groundwater samples. However the drinking water EAL for 1,1,2,2-Tetrachloroethane is below the respective limits of detection [LODs]. Based on historical results and the results of other VOCs in the sample; it is not likely that 1,1,2,2-tetrachloroethane is present at concentrations above the DOH EALs.

The MS and/or MSD recoveries were above the control limits for acetone, tetrachloroethylene, and trichloroethylene, and the associated sample results may be biased high. None of the COPCs were detected at concentrations above the DOH EALs, so a potential high bias should not affect data usability. The LCS recovery for acetone was also above the control limits.

All other MS/MSD recoveries were within acceptable recovery limits; therefore, the data accuracy for this monitoring event is considered acceptable.

Representativeness

Representativeness is the degree that data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness was achieved by conducting sampling in compliance with the sample collection procedures described in the WP/SAP specifically written for this project (ESI, 2012).

Representativeness is also evaluated through the compliance with the sample holding time, sample preservation, and the analysis of blank samples, including method blank and trip blank samples. The sample holding time and sample preservation complied with the EPA criteria. For this sampling event, one trip blank was included in the cooler to assess contamination during sample transport for TPH-g and VOCs. TPH-g and VOCs were not detected in the trip blank.

Therefore, the groundwater sample data are considered representative of the groundwater quality on site.

Completeness

Completeness is defined as the overall percentage of valid analytical results (including estimated results) compared to the total number of analytical results reported by the laboratory. No data were rejected for this project, and therefore the completeness goal for this project (90%) was successfully met.

Comparability

Comparability expresses the confidence with which one data set can be compared to another data set. Comparability can be related to accuracy and precision because these quantities are measures of data reliability. Data, with acceptable precision and accuracy, are considered comparable if collection techniques, analytical procedures, methods and reporting are equivalent. For this monitoring event, the samples were collected using approaches consistent with those in the previous events, and the same analytical methods/procedures were used to measure the concentration of COPCs. Therefore, the results are considered comparable within this data set and with the data collected from previous sampling events. The field and laboratory personnel followed standard operation procedures.

All TPH-g data through July 2010 was analyzed by EPA Method 8015; beginning in October 2010, EPA Method 8260B was used. There was no event where both methods were used, and so there is no way to directly compare the results using each method and determine if one method produces biased results. However, there is no reason to believe that using either method should bias the data, and the TPH-g data for all events should be comparable.

Between August 2009 and July 2010, naphthalene was analyzed for by both EPA Methods 8260B and 8270C, and both results were reported. Beginning in October 2010, only results using EPA Method 8270C were reported. Naphthalene was not detected in any well until November 2012, so comparability with older results should not be a concern. However, the low bias associated with EPA Method 8270C must be considered when making project decisions.

Sensitivity

The LOQs are established by the laboratory based on the LODs or instrument detection limits, historical data, and EPA limits established for the methods. The LOQs for samples may require adjustment due to matrix interference or if high levels of target analytes necessitate dilution before analysis. Matrix interference and sample dilutions have the effect of increasing the LOQs. Laboratory LODs and LOQs for several analytes differed from the LODs and LOQs in the WP/SAP because the laboratory updates them quarterly. LODs and LOQs for several analytes were greater than the DOH EALs (as stated in the WP/SAP) and therefore it is not possible to determine whether the analytes are present at concentrations greater than or equal to the DOH EALs. As suggested by the DOH Technical Guidance Manual, the project action level will be the LOQ for these analytes.

3.2 Data Assessment and Usability Conclusions

The PARCCS criteria were evaluated, and with a few exceptions, all criteria were met. These exceptions include the exceedances of recovery criteria for MS/MSDs for several VOCs and PAHs. Since the surrogate recoveries and the recoveries of the VOCs and PAHs in the LCS/LCSD are all within recovery criteria, the MS/MSD exceendaces are not considered to affect the usability of the data, but may indicate some matrix heterogeneity. The data assessment concludes that all data generated during this event are usable for their intended purpose.

TABLE 3.1 Quality Control Results for Groundwater Sampling (July 24, 2013) Red Hill Bulk Fuel Storage Facility July 2013 Quarterly Monitoring Report

	Chemical Constituent	DOH	EALs		0	WDFMW01 (ES		<u></u>		OWDFMW01 (ES035) (DUP)					ES Trip				
Method		Drinking Water	Gross	Results	0	LOQ	LOD	DL	Results	Q	LOQ	LOD	DL	Duplicate	Results	Q	LOQ	LOD	DL
EPA 8015B	TPH-d	190	Contamination 100	470	HD	52	21	15	340	HD	52	21	15	(%) 32.10	-		-	-	-
EPA 8260B	TPH-g	100	100	N.D.	U	50	30	13	N.D.	U	50	30	13	NA	N.D.	U	50	30	13
	Acenaphthene	370	20	N.D.	U	0.2	0.05	0.021	N.D.	U	0.19	0.048	0.020	NA	-	-	-	-	-
	Acenaphthylene	240	2,000	N.D.	U	0.2	0.05	0.018	N.D.	U	0.19	0.048	0.017	NA	-	-	-	-	-
	Anthracene	1,800	22	N.D.	U	0.2	0.05	0.034	N.D.	U	0.19	0.048	0.033	NA	-	-	-	-	-
	Benzo[a]anthracene	0.092	4.7	N.D.	U	0.2	0.05	0.024	N.D.	U	0.19	0.048	0.023	NA	-	-	-	-	-
	Benzo[g,h,i]perylene	1,500	0.13	N.D.	U	0.2	0.05	0.022	N.D.	U	0.19	0.048	0.021	NA	-	-	-	-	-
	Benzo[a]pyrene	0.2	0.81	N.D. N.D.	UU	0.2	0.05	0.036	N.D. N.D.	UU	0.19	0.048	0.035	NA NA	-	-	-	-	-
	Benzo[b]fluoranthene Benzo[k]fluoranthene	0.92	0.4	N.D.	U	0.2	0.05	0.023	N.D.	U	0.19	0.048	0.024	NA	-	-	-	-	-
	Chrysene	9.2	1	N.D.	U	0.2	0.05	0.023	N.D.	U	0.19	0.048	0.025	NA	-	-		-	-
EPA 8270C SIM	Dibenzo[a,h]anthracene	0.0092	0.52	N.D.	U	0.2	0.05	0.027	N.D.	U	0.19	0.048	0.026	NA	-	-	-	-	-
	Fluoranthene	1,500	130	N.D.	U	0.2	0.05	0.027	N.D.	U	0.19	0.048	0.026	NA	-	-	-	-	-
	Fluorene	240	950	N.D.	U	0.2	0.05	0.024	N.D.	U	0.19	0.048	0.024	NA	-	-	-	-	-
1	Indeno[1,2,3-cd]pyrene	0.092	0.095	N.D.	U	0.2	0.05	0.022	N.D.	U	0.19	0.048	0.021	NA	-	-	-	-	-
1	1,-Methylnaphthalene	4.7	10	N.D.	U	0.2	0.05	0.028	N.D.	U	0.19	0.048	0.027	NA	-	-	-	-	-
1	2,-Methylnaphthalene	24	10	N.D.	U	0.2	0.05	0.026	N.D.	U	0.19	0.048	0.026	NA	-	-	-	-	-
1	Naphthalene	17	21	0.081	J	0.2	0.05	0.023	0.12	J	0.19	0.048	0.022	38.81	-	-	-	-	-
1	Phenanthrene Pyrene	240 180	410 68	N.D. N.D.	UU	0.2	0.05	0.030	N.D. N.D.	UU	0.19	0.048	0.029	NA NA	-	-	-	-	-
	1,1,1-Trichloroethane	200	970	N.D. N.D.	U	5.0	0.05	0.025	N.D.	U	5.0	0.048	0.024	NA	- N.D.	- U	- 5.0	- 0.5	- 0.30
	1.1.2-Trichloroethane	5	50,000	N.D.	U U	1.0	0.5	0.38	N.D.	U	1.0	0.5	0.38	NA	N.D.	U	1.0	0.5	0.38
	1.1-Dichloroethane	2.4	50,000	N.D.	U	5.0	0.5	0.28	N.D.	U	5.0	0.5	0.28	NA	N.D.	U	5.0	0.5	0.28
	1,1-Dichloroethylene	7	1,500	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43	NA	N.D.	U	1.0	0.5	0.43
	1,2,3-Trichloropropane	0.6	50,000	N.D.	U	5.0	1.0	0.64	N.D.	U	5.0	1.0	0.64	NA	N.D.	U	5.0	1.0	0.64
	1,2,4-Trichlorobenzene	70	3,000	N.D.	U	5.0	1.0	0.5	N.D.	U	5.0	1.0	0.5	NA	N.D.	U	5.0	1.0	0.5
	1,2-Dibromo-3- chloropropane	0.04	10	N.D.	U	10	2.0	1.2	N.D.	U	10	2.0	1.2	NA	N.D.	U	10	2.0	1.2
	1,2-Dibromoethane	0.04	50,000	N.D.	U	1.0	0.5	0.36	N.D.	U	1.0	0.5	0.36	NA	N.D.	U	1.0	0.5	0.36
	1,2-Dichlorobenzene	600	10	N.D.	U	1.0	0.5	0.46	N.D.	U	1.0	0.5	0.46	NA	N.D.	U	1.0	0.5	0.46
	1,2-Dichloroethane	0.15	7,000	N.D.	U	1.0	0.5	0.24	N.D.	U	1.0	0.5	0.24	NA	N.D.	U	1.0	0.5	0.24
	1,2-Dichloropropane	5	10 5	N.D.	U	5.0	0.5	0.42	N.D.	U	5.0	0.5	0.42	NA	N.D.	U	5.0	0.5	0.42
	1,3-Dichlorobenzene 1,3-Dichloropropene (total of cis/trans)	180	50,000	N.D. N.D.	UU	1.0	0.5	0.4	N.D. N.D.	UU	1.0	0.5	0.4 0.25	NA NA	N.D. N.D.	UU	1.0 2.0	0.5	0.4 0.25
	1,4-Dichlorobenzene	75	5	N.D.	U U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43	NA	N.D.	U	1.0	0.5	0.23
	Acetone	22,000	20.000	88	<u> </u>	20	10	6.0	83	<u> </u>	20	10	6.0	5.85	N.D.	U	20	10	6.0
	Benzene	5	170	0.42	J	1.0	0.5	0.14	0.44	J	1.0	0.5	0.14	4.65	N.D.	U	1.0	0.5	0.14
	Bromodichloromethane	0.12	50,000	N.D.	U	5.0	0.5	0.21	N.D.	U	5.0	0.5	0.21	NA	N.D.	U	5.0	0.5	0.21
	Bromoform	80	510	N.D.	U	10	1.0	0.50	N.D.	U	10	1.0	0.50	NA	N.D.	U	10	1.0	0.50
	Bromomethane	8.7	50,000	N.D.	U	20	5.0	3.9	N.D.	U	20	5.0	3.9	NA	N.D.	U	20	5.0	3.9
	Carbon Tetrachloride	5	520	N.D.	U	1.0	0.5	0.23	N.D.	U	1.0	0.5	0.23	NA	N.D.	U	1.0	0.5	0.23
EPA 8260B	Chlorobenzene	100	50	N.D.	U	5.0	0.5	0.17	N.D.	U	5.0	0.5	0.17	NA	N.D.	U	5.0	0.5	0.17
	Chloroethane	21,000	16	N.D.	U	10	5.0	2.3	N.D.	U	10	5.0	2.3	NA	N.D.	U	10	5.0	2.3
1	Chloroform Chloromethane	70	2,400 50,000	N.D. N.D.	UU	5.0	0.5	0.46	N.D. N.D.	UU	5.0 10	0.5	0.46	NA NA	N.D. N.D.	UU	5.0 10	0.5 2.0	0.46
	cis-1,2-Dichloroethylene	70	50,000	N.D.	U	1.0	0.5	0.48	N.D.	U	1.0	0.5	0.48	NA	N.D.	U	1.0	0.5	0.48
1	Dibromochloromethane	0.16	50,000	N.D.	U U	1.0	0.5	0.48	N.D.	U	1.0	0.5	0.48	NA	N.D.	U	1.0	0.5	0.46
1	Ethylbenzene	700	30	N.D.	U	1.0	0.5	0.14	N.D.	U	1.0	0.5	0.14	NA	N.D.	U	1.0	0.5	0.14
1	Hexachlorobutadiene	0.86	6	N.D.	U	1.0	0.5	0.32	N.D.	U	1.0	0.5	0.32	NA	N.D.	U	1.0	0.5	0.32
1	Methyl ethyl ketone (2-Butanone)	7,100	8,400	N.D.	U	10	5.0	2.2	N.D.	U	10	5.0	2.2	NA	N.D.	U	10	5.0	2.2
	Methyl isobutyl ketone (4-Methyl-2-Pentanone)	2,000	1300	N.D.	U	10	5.0	4.4	N.D.	U	10	5.0	4.4	NA	N.D.	U	10	5.0	4.4
1	Methyl tert-butyl Ether	12	5	N.D.	U	1.0	0.5	0.31	N.D.	U	1.0	0.5	0.31	NA	N.D.	U	1.0	0.5	0.31
	Methylene chloride	4.8	9,100	N.D.	U	5.0	1.0	0.64	N.D.	U	5.0	1.0	0.64	NA	N.D.	U	5.0	1.0	0.64
	Styrene	100	10	N.D.	U	1.0	0.5	0.17	N.D.	U	1.0	0.5	0.17	NA	N.D.	U	1.0	0.5	0.17
	Tetrachloroethane, 1,1,1,2-	0.52	50,000	N.D.	U	1.0	0.5	0.40	N.D.	U	1.0	0.5	0.40	NA	N.D.	U	1.0	0.5	0.40
	Tetrachloroethane, 1,1,2,2- Tetrachloroethylene	0.067	500 170	N.D. N.D.	UJ U	1.0	0.5	0.41	N.D. N.D.	UJ	1.0 5.0	0.5	0.41 0.39	NA NA	N.D. N.D.	UJ U	1.0 5.0	0.5	0.41 0.39
	Toluene	1,000	40	N.D.	U	1.0	0.5	0.39	N.D.	U	1.0	0.5	0.39	NA	N.D.	U	1.0	0.5	0.39
	trans-1,2- Dichloroethylene	1,000	260	N.D.	U	1.0	0.5	0.24	N.D.	U	1.0	0.5	0.24	NA	N.D.	U	1.0	0.5	0.24
	Trichloroethylene	5	310	N.D.	U	1.0	0.5	0.37	N.D.	U	1.0	0.5	0.37	NA	N.D.	U	1.0	0.5	0.37
	Vinyl chloride	2	3,400	N.D.	U	1.0	0.5	0.30	N.D.	U	1.0	0.5	0.30	NA	N.D.	U	1.0	0.5	0.30
	Xylenes	10,000	20	N.D.	U	11	1.5	0.23	N.D.	U	11	1.5	0.23	NA	N.D.	U	11	1.5	0.23
EPA 6020	Dissolved Lead	15	50,000	N.D.	U	1.0	0.2	0.0898	N.D.	U	1	0.2	0.0898	NA	-	-	-	-	-
	n micrograms per liter (ug/L) Shaded values exceeded th																		

The data are in micrograms per liter (µg/L). Shaded values exceeded the DOH EALs. DOH EALs DOH Tier 1 Environmental Action Levels for groundwater where groundwater is a current drinking water source and surface water is greater than 150 meters from the site (DOH, Fall 2011). DL Detection Limit or Method Detection Limit (MDL) EPA Environmental Protection Agency HD The chromatographic pattern was inconsistent with the profile of the reference fuel standard. J Analyte was detected at a concentration below the LOQ and above the DL. Reported value is estimated. LOD Limit of Detection

LOQ NA N.D. Limit of Quantitation Both results for duplicate pair were non-detect, no RPD calculations Not Detected

U

Qualifiers

Q TPH-g TPH-d

Total Petroleum Hydrocarbons as gasoline Total Petroleum Hydrocarbons as diesel Undetected at DL and is reported as less than the LOD.

SECTION 4 – SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

This quarterly monitoring report presents the results of groundwater sampling conducted on July 24, 2013, at the RHSF, JBPHH, Hawaii. The RHSF is located in Halawa Heights on the Island of Oahu. The DOH Facility ID number for the RHSF is 9-102271. The DOH Release ID numbers are 990051, 010011, and 020028.

The groundwater sampling was conducted as part of the long-term groundwater and soil vapor monitoring at the RHSF, under NAVFAC Contract Number N62742-12-D-1853. The sampling was conducted in accordance with the approved WP/SAP prepared by ESI.

On July 24, 2013, ESI personnel collected groundwater samples from two monitoring wells (wells HDMW2253-03 and OWDFMW01). A summary of the analytical results is provided below.

- HDMW2253-03 Naphthalene (0.03 µg/L) was detected. The COPC was not detected at a concentration above the DOH EALs.
- OWDFMW01 TPH-d (470 and 340 μg/L), acetone (88 and 83 μg/L), naphthalene (0.081 and 0.12 μg/L), and benzene (0.42 and 0.44 μg/L) were detected in both the primary and duplicate samples. TPH-d (470 and 340 μg/L) was detected at concentrations above the DOH EALs for both drinking water toxicity and gross contamination in both samples.

Groundwater Contaminant Trends

Historical groundwater contaminant concentration trends of COPCs that exceeded the DOH EALs are presented in Appendix D. A summary of groundwater contaminant trends is provided below.

- HDMW2253-03 TPH-d was not detected during this round of quarterly sampling. TPH-d concentrations last exceeded the DOH EALs for both drinking water toxicity and gross contamination in January 2013 (600 µg/L). Naphthalene was detected but remained at a low concentration, below the DOH EALs and consistent with historical results.
- OWDFMW01 With the exception of TPH-d, groundwater contaminant concentrations remained at low concentrations and did not change significantly, or were not detected. TPH-d concentrations detected during this round of sampling were above the DOH EALs for both drinking water toxicity and gross contamination, but decreased significantly from the last event, and were the lowest they have been since July 2012.

Conclusions and Recommendations

Since the wells were last sampled (April 2013), with the exception of TPH-d, groundwater contaminant concentrations remained at low concentrations and did not change significantly,

or were not detected. TPH-d concentrations decreased in wells HDMW2253-03 and OWDFMW01. The TPH-d concentration in HDMW2253-03 was 45 μ g/L in April 2013, but was not detected during this round of sampling. TPH-d concentrations in well OWDFMW01 decreased from 1,900 μ g/L at the last round of sampling to 470 μ g/L during this round.

Based on the results of the assessment, continued groundwater monitoring at the RHSF is recommended. If the TPH-d concentrations significantly increase, the monitoring frequency should be increased to monthly, even though the two outside wells are not included in the RHSF Groundwater Protection Plan.

SECTION 5 – FUTURE WORK

GROUNDWATER SAMPLING

Future work includes the fourth quarter 2013 groundwater monitoring which is scheduled for October 2013. It is anticipated that the quarterly groundwater monitoring status report will be submitted in November 2013.

SECTION 6 – REFERENCES

Atlas of Hawaii, 1983, Department of Geography, University of Hawaii Press.

DLNR, 1985, Pan Evaporation: State of Hawai'i 1894-1983: Report R74, Division of Water and Land Development, August 1995.

DLNR, 1986, Rainfall Atlas of Hawaii: Report R76, Division of Water and Land Development, June 1986.

DOH, 2000, Hawaii Department of Health, Technical Guidance Manual for Underground Storage Tank Closure and Release Response, March 2000.

DOH, 2011, Screening for Environmental Hazards at Sites with Contaminated Soil and Groundwater, Hawai'i Department of Health, Hazard Evaluation and Emergency Response, December 2011.

DON, 2007, Project Procedures Manual, U.S. Navy Installation Restoration Program, NAVFAC Pacific, Prepared for Pacific Division, Naval Facilities Engineering Command (NAVFAC Pacific), February 2007.

Environet, 2010, Work Plan, Long-Term Monitoring, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, September 2010.

Environet, 2012, Quarterly Groundwater Monitoring Report-Outside (Non-Tunnel Wells), Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, July 2012.

ESI, 2012, Work Plan/Sampling and Analysis Plan, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, October 2012.

ESI, 2013a, Fourth Quarter 2012 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, January 2013.

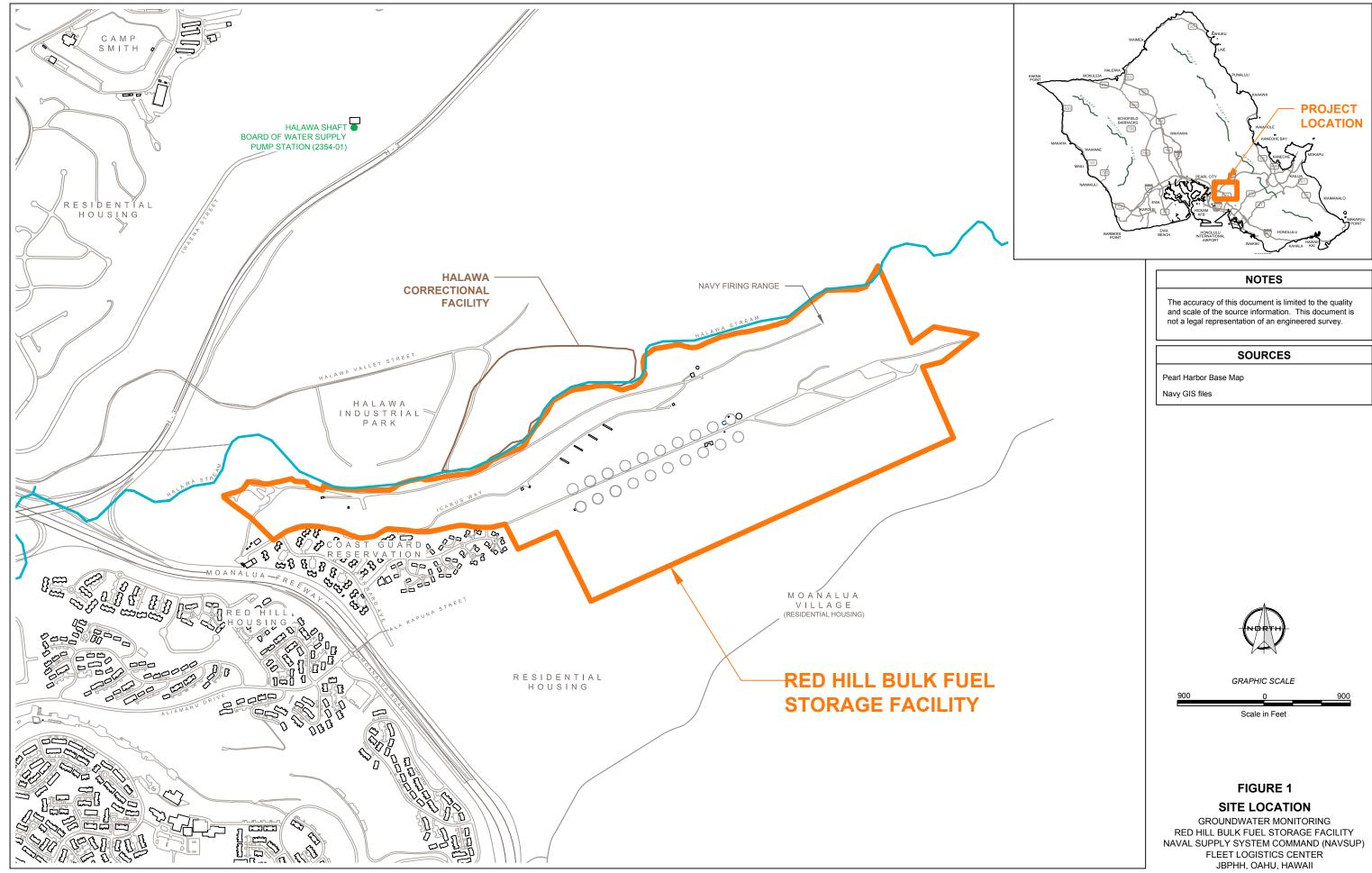
ESI, 2013b, First Quarter 2013 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, April 2013.

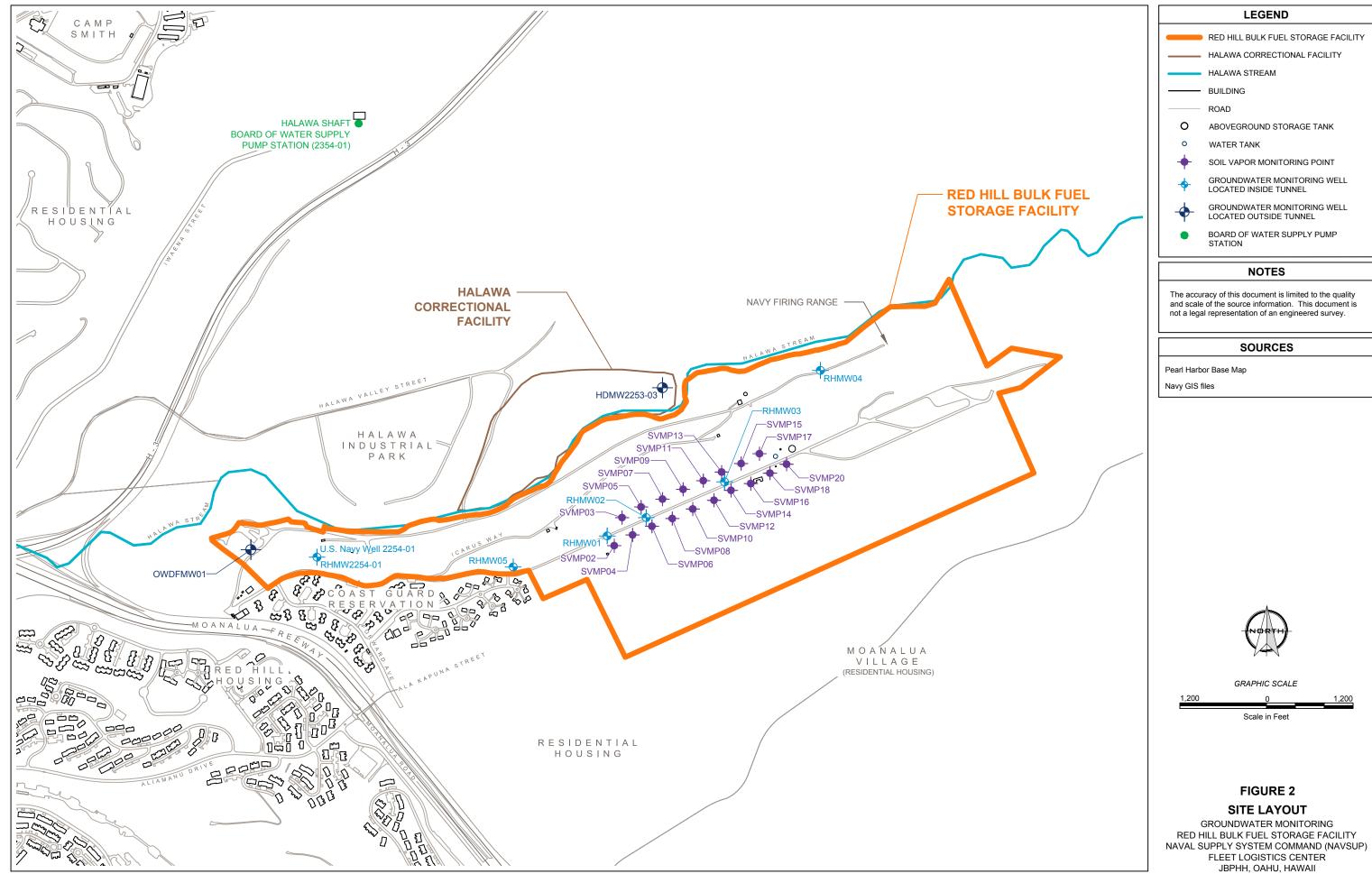
ESI, 2013c, Second Quarter 2013 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, July 2013.

Foote et al., 1972, Soil Survey of the Islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii.

Mink, J. F. and Lau, L. S., 1990, Aquifer Identification and Classification for Oahu: Groundwater Protection Strategy for Hawaii: Water Resources Research Center Technical Report No. 179, February 1990.

Stearns, H. T. and Vaksvik, K. N., 1935, Geology and Groundwater Resources of the Island of Oahu, Hawaii: Hawaii Div. Hydrogr. Bull.


Stearns, H. T. and Vaksvik, K. N., 1938, Records of the Drilled Wells on the Island of Oahu, Hawaii: Hawaii Div. Hydrogr. Bull. 4, 213 p.


TEC, 2008, Final Groundwater Protection Plan, Red Hill Fuel Storage Facility, Prepared for Navy Region Hawaii, Pearl Harbor, Hawaii, January 2008.

TEC, 2010a, Quarterly Groundwater Monitoring Report – Outside (Non-Tunnel) Wells, Prepared for Navy Region Hawaii, Pearl Harbor, Hawaii, April 2010.

TEC, 2010b, Quarterly Groundwater Monitoring Report – Outside (Non-Tunnel) Wells, Prepared for Navy Region Hawaii, Pearl Harbor, Hawaii, May 2010.

FIGURES

APPENDIX A

Groundwater Sampling Logs

Groundwater Sampling Log

Well ID: O	Well ID: OWDFMW01 Location: Red Hill Bulk Fuel St			I Bulk Fuel Stora	age Facility	Project No.:	112066
Initial Wate	er Level: 12	20.72 ft	Date:	7/24/2013		Time: 713	3
Total Deptl	h of Well:	145.10 ft	Personnel Involved:		Branden	Ibara, Tina Alde	er
Length of S	Saturated Zon	e:	Weathe	er Conditions:		Sunny	
Volume of	Water to be R	emoved: 5.0 L	Method	d of Removal:	Disposa	ble Hand Bailer	r
Water Leve	el After Purgin	g: <u>120.76 ft</u>	Pumpir	ng Rate:	0.2	9 L/min	
Well Purge	e Data:						
Time	Volume Removed		nductivity mS/cm)	DO (mg/l)	Temperature	Salinity	Redox (ORP) (mV)
720	0.0 L	11.01	2.748	1.75	23.47	<u>-</u>	-127.2
728	2.0 L	10.59	2.724	1.70	23.60		-142.2
731	3.0 L	10.52	2.751	1.98	23.60		-137.4
734	4.0 L	10.50	2.765	1.41	23.60		-138.6
737	5.0 L	10.49	2.765	1.40	23.60	_	-136.4
		· ·					
		· ·					
	<u></u>	·					
		·					
Sample W	ithdrawal Meth	nod: Dispo	sable Han	d Bailer			
Appearance	e of Sample:						
	Color:		Clear				
	Turbidity:		Low				
	Sediment:		Low				
	Other:		None				
Laboratory	Analysis Para	meters and Prese	rvatives:	TPH-d - 8015;	TPH-g, VOCs - 8	3260; PAHs - 82	270c sim;
	-			lead - 6020			
Number ar	nd Types of Sa	ample Containers:	16 - 40ml	VOAs, 6 - 1L am	nber jar, 4 - 500m	l amber jar, 4 -	500ml HDPE
Sample Ide	entification Nu	mbers: ES034	[0815], ES	034 MS/MSD [08	315]; ES035 [0900	0]	
Decontami	nation Proced	ures: Triple Rins	ed				
Notes: YS	SI did not have	e salinity paramete	r				
Sampled b		Ibara, Tina Alder					
•	Delivered to:	Calscience Er	nvironment		Transporters: Fee	dEx	
Date: 7/2	24/2013	C			Time: <u>1100</u>		
		Cap	acity of Ca	sing (Gallons/Lir			

2"-0.16• 4"-0.65 • 8"-2.61 • 10"-4.08 • 12"-5.87

Groundwater Sampling Log

Well ID: H	DMW2253-03	Location:	Red Hil	I Bulk Fuel Stora	age Facility	Project No.:	112066
Initial Wate	er Level:		Date:	7/24/2013		Time: 913	
Total Dept	h of Well:	1575 ft	Person	nel Involved:	Branden	Ibara, Tina Aldei	
Length of S	Saturated Zone:		Weathe	er Conditions:		Sunny	
Volume of	Water to be Rem	noved: -	Method	d of Removal:	Disposa	able Hand Bailer	
Water Lev	el After Purging:		Pumpir	ng Rate:	0.2	11 L/min	
Well Purge	e Data:						
Time	Volume		onductivity		Tomporatura	Solinit <i>i</i>	Redox (ORP)
916	Removed 0.0 L	рН 9.14	(mS/cm) 0.498	DO (mg/l) 3.33	Temperature 23.33	Salinity	(mV) -145.8
916	1.0 L	7.19	0.498	3.02	23.33		-145.8
920		6.88					-90.2
936	2.0 L 3.0 L	6.94	0.432	2.62	22.38 22.40		-90.2
<u> </u>	4.0 L	6.77	0.425	1.96	22.40		-103.2
Sample W	ithdrawal Method	: Disp	osable Han	d Bailer			
Appearance	ce of Sample:						
	Color:		Tan				
	Turbidity:		Low				
	Sediment:		None				
	Other:		None				
Laboratory	Analysis Paramo	eters and Prese	ervatives:	<u>TPH-d - 8015;</u> lead - 6020	TPH-g, VOCs -	8260; PAHs - 82	70c sim;
Number ar	nd Types of Sam	ole Containers:	6 - 40ml V	/OAs, 2 - 1L amb	oer jar, 1 - 500ml	amber jar, 1 - 25	0ml HDPE
Sample Ide	entification Numb	ers: ES036	[0930]				
Decontami	ination Procedure	es: Triple Rins	sed				
Notes: YS	SI did not have sa	alinity paramete	er				
Sampled b		ara, Tina Alder					
	Delivered to:	Calscience E	nvironmenta		Transporters: Fe	dEx	
Date: 7/	24/2013	Car	acity of Ca	sing (Gallons/Lin	Time: <u>1100</u> hear Feet)		

APPENDIX B

Field Notes

A. Same RHAF 85 _____ Date ______3 RHSF _____ Date 7124113 Location Location Project / Client _____NAVFAC Collectell 95033 from 1045 Task: Cru Senghis RHALLOS Personnel, BI, TA Exited Tunnel 20 Propped of IDW Arrived at Fekex On-site, Health + Saloty 0710 145 Meetin 310 Gange ONDEMNOI DTW, 120.72 PID: 0.0 DTB: 145.10 Collected ESO 34, ESO 34 ns/kg ESU35 From ONDEMNOI Met DUNR at Halana Start pirge HDMW 2253-03 collected ESC36 From 6+DMW2253-03 Dropped off IDW and backed sendes Weft Reel HILL For FoelEx Left Fed Ex Back at office unleady Þ 7/24/13

APPENDIX C

Laboratory Reports

WORK ORDER NUMBER: 13-07-1752

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Environmental Science International, Inc. Client Project Name: Red Hill LTM 112066 Attention: Robert Chong 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Richard Villey)

Approved for release on 08/02/2013 by: Richard Villafania Project Manager

ResultLink ▶

Email your PM >

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

10 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

Client Project Name: Red Hill LTM 112066 Work Order Number: 13-07-1752

1	Work Order Narrative.	3
2	Client Sample Data	4 4 5 6 10
3	Quality Control Sample Data.3.1 MS/MSD.3.2 PDS/PDSD.3.3 LCS/LCSD.	20 20 25 26
4	Sample Analysis Summary	31
5	Glossary of Terms and Qualifiers	32
6	Chain of Custody/Sample Receipt Form	33

Work Order: 13-07-1752

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 07/26/13. They were assigned to Work Order 13-07-1752.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Return to Contents

Environment	al Science Internationa	al, Inc.	D	ate Receiv	ved:			07/26/13
354 Uluniu Street, Suite 304				Work Order: 13-07-17				
Kailua, HI 96	734-2500		Р	reparation	:			EPA 35100
			Ν	lethod:			E	EPA 8015B (M
			U	nits:				ug/l
Project: Red	Hill LTM 112066						Pa	age 1 of 1
Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ES 034		13-07-1752-2-H	07/24/13 08:15	Aqueous	GC 45	07/30/13	07/31/13 04:45	130730B09
Comment(s):	- Results were evaluated to			the MDL (DL	_) but < RL (LOQ), if found, a	are qualified with	a "J" flag.
	- TPH as DRO is quantified	d in the carbon range	e C10-C28.					
Parameter		<u>Result</u>	DL	<u>LOD</u>		LOQ	DF	<u>Qualifiers</u>
TPH as Diesel		470	15	21		52	1.04	HD
Surrogate		Rec. (%)	Control Lir	nit <u>s</u> Qualit	fiore			
n-Octacosane		<u>Rec. (76)</u> 90	51-141		<u>liers</u>			
n-Octacosarie		30	51-141					
ES 035		13-07-1752-3-Н	07/24/13 09:00	Aqueous	GC 45	07/30/13	07/31/13 05:02	130730B09
Comment(s):	- Results were evaluated to	o the MDL (DL), con	centrations >= to	the MDL (DL	_) but < RL (LOQ), if found, a	are qualified with	a "J" flag.
	- TPH as DRO is quantified	d in the carbon range	e C10-C28.					
Parameter		<u>Result</u>	DL	LOD		LOQ	<u>DF</u>	<u>Qualifiers</u>
TPH as Diesel		340	15	21		52	1.04	HD
Curre nete			Control Lin		(
<u>Surrogate</u>		<u>Rec. (%)</u> 94	<u>Control Lir</u> 51-141	nits Qualit	liers			
n-Octacosane		94	51-141					
ES 036		13-07-1752-4-H	07/24/13 09:30	Aqueous	GC 45	07/30/13	07/31/13 05:20	130730B09
Comment(s):	- Results were evaluated to	o the MDL (DL), con	centrations >= to	the MDL (DL) but < RL (LOQ), if found, a	are qualified with	a "J" flag.
	- TPH as DRO is quantified	d in the carbon range	e C10-C28.					
Parameter		<u>Result</u>	DL	LOD		LOQ	<u>DF</u>	<u>Qualifiers</u>
TPH as Diesel		<21	15	21		52	1.04	U
Surrogate		<u>Rec. (%)</u>	Control Lir	nits Qualit	fiers			
n-Octacosane		75	51-141					
Method Blank		099-15-516-53	N/A	Aqueous	GC 45	07/30/13	07/31/13 01:36	130730B09
Comment(s):	- Results were evaluated to	o the MDL (DL), con	centrations >= to	the MDL (DL	_) but < RL (LOQ), if found, a	are qualified with	a "J" flag.
Parameter		<u>Result</u>	DL	LOD		LOQ	DF	<u>Qualifiers</u>
TPH as Diesel		<20	15	20		50	1	U
Curro got-		D = - (0/)	Control 1		lara			
<u>Surrogate</u> n-Octacosane		<u>Rec. (%)</u> 104	<u>Control Lir</u> 51-141	<u>nits</u> Qualit	fiers			

Calscience nvironmental Laboratories, Inc.

Environmental	Science Internationa	l, Inc.		Date Receiv	ved:			07/26/13
354 Uluniu Str	eet, Suite 304			Work Order:	:			13-07-1752
Kailua, HI 967	34-2500			Preparation			EF	PA 3020A Total
-				Method:				EPA 6020
				Units:				ug/L
Project: Red H	iill LTM 112066						Р	age 1 of 1
Client Sample Nu	mber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ES 034		13-07-1752-2-G	07/24/13 08:15	Aqueous	ICP/MS 04	07/31/13	07/31/13 17:51	130731L02D
Comment(s):	- Results were evaluated to	the MDL (DL), con	centrations >= t	o the MDL (DL) but < RL (LOC	Q), if found, a	are qualified with	a "J" flag.
Parameter		<u>Result</u>	DL	LOD	LOC	<u>2</u>	DF	<u>Qualifiers</u>
Lead		<0.200	0.0898	0.200	1.00)	1	U
ES 035		13-07-1752-3-G	07/24/13 09:00	Aqueous	ICP/MS 04	07/31/13	07/31/13 17:55	130731L02D
Comment(s):	- Results were evaluated to	the MDL (DL), con	centrations >= t	o the MDL (DL) but < RL (LOC	Q), if found, a	are qualified with	a "J" flag.
Parameter erementer		<u>Result</u>	<u>DL</u>	LOD	LOC	2	DF	<u>Qualifiers</u>
Lead		<0.200	0.0898	0.200	1.00)	1	U
ES 036		13-07-1752-4-G	07/24/13 09:30	Aqueous	ICP/MS 04	07/31/13	07/31/13 17:59	130731L02D
Comment(s):	- Results were evaluated to	the MDL (DL), con	centrations >= t	o the MDL (DL) but < RL (LOC	Q), if found, a	are qualified with	a "J" flag.
Parameter		<u>Result</u>	DL	LOD	<u>LOC</u>	<u>2</u>	<u>DF</u>	<u>Qualifiers</u>
Lead		<0.200	0.0898	0.200	1.00)	1	U
Method Blank		099-14-497-42	N/A	Aqueous	ICP/MS 04	07/31/13	07/31/13 17:23	130731L02D
Comment(s):	- Results were evaluated to	the MDL (DL), con	centrations >= t	o the MDL (DL) but < RL (LOC	Q), if found, a	are qualified with	a "J" flag.
D /		Result	DL	LOD	LOC	`	DF	Qualifiers
Parameter		Result		LOD	<u>LU(</u>	<u>x</u>		Quaimers

Analytical Report

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received:	07/26/13
Work Order:	13-07-1752
Preparation:	EPA 3510C
Method:	EPA 8270C SIM PAHs
Units:	ug/L
	Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ES 034	13-07-1752-2-l	07/24/13 08:15	Aqueous	GC/MS AAA	07/29/13	08/01/13 13:55	130729L12
Comment(s): - Results were evaluated	to the MDL (DL), con	centrations >= to th	he MDL (DL) but < RL (LOC), if found, a	are qualified with	a "J" flag.
Parameter	<u>Result</u>	DL	LOD	LOC	2	<u>DF</u>	<u>Qualifiers</u>
Naphthalene	0.081	0.023	0.050	0.20)	0.995	J
2-Methylnaphthalene	<0.050	0.026	0.050	0.20)	0.995	U
1-Methylnaphthalene	<0.050	0.028	0.050	0.20)	0.995	U
Acenaphthylene	<0.050	0.018	0.050	0.20)	0.995	U
Acenaphthene	<0.050	0.021	0.050	0.20)	0.995	U
Fluorene	<0.050	0.024	0.050	0.20)	0.995	U
Phenanthrene	<0.050	0.030	0.050	0.20)	0.995	U
Anthracene	<0.050	0.034	0.050	0.20)	0.995	U
Fluoranthene	<0.050	0.027	0.050	0.20)	0.995	U
Pyrene	<0.050	0.025	0.050	0.20)	0.995	U
Benzo (a) Anthracene	<0.050	0.024	0.050	0.20)	0.995	U
Chrysene	<0.050	0.019	0.050	0.20)	0.995	U
Benzo (k) Fluoranthene	<0.050	0.023	0.050	0.20)	0.995	U
Benzo (b) Fluoranthene	<0.050	0.025	0.050	0.20)	0.995	U
Benzo (a) Pyrene	<0.050	0.036	0.050	0.20)	0.995	U
Indeno (1,2,3-c,d) Pyrene	<0.050	0.022	0.050	0.20)	0.995	U
Dibenz (a,h) Anthracene	<0.050	0.027	0.050	0.20)	0.995	U
Benzo (g,h,i) Perylene	<0.050	0.022	0.050	0.20)	0.995	U
Surrogate	<u>Rec. (%)</u>	Control Limi	<u>ts Qualifi</u>	iers			
Nitrobenzene-d5	64	28-139					
2-Fluorobiphenyl	63	33-144					
p-Terphenyl-d14	76	23-160					

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received:	07/26/13
Work Order:	13-07-1752
Preparation:	EPA 3510C
Method:	EPA 8270C SIM PAHs
Units:	ug/L
	Page 2 of 4

Project: Red Hill LTM 112066

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ES 035	13-07-1752-3-l	07/24/13 09:00	Aqueous	GC/MS AAA	07/29/13	08/01/13 14:21	130729L12
Comment(s): - Results were evaluated t	o the MDL (DL), con	centrations >= to t	he MDL (DL	.) but < RL (LOC	Q), if found, a	are qualified with a	a "J" flag.
Parameter	<u>Result</u>	<u>DL</u>	LOD	LOC	<u>2</u>	<u>DF</u>	<u>Qualifiers</u>
Naphthalene	0.12	0.022	0.048	0.19)	0.965	J
2-Methylnaphthalene	<0.048	0.026	0.048	0.19)	0.965	U
1-Methylnaphthalene	<0.048	0.027	0.048	0.19)	0.965	U
Acenaphthylene	<0.048	0.017	0.048	0.19)	0.965	U
Acenaphthene	<0.048	0.020	0.048	0.19)	0.965	U
Fluorene	<0.048	0.024	0.048	0.19)	0.965	U
Phenanthrene	<0.048	0.029	0.048	0.19)	0.965	U
Anthracene	<0.048	0.033	0.048	0.19)	0.965	U
Fluoranthene	<0.048	0.026	0.048	0.19)	0.965	U
Pyrene	<0.048	0.024	0.048	0.19)	0.965	U
Benzo (a) Anthracene	<0.048	0.023	0.048	0.19)	0.965	U
Chrysene	<0.048	0.018	0.048	0.19)	0.965	U
Benzo (k) Fluoranthene	<0.048	0.023	0.048	0.19)	0.965	U
Benzo (b) Fluoranthene	<0.048	0.024	0.048	0.19)	0.965	U
Benzo (a) Pyrene	<0.048	0.035	0.048	0.19)	0.965	U
Indeno (1,2,3-c,d) Pyrene	<0.048	0.021	0.048	0.19)	0.965	U
Dibenz (a,h) Anthracene	<0.048	0.026	0.048	0.19)	0.965	U
Benzo (g,h,i) Perylene	<0.048	0.021	0.048	0.19)	0.965	U
Surrogate	<u>Rec. (%)</u>	Control Lim	<u>its Qualif</u>	iers			
Nitrobenzene-d5	75	28-139					
2-Fluorobiphenyl	70	33-144					
p-Terphenyl-d14	80	23-160					

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received:	07/26/13
Work Order:	13-07-1752
Preparation:	EPA 3510C
Method:	EPA 8270C SIM PAHs
Units:	ug/L
	Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ES 036	13-07-1752-4-I	07/24/13 09:30	Aqueous	GC/MS AAA	07/29/13	08/01/13 14:47	130729L12
Comment(s): - Results were evaluated t	o the MDL (DL), con	centrations >= to t	he MDL (DL	.) but < RL (LOC	Q), if found, a	are qualified with a	a "J" flag.
Parameter	<u>Result</u>	DL	LOD	LOC	2	<u>DF</u>	Qualifiers
Naphthalene	0.030	0.022	0.047	0.19)	0.945	J
2-Methylnaphthalene	<0.047	0.025	0.047	0.19)	0.945	U
1-Methylnaphthalene	<0.047	0.027	0.047	0.19)	0.945	U
Acenaphthylene	<0.047	0.017	0.047	0.19)	0.945	U
Acenaphthene	<0.047	0.020	0.047	0.19)	0.945	U
Fluorene	<0.047	0.023	0.047	0.19)	0.945	U
Phenanthrene	<0.047	0.029	0.047	0.19)	0.945	U
Anthracene	<0.047	0.032	0.047	0.19)	0.945	U
Fluoranthene	<0.047	0.026	0.047	0.19)	0.945	U
Pyrene	<0.047	0.023	0.047	0.19)	0.945	U
Benzo (a) Anthracene	<0.047	0.022	0.047	0.19)	0.945	U
Chrysene	<0.047	0.018	0.047	0.19)	0.945	U
Benzo (k) Fluoranthene	<0.047	0.022	0.047	0.19)	0.945	U
Benzo (b) Fluoranthene	<0.047	0.024	0.047	0.19)	0.945	U
Benzo (a) Pyrene	<0.047	0.034	0.047	0.19)	0.945	U
Indeno (1,2,3-c,d) Pyrene	<0.047	0.021	0.047	0.19)	0.945	U
Dibenz (a,h) Anthracene	<0.047	0.025	0.047	0.19)	0.945	U
Benzo (g,h,i) Perylene	<0.047	0.021	0.047	0.19)	0.945	U
Surrogate	<u>Rec. (%)</u>	Control Limi	<u>its</u> Qualif	iers			
Nitrobenzene-d5	68	28-139					
2-Fluorobiphenyl	66	33-144					
p-Terphenyl-d14	72	23-160					

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received:	07/26/13
Work Order:	13-07-1752
Preparation:	EPA 3510C
Method:	EPA 8270C SIM PAHs
Units:	ug/L
	Page 4 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-148-17	N/A	Aqueous	GC/MS AAA	07/29/13	08/01/13 13:28	130729L12
Comment(s): - Results were evaluated to	the MDL (DL), con	centrations >= to t	he MDL (DL	.) but < RL (LOC	Q), if found, a	re qualified with a	a "J" flag.
Parameter	<u>Result</u>	<u>DL</u>	<u>LOD</u>	LOC	2	<u>DF</u>	<u>Qualifiers</u>
Naphthalene	<0.051	0.023	0.051	0.20)	1.02	U
2-Methylnaphthalene	<0.051	0.027	0.051	0.20)	1.02	U
1-Methylnaphthalene	<0.051	0.029	0.051	0.20)	1.02	U
Acenaphthylene	<0.051	0.018	0.051	0.20)	1.02	U
Acenaphthene	<0.051	0.021	0.051	0.20)	1.02	U
Fluorene	<0.051	0.025	0.051	0.20)	1.02	U
Phenanthrene	<0.051	0.031	0.051	0.20)	1.02	U
Anthracene	<0.051	0.035	0.051	0.20)	1.02	U
Fluoranthene	<0.051	0.028	0.051	0.20)	1.02	U
Pyrene	<0.051	0.025	0.051	0.20)	1.02	U
Benzo (a) Anthracene	<0.051	0.024	0.051	0.20)	1.02	U
Chrysene	<0.051	0.019	0.051	0.20)	1.02	U
Benzo (k) Fluoranthene	<0.051	0.024	0.051	0.20)	1.02	U
Benzo (b) Fluoranthene	<0.051	0.025	0.051	0.20)	1.02	U
Benzo (a) Pyrene	<0.051	0.037	0.051	0.20)	1.02	U
Indeno (1,2,3-c,d) Pyrene	<0.051	0.022	0.051	0.20)	1.02	U
Dibenz (a,h) Anthracene	<0.051	0.027	0.051	0.20)	1.02	U
Benzo (g,h,i) Perylene	<0.051	0.022	0.051	0.20)	1.02	U
Surrogate	<u>Rec. (%)</u>	Control Limi	<u>its</u> <u>Qualif</u>	iers			
Nitrobenzene-d5	74	28-139					
2-Fluorobiphenyl	70	33-144					
p-Terphenyl-d14	80	23-160					

Units:

Environmental Science International, Inc.Date Received:354 Uluniu Street, Suite 304Work Order:Kailua, HI 96734-2500Preparation:Method:Method:

07/26/13
13-07-1752
EPA 5030C
GC/MS / EPA 8260B
ug/L
Page 1 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID			
ES Trip	13-07-1752-1-A	07/24/13 07:00	Aqueous	GC/MS LL	07/30/13	07/31/13 01:23	130730L02			
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.										
Parameter	<u>Result</u>	DL	LOD	LOC	<u>ם ב</u>	<u>F</u>	Qualifiers			
Acetone	<10	6.0	10	20	1		U			
Benzene	<0.50	0.14	0.50	1.0	1		U			
Bromodichloromethane	<0.50	0.21	0.50	5.0	1		U			
Bromoform	<1.0	0.50	1.0	10	1		U			
Bromomethane	<5.0	3.9	5.0	20	1		U			
2-Butanone	<5.0	2.2	5.0	10	1		U			
Carbon Tetrachloride	<0.50	0.23	0.50	1.0	1		U			
Chlorobenzene	<0.50	0.17	0.50	5.0	1		U			
Chloroethane	<5.0	2.3	5.0	10	1		U			
Chloroform	<0.50	0.46	0.50	5.0	1		U			
Chloromethane	<2.0	1.8	2.0	10	1		U			
Dibromochloromethane	<0.50	0.25	0.50	1.0	1		U			
1,2-Dibromo-3-Chloropropane	<2.0	1.2	2.0	10	1		U			
1,2-Dibromoethane	<0.50	0.36	0.50	1.0	1		U			
1,2-Dichlorobenzene	<0.50	0.46	0.50	1.0	1		U			
1,3-Dichlorobenzene	<0.50	0.40	0.50	1.0	1		U			
1,4-Dichlorobenzene	<0.50	0.43	0.50	1.0	1		U			
1,1-Dichloroethane	<0.50	0.28	0.50	5.0	1		U			
1,2-Dichloroethane	<0.50	0.24	0.50	1.0	1		U			
1,1-Dichloroethene	<0.50	0.43	0.50	1.0	1		U			
c-1,2-Dichloroethene	<0.50	0.48	0.50	1.0	1		U			
t-1,2-Dichloroethene	<0.50	0.37	0.50	1.0	1		U			
1,2-Dichloropropane	<0.50	0.42	0.50	5.0	1		U			
c-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1		U			
t-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1		U			
Ethylbenzene	<0.50	0.14	0.50	1.0	1		U			
Methylene Chloride	<1.0	0.64	1.0	5.0	1		U			
4-Methyl-2-Pentanone	<5.0	4.4	5.0	10	1		U			
Styrene	<0.50	0.17	0.50	1.0	1		U			
1,1,1,2-Tetrachloroethane	<0.50	0.40	0.50	1.0	1		U			
1,1,2,2-Tetrachloroethane	<0.50	0.41	0.50	1.0	1		U			
Tetrachloroethene	<0.50	0.39	0.50	5.0			U			
Toluene	<0.50	0.24	0.50	1.0			U			
1,2,4-Trichlorobenzene	<1.0	0.50	1.0	5.0	1		U			
1,1,1-Trichloroethane	<0.50	0.30	0.50	5.0	1		U			
Hexachloro-1,3-Butadiene	<0.50	0.32	0.50	1.0			U			

Environmental Science International, Inc	Date	Received:		07/26/13		
354 Uluniu Street, Suite 304	Work	Order:		13-07-1752		
Kailua, HI 96734-2500		Prepa	aration:			EPA 5030C
		Meth	od:			GC/MS / EPA 8260B
		Units	:			ug/L
Project: Red Hill LTM 112066						Page 2 of 10
Parameter	<u>Result</u>	DL	LOD	LOQ	DF	Qualifiers
1,1,2-Trichloroethane	<0.50	0.38	0.50	1.0	1	U
Trichloroethene	<0.50	0.37	0.50	1.0	1	U
1,2,3-Trichloropropane	<1.0	0.64	1.0	5.0	1	U
Vinyl Chloride	<0.50	0.30	0.50	1.0	1	U
p/m-Xylene	<1.0	0.30	1.0	10	1	U
o-Xylene	<0.50	0.23	0.50	1.0	1	U
Methyl-t-Butyl Ether (MTBE)	<0.50	0.31	0.50	1.0	1	U
Gasoline Range Organics	<30	13	30	50	1	U
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers			
Dibromofluoromethane	94	80-126				
1,2-Dichloroethane-d4	90	80-134				
Toluene-d8	99	80-120				
Toluene-d8-TPPH	95	88-112				
1,4-Bromofluorobenzene	92	80-120				

Page 3 of 10

Environmental Science International, Inc.	Date Received:	07/26/13
354 Uluniu Street, Suite 304	Work Order:	13-07-1752
Kailua, HI 96734-2500	Preparation:	EPA 5030C
	Method:	GC/MS / EPA 8260B
	Units:	ug/L

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID				
ES 034	13-07-1752-2-A	07/24/13 08:15	Aqueous	GC/MS LL	07/30/13	07/31/13 01:51	130730L02				
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.											
Parameter	<u>Result</u>	DL	LOD	LOC	<u>ם ב</u>	<u>IF</u>	<u>Qualifiers</u>				
Acetone	88	6.0	10	20	1						
Benzene	0.42	0.14	0.50	1.0	1		J				
Bromodichloromethane	<0.50	0.21	0.50	5.0	1		U				
Bromoform	<1.0	0.50	1.0	10	1		U				
Bromomethane	<5.0	3.9	5.0	20	1		U				
2-Butanone	<5.0	2.2	5.0	10	1		U				
Carbon Tetrachloride	<0.50	0.23	0.50	1.0	1		U				
Chlorobenzene	<0.50	0.17	0.50	5.0	1		U				
Chloroethane	<5.0	2.3	5.0	10	1		U				
Chloroform	<0.50	0.46	0.50	5.0	1		U				
Chloromethane	<2.0	1.8	2.0	10	1		U				
Dibromochloromethane	<0.50	0.25	0.50	1.0	1		U				
1,2-Dibromo-3-Chloropropane	<2.0	1.2	2.0	10	1		U				
1,2-Dibromoethane	<0.50	0.36	0.50	1.0	1		U				
1,2-Dichlorobenzene	<0.50	0.46	0.50	1.0	1		U				
1,3-Dichlorobenzene	<0.50	0.40	0.50	1.0	1		U				
1,4-Dichlorobenzene	<0.50	0.43	0.50	1.0	1		U				
1,1-Dichloroethane	<0.50	0.28	0.50	5.0	1		U				
1,2-Dichloroethane	<0.50	0.24	0.50	1.0	1		U				
1,1-Dichloroethene	<0.50	0.43	0.50	1.0	1		U				
c-1,2-Dichloroethene	<0.50	0.48	0.50	1.0	1		U				
t-1,2-Dichloroethene	<0.50	0.37	0.50	1.0	1		U				
1,2-Dichloropropane	<0.50	0.42	0.50	5.0	1		U				
c-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1		U				
t-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1		U				
Ethylbenzene	<0.50	0.14	0.50	1.0	1		U				
Methylene Chloride	<1.0	0.64	1.0	5.0	1		U				
4-Methyl-2-Pentanone	<5.0	4.4	5.0	10	1		U				
Styrene	<0.50	0.17	0.50	1.0	1		U				
1,1,1,2-Tetrachloroethane	<0.50	0.40	0.50	1.0	1		U				
1,1,2,2-Tetrachloroethane	<0.50	0.41	0.50	1.0	1		U				
Tetrachloroethene	<0.50	0.39	0.50	5.0	1		U				
Toluene	<0.50	0.24	0.50	1.0	1		U				
1,2,4-Trichlorobenzene	<1.0	0.50	1.0	5.0	1		U				
1,1,1-Trichloroethane	<0.50	0.30	0.50	5.0	1		U				
Hexachloro-1,3-Butadiene	<0.50	0.32	0.50	1.0	1		U				

Environmental Science International, Inc).	Date	Received:		07/26/13		
354 Uluniu Street, Suite 304	Work	Order:			13-07-1752		
Kailua, HI 96734-2500		Prepa	aration:			EPA 5030C	
		Meth	od:			GC/MS / EPA 8260B	
		Units	:			ug/L	
Project: Red Hill LTM 112066						Page 4 of 10	
Parameter	<u>Result</u>	DL	LOD	LOQ	DF	Qualifiers	
1,1,2-Trichloroethane	<0.50	0.38	0.50	1.0	1	U	
Trichloroethene	<0.50	0.37	0.50	1.0	1	U	
1,2,3-Trichloropropane	<1.0	0.64	1.0	5.0	1	U	
Vinyl Chloride	<0.50	0.30	0.50	1.0	1	U	
p/m-Xylene	<1.0	0.30	1.0	10	1	U	
o-Xylene	<0.50	0.23	0.50	1.0	1	U	
Methyl-t-Butyl Ether (MTBE)	<0.50	0.31	0.50	1.0	1	U	
Gasoline Range Organics	<30	13	30	50	1	U	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>				
Dibromofluoromethane	93	80-126					
1,2-Dichloroethane-d4	90	80-134					
Toluene-d8	98	80-120					
Toluene-d8-TPPH	94	88-112					
1,4-Bromofluorobenzene	92	80-120					

Environmental Science International, Inc.Date Received:354 Uluniu Street, Suite 304Work Order:Kailua, HI 96734-2500Preparation:Method:Units:

EPA 5030C GC/MS / EPA 8260B ug/L

Page 5 of 10

07/26/13

13-07-1752

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID			
ES 035	13-07-1752-3-A	07/24/13 09:00	Aqueous	GC/MS LL	07/30/13	07/31/13 02:18	130730L02			
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.										
Parameter	<u>Result</u>	DL	LOD	LOC	<u>2</u> <u>DI</u>	<u>F</u>	<u>Qualifiers</u>			
Acetone	83	6.0	10	20	1					
Benzene	0.44	0.14	0.50	1.0	1		J			
Bromodichloromethane	<0.50	0.21	0.50	5.0	1		U			
Bromoform	<1.0	0.50	1.0	10	1		U			
Bromomethane	<5.0	3.9	5.0	20	1		U			
2-Butanone	<5.0	2.2	5.0	10	1		U			
Carbon Tetrachloride	<0.50	0.23	0.50	1.0	1		U			
Chlorobenzene	<0.50	0.17	0.50	5.0	1		U			
Chloroethane	<5.0	2.3	5.0	10	1		U			
Chloroform	<0.50	0.46	0.50	5.0	1		U			
Chloromethane	<2.0	1.8	2.0	10	1		U			
Dibromochloromethane	<0.50	0.25	0.50	1.0	1		U			
1,2-Dibromo-3-Chloropropane	<2.0	1.2	2.0	10	1		U			
1,2-Dibromoethane	<0.50	0.36	0.50	1.0	1		U			
1,2-Dichlorobenzene	<0.50	0.46	0.50	1.0	1		U			
1,3-Dichlorobenzene	<0.50	0.40	0.50	1.0	1		U			
1,4-Dichlorobenzene	<0.50	0.43	0.50	1.0	1		U			
1,1-Dichloroethane	<0.50	0.28	0.50	5.0	1		U			
1,2-Dichloroethane	<0.50	0.24	0.50	1.0	1		U			
1,1-Dichloroethene	<0.50	0.43	0.50	1.0	1		U			
c-1,2-Dichloroethene	<0.50	0.48	0.50	1.0	1		U			
t-1,2-Dichloroethene	<0.50	0.37	0.50	1.0	1		U			
1,2-Dichloropropane	<0.50	0.42	0.50	5.0	1		U			
c-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1		U			
t-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1		U			
Ethylbenzene	<0.50	0.14	0.50	1.0	1		U			
Methylene Chloride	<1.0	0.64	1.0	5.0	1		U			
4-Methyl-2-Pentanone	<5.0	4.4	5.0	10	1		U			
Styrene	<0.50	0.17	0.50	1.0	1		U			
1,1,1,2-Tetrachloroethane	<0.50	0.40	0.50	1.0	1		U			
1,1,2,2-Tetrachloroethane	<0.50	0.41	0.50	1.0	1		U			
Tetrachloroethene	<0.50	0.39	0.50	5.0	1		U			
Toluene	<0.50	0.24	0.50	1.0	1		U			
1,2,4-Trichlorobenzene	<1.0	0.50	1.0	5.0	1		U			
1,1,1-Trichloroethane	<0.50	0.30	0.50	5.0	1		U			
Hexachloro-1,3-Butadiene	<0.50	0.32	0.50	1.0	1		U			

Environmental Science International, Inc.			Received:		07/26/13	
354 Uluniu Street, Suite 304	Work	Order:		13-07-1752		
Kailua, HI 96734-2500		Prepa	aration:			EPA 5030C
		Meth	od:			GC/MS / EPA 8260B
		Units	:			ug/L
Project: Red Hill LTM 112066						Page 6 of 10
Parameter	<u>Result</u>	<u>DL</u>	LOD	LOQ	DF	Qualifiers
1,1,2-Trichloroethane	<0.50	0.38	0.50	1.0	1	U
Trichloroethene	<0.50	0.37	0.50	1.0	1	U
1,2,3-Trichloropropane	<1.0	0.64	1.0	5.0	1	U
Vinyl Chloride	<0.50	0.30	0.50	1.0	1	U
p/m-Xylene	<1.0	0.30	1.0	10	1	U
o-Xylene	<0.50	0.23	0.50	1.0	1	U
Methyl-t-Butyl Ether (MTBE)	<0.50	0.31	0.50	1.0	1	U
Gasoline Range Organics	<30	13	30	50	1	U
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
Dibromofluoromethane	93	80-126				
1,2-Dichloroethane-d4	93	80-134				
Toluene-d8	101	80-120				
Toluene-d8-TPPH	97	88-112				
1,4-Bromofluorobenzene	92	80-120				

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received:	07/26/13
Work Order:	13-07-1752
Preparation:	EPA 5030C
Method:	GC/MS / EPA 8260B
Units:	ug/L
	Page 7 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID			
ES 036	13-07-1752-4-A	07/24/13 09:30	Aqueous	GC/MS LL	07/30/13	07/31/13 02:46	130730L02			
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.										
Parameter	<u>Result</u>	DL	LOD	LOC	<u>2</u> <u>D</u>	<u>F</u>	<u>Qualifiers</u>			
Acetone	<10	6.0	10	20	1		U			
Benzene	<0.50	0.14	0.50	1.0	1		U			
Bromodichloromethane	<0.50	0.21	0.50	5.0	1		U			
Bromoform	<1.0	0.50	1.0	10	1		U			
Bromomethane	<5.0	3.9	5.0	20	1		U			
2-Butanone	<5.0	2.2	5.0	10	1		U			
Carbon Tetrachloride	<0.50	0.23	0.50	1.0	1		U			
Chlorobenzene	<0.50	0.17	0.50	5.0	1		U			
Chloroethane	<5.0	2.3	5.0	10	1		U			
Chloroform	<0.50	0.46	0.50	5.0	1		U			
Chloromethane	<2.0	1.8	2.0	10	1		U			
Dibromochloromethane	<0.50	0.25	0.50	1.0	1		U			
1,2-Dibromo-3-Chloropropane	<2.0	1.2	2.0	10	1		U			
1,2-Dibromoethane	<0.50	0.36	0.50	1.0	1		U			
1,2-Dichlorobenzene	<0.50	0.46	0.50	1.0	1		U			
1,3-Dichlorobenzene	<0.50	0.40	0.50	1.0	1		U			
1,4-Dichlorobenzene	<0.50	0.43	0.50	1.0	1		U			
1,1-Dichloroethane	<0.50	0.28	0.50	5.0	1		U			
1,2-Dichloroethane	<0.50	0.24	0.50	1.0	1		U			
1,1-Dichloroethene	<0.50	0.43	0.50	1.0	1		U			
c-1,2-Dichloroethene	<0.50	0.48	0.50	1.0	1		U			
t-1,2-Dichloroethene	<0.50	0.37	0.50	1.0	1		U			
1,2-Dichloropropane	<0.50	0.42	0.50	5.0	1		U			
c-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1		U			
t-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1		U			
Ethylbenzene	<0.50	0.14	0.50	1.0	1		U			
Methylene Chloride	<1.0	0.64	1.0	5.0	1		U			
4-Methyl-2-Pentanone	<5.0	4.4	5.0	10	1		U			
Styrene	<0.50	0.17	0.50	1.0	1		U			
1,1,1,2-Tetrachloroethane	<0.50	0.40	0.50	1.0	1		U			
1,1,2,2-Tetrachloroethane	<0.50	0.41	0.50	1.0	1		U			
Tetrachloroethene	<0.50	0.39	0.50	5.0	1		U			
Toluene	<0.50	0.24	0.50	1.0	1		U			
1,2,4-Trichlorobenzene	<1.0	0.50	1.0	5.0	1		U			
1,1,1-Trichloroethane	<0.50	0.30	0.50	5.0	1		U			
Hexachloro-1,3-Butadiene	<0.50	0.32	0.50	1.0	1		U			

Environmental Science International 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500	Work	Received: Order: aration: od:		07/26/13 13-07-1752 EPA 5030C GC/MS / EPA 8260B		
Project: Red Hill LTM 112066		Units	:			ug/L Page 8 of 10
Parameter	<u>Result</u>	DL	LOD	LOQ	DF	Qualifiers
1,1,2-Trichloroethane	<0.50	0.38	0.50	1.0	1	U
Trichloroethene	<0.50	0.37	0.50	1.0	1	U
1,2,3-Trichloropropane	<1.0	0.64	1.0	5.0	1	U
Vinyl Chloride	<0.50	0.30	0.50	1.0	1	U
p/m-Xylene	<1.0	0.30	1.0	10	1	U
o-Xylene	<0.50	0.23	0.50	1.0	1	U
Methyl-t-Butyl Ether (MTBE)	<0.50	0.31	0.50	1.0	1	U
Gasoline Range Organics	<30	13	30	50	1	U
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
Dibromofluoromethane	97	80-126				
1,2-Dichloroethane-d4	95	80-134				
Toluene-d8	99	80-120				
Toluene-d8-TPPH	96	88-112				
1,4-Bromofluorobenzene	89	80-120				

Return to Contents

Environmental Science International, Inc.	
354 Uluniu Street, Suite 304	
Kailua, HI 96734-2500	

Date Received:	07/26/13
Work Order:	13-07-1752
Preparation:	EPA 5030C
Method:	GC/MS / EPA 8260B
Units:	ug/L
	Page 9 of 10

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-13-057-26	N/A	Aqueous	GC/MS LL	07/30/13	07/30/13 20:20	130730L02
Comment(s): - Results were evaluated t	the MDL (DL), cor	centrations >= t	o the MDL (DL	_) but < RL (LOC	Q), if found, are	qualified with	a "J" flag.
Parameter	<u>Result</u>	DL	LOD	LOC	<u>2</u> <u>D</u>	<u>)F</u>	<u>Qualifiers</u>
Acetone	<10	6.0	10	20	1		U
Benzene	<0.50	0.14	0.50	1.0	1		U
Bromodichloromethane	<0.50	0.21	0.50	5.0	1		U
Bromoform	<1.0	0.50	1.0	10	1		U
Bromomethane	<5.0	3.9	5.0	20	1		U
2-Butanone	<5.0	2.2	5.0	10	1		U
Carbon Tetrachloride	<0.50	0.23	0.50	1.0	1		U
Chlorobenzene	<0.50	0.17	0.50	5.0	1		U
Chloroethane	<5.0	2.3	5.0	10	1		U
Chloroform	<0.50	0.46	0.50	5.0	1		U
Chloromethane	<2.0	1.8	2.0	10	1		U
Dibromochloromethane	<0.50	0.25	0.50	1.0	1		U
1,2-Dibromo-3-Chloropropane	<2.0	1.2	2.0	10	1		U
1,2-Dibromoethane	<0.50	0.36	0.50	1.0	1		U
1,2-Dichlorobenzene	<0.50	0.46	0.50	1.0	1		U
1,3-Dichlorobenzene	<0.50	0.40	0.50	1.0	1		U
1,4-Dichlorobenzene	<0.50	0.43	0.50	1.0	1		U
1,1-Dichloroethane	<0.50	0.28	0.50	5.0	1		U
1,2-Dichloroethane	<0.50	0.24	0.50	1.0	1		U
1,1-Dichloroethene	<0.50	0.43	0.50	1.0	1		U
c-1,2-Dichloroethene	<0.50	0.48	0.50	1.0	1		U
t-1,2-Dichloroethene	<0.50	0.37	0.50	1.0	1		U
1,2-Dichloropropane	<0.50	0.42	0.50	5.0	1		U
c-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1		U
t-1,3-Dichloropropene	<0.50	0.25	0.50	1.0	1		U
Ethylbenzene	<0.50	0.14	0.50	1.0	1		U
Methylene Chloride	<1.0	0.64	1.0	5.0	1		U
4-Methyl-2-Pentanone	<5.0	4.4	5.0	10	1		U
Styrene	<0.50	0.17	0.50	1.0	1		U
1,1,1,2-Tetrachloroethane	<0.50	0.40	0.50	1.0	1		U
1,1,2,2-Tetrachloroethane	<0.50	0.41	0.50	1.0	1		U
Tetrachloroethene	<0.50	0.39	0.50	5.0	1		U
Toluene	<0.50	0.24	0.50	1.0	1		U
1,2,4-Trichlorobenzene	<1.0	0.50	1.0	5.0	1		U
1,1,1-Trichloroethane	<0.50	0.30	0.50	5.0	1		U
Hexachloro-1,3-Butadiene	<0.50	0.32	0.50	1.0	1		U

Return to Contents

Environmental Science International, In	С.	Date	Received:		07/26/13			
354 Uluniu Street, Suite 304		Work	Order:			13-07-1752		
Kailua, HI 96734-2500	Prepa	aration:			EPA 5030C			
Method:						GC/MS / EPA 8260B		
		Units	:			ug/L		
Project: Red Hill LTM 112066						Page 10 of 10		
Parameter	<u>Result</u>	DL	LOD	LOQ	DF	Qualifiers		
1,1,2-Trichloroethane	<0.50	0.38	0.50	1.0	1	U		
Trichloroethene	<0.50	0.37	0.50	1.0	1	U		
1,2,3-Trichloropropane	<1.0	0.64	1.0	5.0	1	U		
Vinyl Chloride	<0.50	0.30	0.50	1.0	1	U		
p/m-Xylene	<1.0	0.30	1.0	10	1	U		
o-Xylene	<0.50	0.23	0.50	1.0	1	U		
Methyl-t-Butyl Ether (MTBE)	<0.50	0.31	0.50	1.0	1	U		
Gasoline Range Organics	<30	13	30	50	1	U		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>					
Dibromofluoromethane	91	80-126						
1,2-Dichloroethane-d4	88	80-134						
Toluene-d8	99	80-120						
Toluene-d8-TPPH	95	88-112						
1,4-Bromofluorobenzene	92	80-120						

Quality Control - Spike/Spike Duplicate

Environmental Science International, Inc.	Date Received:	07/26/13
354 Uluniu Street, Suite 304	Work Order:	13-07-1752
Kailua, HI 96734-2500	Preparation:	EPA 3510C
	Method:	EPA 8015B (M)
Project: Red Hill LTM 112066		Page 1 of 5

Project: Red Hill LTM 112066

Quality Control Sample ID			Matrix		Date Prepared		Date Analyzed	MS/MSD Batch Numbe		Number
ES 034		Aqueou	ıs	GC 45	07/30/	13	07/31/13 03:01	130	730S09	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> <u>%Rec.</u>	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
TPH as Diesel	471.1	4000	4828	109	5043	114	55-133	4	0-30	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - Spike/Spike Duplicate

Environmental Science International, Inc.	Date Received:	07/26/13
354 Uluniu Street, Suite 304	Work Order:	13-07-1752
Kailua, HI 96734-2500	Preparation:	EPA 3020A Total
	Method:	EPA 6020
Project: Red Hill LTM 112066		Page 2 of 5

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	n Number
ES 034		Aqueo	us	ICP/MS 04	07/31/	13	07/31/13 17:35	130	731S02	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	MSD Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
l ead	ND	100.0	109.5	109	108.1	108	80-120	1	0-20	

Return to Contents

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - Spike/Spike Duplicate

Environmental Science International, Inc.	Date Received:	07/26/13
354 Uluniu Street, Suite 304	Work Order:	13-07-1752
Kailua, HI 96734-2500	Preparation:	EPA 3510C
	Method:	EPA 8270C SIM PAHs
Project: Red Hill LTM 112066		Page 3 of 5

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	Number
ES 034		Aqueou	Aqueous GC/MS AAA 07/29/13 0		08/01/13 15:40 130729S12					
Parameter	<u>Sample</u> Conc.	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> <u>%Rec.</u>	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Naphthalene	ND	2.000	1.278	64	1.624	81	21-133	24	0-25	
2-Methylnaphthalene	ND	2.000	1.155	58	1.466	73	21-140	24	0-25	
1-Methylnaphthalene	ND	2.000	1.060	53	1.341	67	20-140	23	0-25	
Acenaphthylene	ND	2.000	1.241	62	1.584	79	33-145	24	0-25	
Acenaphthene	ND	2.000	1.242	62	1.585	79	49-121	24	0-25	
Fluorene	ND	2.000	1.298	65	1.680	84	59-121	26	0-25	4
Phenanthrene	ND	2.000	1.170	59	1.514	76	54-120	26	0-25	4
Anthracene	ND	2.000	1.049	52	1.276	64	27-133	20	0-25	
Fluoranthene	ND	2.000	1.165	58	1.475	74	26-137	24	0-25	
Pyrene	ND	2.000	1.264	63	1.622	81	18-168	25	0-25	
Benzo (a) Anthracene	ND	2.000	1.265	63	1.595	80	33-143	23	0-25	
Chrysene	ND	2.000	1.170	58	1.483	74	17-168	24	0-25	
Benzo (k) Fluoranthene	ND	2.000	1.229	61	1.632	82	24-159	28	0-25	4
Benzo (b) Fluoranthene	ND	2.000	1.307	65	1.684	84	24-159	25	0-25	
Benzo (a) Pyrene	ND	2.000	1.409	70	1.775	89	17-163	23	0-25	
Indeno (1,2,3-c,d) Pyrene	ND	2.000	1.284	64	1.634	82	10-171	24	0-25	
Dibenz (a,h) Anthracene	ND	2.000	1.107	55	1.436	72	10-219	26	0-25	4
Benzo (g,h,i) Perylene	ND	2.000	1.031	52	1.317	66	10-227	24	0-25	

Environmental Science International, Inc.	Date Received:	07/26/13
354 Uluniu Street, Suite 304	Work Order:	13-07-1752
Kailua, HI 96734-2500	Preparation:	EPA 5030C
	Method:	GC/MS / EPA 8260B
Project: Red Hill LTM 112066		Page 4 of 5

Project: Red Hill LTM 112066

E8 0.00CHAROW <thcharow< th="">CHAROWCHAROWCHAR</thcharow<>	Quality Control Sample ID		Matrix		Instrument	Date Pr	epared	Date Analyzed	MS	/MSD Batch	Number
Acetone88.3660.00187.2198175.617440.14060.203BenzeneND50.0051.0710247.449580-12070.20BromolichomethaneND50.0047.199447.659075.1310.2050.20BromolichomethaneND50.0057.13114101.7712430.14580.205BromolemethaneND50.0060.9712265.9111430.16570.205Catron TetrachlorideND50.0063.3010745.559960.1580.205ChiorothanaND50.0053.5810761.6813340.12540.205ChiorothaneND50.0053.5810751.6810340.12540.205DibromochioromethaneND50.0053.5810751.6810340.12550.2051.2-DibromochaneND50.0047.9084.7179480.1250.2051.2-DibromochaneND50.0047.929645.7270.13580.201.2-DibromochaneND50.0047.929645.729170.13580.201.2-DibromochaneND50.0047.929645.729170.13580.201.2-DibromochaneND50.00<	ES 034		Aqueou	us	GC/MS LL	07/30/1	3	07/31/13 03:14	130	730S02	
BarzaneND50.0047.1947.449580-12070.20BromodichloromethaneND50.0047.199444.769075.12050.20BromodicmND50.0047.199444.769075.12050.20BromodicmND50.0060.9712255.9111430.15070.202-ButanoneND50.0060.9712255.9111465.14070.20Carbon TetrachlorideND50.0048.879444.759080-13570.20ChloroberzaneND50.0053.3010749.559960-13570.20ChlorobertaneND50.0053.9110047.909660-13550.20ChlorobertaneND50.0050.1910047.909660-13550.201/2-Dibromo-3-ChloropropaneND50.0049.719147.199480.12050.201/2-Dibromo-3-ChloropropaneND50.0048.909247.378770.12050.201/2-Dibromo-3-ChloropropaneND50.0048.909345.799270.13580.201/2-DibroberzeneND50.0045.9110348.907010.2011/2-DibroberzeneND50.0051.5110348.907010.201 <td< th=""><th>Parameter</th><th></th><th></th><th><u>MS</u> Conc.</th><th><u>MS</u> %Rec.</th><th></th><th><u>MSD</u> %Rec.</th><th>%Rec. CL</th><th>RPD</th><th>RPD CL</th><th>Qualifiers</th></td<>	Parameter			<u>MS</u> Conc.	<u>MS</u> %Rec.		<u>MSD</u> %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
BromodichloromethaneND50.0047.199444.769075-12050-20BromoderhaneND50.0045.199647.659571-13010-202-ButanoneND50.0060.9712256.9111430-15070-20Carbon TetrachlorideND50.0048.879845.619165-14070-20ChloroberaneND50.0064.879845.619166-13570-20ChloroberaneND50.0063.3010749.559366-13580-20ChloroberaneND50.0053.8110146.589365-13680-20ChloroberaneND50.0041.206239.6660-13550-2012-DichoroberaneND50.0047.199843.008676-12050-2012-DichoroberaneND50.0047.928947.7194600-20112-DichoroberaneND50.0047.928645.799270-13070-2012-DichoroberaneND50.0047.929445.799270-13070-2013-DichoroberaneND50.0051.5110347.459570-13070-2014-DichoroberaneND50.0051.5110348.819470-13070-20 <td< td=""><td>Acetone</td><td>88.36</td><td>50.00</td><td>187.2</td><td>198</td><td>175.6</td><td>174</td><td>40-140</td><td>6</td><td>0-20</td><td>3</td></td<>	Acetone	88.36	50.00	187.2	198	175.6	174	40-140	6	0-20	3
Bromotorm BromotertaneND50.0048.199647.659570-13010.20BromomethaneND50.0067.1311461.7712430-14580.202-ButanoneND50.0048.959444.759080-12050.20ChlorobenzeneND50.0048.879444.759080-12050.20ChlorobenzeneND50.0053.8010749.559960-13570.20ChlorobentaneND50.0053.8110751.6810340-12540.20ChlorobentaneND50.0053.8110751.6810340-12540.20L'Dohrom-3-ChloropropaneND50.0041.208239.688060.13030.201.2-DibromoethaneND50.0041.208243.738770-12050.201.2-DibromoethaneND50.0047.929645.429175-12540.201.2-DibromoethaneND50.0047.929645.429175-12550.201.2-DibromoethaneND50.0051.5110347.459570-13080.201.2-DibriorobenzeneND50.0051.5110347.819171-12550.201.2-DibriorobenzeneND50.0051.5110347.819171-	Benzene	ND	50.00	51.07	102	47.44	95	80-120	7	0-20	
BromomethaneND50.0057.1311461.7712430-14580-202-ButanoneND50.0060.9712256.9111430-16070-20Carbon TetrachiorideND50.0048.959445.619165.10070-20ChioroberzeneND50.0053.3010749.559960-13570-20ChiorobertaneND50.0053.3010746.569365.13580-20ChiorobertaneND50.0053.5810751.6810340-12540-20DibromochloromethaneND50.0045.0947.099660-13550-201.2-DibromochloromethaneND50.0041.208239.668051-13030-201.2-DibrioroberzeneND50.0041.208247.179480-12050-201.2-DibrioroberzeneND50.0047.829645.429175-12650-201.3-DibrioroberzeneND50.0051.5110347.459570-13080-201.2-DibrioroberzeneND50.0051.5110347.459570-13080-201.2-DibrioroberzeneND50.0051.5110346.849476-12560-201.2-DibrioropropaneND50.0051.5110346.849476-	Bromodichloromethane	ND	50.00	47.19	94	44.76	90	75-120	5	0-20	
2-ButanoneND50.0060.9712256.9111430.15070.20Carbon TetrachlorideND50.0046.879445.759060.12050.20ChlorobharzeneND50.0046.879447.579060.12050.20ChlorothaneND50.0053.3010749.559860.13550.20ChlorothaneND50.0050.4310145.889366.13550.20DibromochloromethaneND50.0041.208239.868050.13030.201,2-DibromochaneND50.0041.208239.868050.13030.201,2-DibromochaneND50.0044.809043.008675.12550.201,3-DichlorobenzeneND50.0047.929645.429175.12550.201,4-DichlorobenzeneND50.0047.929645.429175.12550.201,4-DichlorobenzeneND50.0045.6110347.459570.13080.201,2-DichlorobenzeneND50.0051.5110347.459570.13080.201,2-DichlorobenzeneND50.0051.5110346.839470.12560.201,2-DichlorobenzeneND50.0051.5110346.849470.	Bromoform	ND	50.00	48.19	96	47.65	95	70-130	1	0-20	
Carbon TetrachlorideND50.0048.959845.619165.14070.20ChlorobenzeneND50.0068.879444.759060.13550.20ChlorobenzeneND50.0050.4310749.559960.13570.20ChlorobentaneND50.0050.4310145.889365.13580.20ChloromethaneND50.0051.5810751.6810340.12540.20L'2-Dibromo-3-ChloropropaneND50.0041.208239.668050.13030.201,2-DibromethaneND50.0044.009243.738770.12050.201,2-DibromethaneND50.0044.809043.008075.12550.201,3-DichlorobenzeneND50.0047.929645.429175.12550.201,4-DichlorobenzeneND50.0047.929645.429175.12580.201,1-DichloroethaneND50.0051.5110347.459470.13580.201,2-DichloroethaneND50.0051.5110348.309761.4070.201,2-DichloroethaneND50.0051.5110348.309761.4070.201,2-DichloroethaneND50.0051.5110348.3097	Bromomethane	ND	50.00	57.13	114	61.77	124	30-145	8	0-20	
ChlorobenzeneND50.0046.879444.759080-12050.20ChlorotentaneND50.0053.3010749.559960-13570.20ChlorotentaneND50.0053.8010751.6810340-12540.20DibromochloromethaneND50.0053.5810751.6810340-12550.201,2-Dibromo-3-ChloropropaneND50.0041.208239.968050-13030.201,2-Dibromo-s-ChloropropaneND50.0040.719443.738770-12050.201,2-Dibromo-s-ChloropropaneND50.0044.889043.008675-12540.201,3-DichlorobenzeneND50.0047.929645.429175-12550.201,1-DichloroethaneND50.0047.929645.429170-13580.201,1-DichloroethaneND50.0051.5110347.459570-13080.201,1-DichloroethaneND50.0051.5110347.459570-13080.201,2-DichloroptaneND50.0051.5110347.459570-13080.201,2-DichloroptaneND50.0051.5110348.3091.0151.4040.201,2-DichloroptaneND50.0051.55103<	2-Butanone	ND	50.00	60.97	122	56.91	114	30-150	7	0-20	
ChloroethaneND50.0053.3010749.559960-13570.20ChloroofromND50.0050.4310146.589365-13580.20ChloroothaneND50.0053.5810751.6810340.12540.20DibromochloromethaneND50.0041.208239.968050-13030.201,2-Dibromod-3-ChloropropaneND50.0049.719947.179480-12050.201,2-DibrombehaneND50.0044.809043.008675-12550.201,3-DichlorobenzeneND50.0044.809945.799270-13580.201,4-DichlorobenzeneND50.0049.609945.799270-13580.201,1-DichloroethaneND50.0051.5110347.509570-10380.20-1,2-DichloroethaneND50.0051.5110348.309760-13070.20-1,2-DichloroethaneND50.0051.6810348.309760-14070.20-1,2-DichloroetheneND50.0051.5110348.819870-13080.20-1,2-DichloroetheneND50.0051.5610348.819870-13080.20-1,2-DichloroetheneND50.0051.5510348.81 <td>Carbon Tetrachloride</td> <td>ND</td> <td>50.00</td> <td>48.95</td> <td>98</td> <td>45.61</td> <td>91</td> <td>65-140</td> <td>7</td> <td>0-20</td> <td></td>	Carbon Tetrachloride	ND	50.00	48.95	98	45.61	91	65-140	7	0-20	
ChloroformND50.0050.4310146.589365-13580-20ChloromethaneND50.0053.5810751.6810340-12540-20DibromochloromethaneND50.0050.1910047.909660-13550-201,2-Dibromo-3-ChloropropaneND50.0041.208239.968050-13030-201,2-Dibromo-thaneND50.0041.209243.738770-12050-201,2-DichlorobenzeneND50.0044.809043.008675-12550-201,3-DichlorobenzeneND50.0047.929645.709270-13580-201,1-DichloroethaneND50.0047.929645.709270-13580-201,1-DichloroethaneND50.0051.5110347.459570-13070-201,2-DichloroethaneND50.0051.5110348.309760.4070-201,2-DichloroetheneND50.0051.5510348.319870-13070-201,2-DichloroptheneND50.0051.5510348.319870-13070-201,2-DichloroptheneND50.0051.5510348.319870-13050-201,2-DichloroptheneND50.0051.5510348.31 <td>Chlorobenzene</td> <td>ND</td> <td>50.00</td> <td>46.87</td> <td>94</td> <td>44.75</td> <td>90</td> <td>80-120</td> <td>5</td> <td>0-20</td> <td></td>	Chlorobenzene	ND	50.00	46.87	94	44.75	90	80-120	5	0-20	
ChloromethaneND50.0053.5810751.6810340-12540-20DibromochloromethaneND50.0050.1910047.909660-13550-201,2-Dibromo-3-ChloropropaneND50.0041.208239.968050-13030-201,2-Dibromo-3-ChloropropaneND50.0049.719947.179480-12050-201,2-DibrlorobenzeneND50.0049.709243.738775-12550-201,3-DichlorobenzeneND50.0047.929645.429175-12550-201,4-DichlorobenzeneND50.0049.609945.799270-13080-201,1-DichloroethaneND50.0051.5110347.929470-13080-20-1,2-DichloroethaneND50.0051.5110347.929470-13080-20-1,2-DichloroethaneND50.0051.5110348.309760-14070-20-1,2-DichloroethaneND50.0051.5110348.309760-14070-20-1,2-DichloroethaneND50.0051.5110348.309760-14070-20-1,2-DichloroethaneND50.0051.5510348.309475-12580-20-1,2-DichloroethaneND50.0051.55 <td>Chloroethane</td> <td>ND</td> <td>50.00</td> <td>53.30</td> <td>107</td> <td>49.55</td> <td>99</td> <td>60-135</td> <td>7</td> <td>0-20</td> <td></td>	Chloroethane	ND	50.00	53.30	107	49.55	99	60-135	7	0-20	
DibromochloromethaneND50.0050.1910047.909660-13550-201,2-Dibromo-3-ChloropropaneND50.0041.208239.968050-13030-201,2-DibromothaneND50.0049.719947.179480-12050-201,2-DichlorobenzeneND50.0046.009243.738770-12050-201,3-DichlorobenzeneND50.0047.929645.429175-12550-201,4-DichlorobenzeneND50.0049.609945.799270-13080-201,1-DichloroethaneND50.0051.5110347.699470-13070-201,1-DichloroethaneND50.0050.4310146.949470-13070-20-1,2-DichloroethaneND50.0050.7110146.849470-13070-20-1,2-DichloroethaneND50.0050.7110146.849475-12580-20-1,3-DichloropropaneND50.0051.5510348.819870-13070-20-1,3-DichloropropaneND50.0052.4110150.3310155-14040-20-1,3-DichloropropaneND50.0052.4110550.3310155-14040-20-1,3-DichloropropaneND50.0052.41 <td>Chloroform</td> <td>ND</td> <td>50.00</td> <td>50.43</td> <td>101</td> <td>46.58</td> <td>93</td> <td>65-135</td> <td>8</td> <td>0-20</td> <td></td>	Chloroform	ND	50.00	50.43	101	46.58	93	65-135	8	0-20	
1,2-Dibromo-3-ChloropropaneND50.0041.208239.968050-13030-201,2-DibromoethaneND50.0046.009243.738770-12050-201,3-DichlorobenzeneND50.0044.889043.008675-12540-201,4-DichlorobenzeneND50.0047.929645.429175-12550-201,4-DichlorobenzeneND50.0049.609045.799270-13080-201,2-DichlorobetnaneND50.0049.609447.459570-13080-201,2-DichloroethaneND50.0051.5110347.459470-13070-201,2-DichloroethaneND50.0051.6110346.949470-13070-201,2-DichloroethaneND50.0051.6810348.819870-13080-20t-1,2-DichloroethaneND50.0051.5510348.119870-13070-20t-1,2-DichloropropaneND50.0051.5510348.119870-13080-20t-1,3-DichloropropaneND50.0051.5510348.119870-13080-20t-1,3-DichloropropeneND50.0051.5510348.119265-13070-20t-1,3-DichloropropeneND50.0052.54 <td>Chloromethane</td> <td>ND</td> <td>50.00</td> <td>53.58</td> <td>107</td> <td>51.68</td> <td>103</td> <td>40-125</td> <td>4</td> <td>0-20</td> <td></td>	Chloromethane	ND	50.00	53.58	107	51.68	103	40-125	4	0-20	
1.2-DibromoethaneND50.0049.719947.179480-12050-201.2-DichlorobenzeneND50.0046.009243.738770-12050-201.3-DichlorobenzeneND50.0044.889043.008675-12540-201.4-DichlorobenzeneND50.0047.929645.42917512550-201.1-DichloroethaneND50.0049.609945.799270-13580-201.1-DichloroethaneND50.0050.4310146.929470-13070-201.1-DichloroethaneND50.0050.4310146.929470-13070-201.1-DichloroetheneND50.0051.6810348.309760-14070-201.2-DichloroetheneND50.0051.5110348.309475-12580-201.2-DichloroptopaneND50.0051.5110348.319876-13050-201.3-DichloroptopeneND50.0040.488138.877855-14040-201.1-DichloroptopeneND50.0047.229446.139260-13520-201.1-DichloroptopeneND50.0045.5411050.3310155-14090-201.1-DichloroptopeneND50.0052.5410549	Dibromochloromethane	ND	50.00	50.19	100	47.90	96	60-135	5	0-20	
1.2.DichlorobenzeneND50.0046.009243.738770.12050.201.3.DichlorobenzeneND50.0044.889043.008675.12540.201.4.DichlorobenzeneND50.0047.929645.429175.12550.201.1.DichloroethaneND50.0049.609945.799270.13580.201.2.DichloroethaneND50.0051.5110347.459570.13070.201.1.DichloroethaneND50.0049.9910146.929470.13070.20t.1.2.DichloroethaneND50.0049.9910046.949470.12060.20t.1.2.DichloroetheneND50.0050.7110146.849475.12580.20t.1.3.DichloropropaneND50.0051.5110348.819870.13050.20t.1.3.DichloropropeneND50.0051.5510348.819870.13050.20t.1.3.DichloropropeneND50.0052.4110150.3310155.14040.20t.1.3.DichloropropeneND50.0052.4110349.319865.13570.20t.1.4.DichloroethaneND50.0052.5110349.139865.13570.20t.1.3.DichloropropeneND50.0052.51 </td <td>1,2-Dibromo-3-Chloropropane</td> <td>ND</td> <td>50.00</td> <td>41.20</td> <td>82</td> <td>39.96</td> <td>80</td> <td>50-130</td> <td>3</td> <td>0-20</td> <td></td>	1,2-Dibromo-3-Chloropropane	ND	50.00	41.20	82	39.96	80	50-130	3	0-20	
1.3-DichlorobenzeneND50.0044.889043.008675-12540-201.4-DichlorobenzeneND50.0047.929645.429175-12550-201.1-DichloroethaneND50.0049.609945.799270-13580-201.2-DichloroethaneND50.0051.5110347.459570-13080-201.1-DichloroethaneND50.0050.4310146.929470-13070-20c-1.2-DichloroetheneND50.0051.6810348.309760-14070-20t-1.2-DichloroetheneND50.0051.5510348.819870-13050-20t-1.2-DichloroptopaneND50.0051.5510348.819475-12580-20c-1.3-DichloroptopeneND50.0051.5510348.819870-13050-20t-1.3-DichloroptopeneND50.0040.488138.877855-14040-20t-1.3-DichloroptopeneND50.0047.029446.119260-13520-20t-1.3-DichloroptopeneND50.0055.2411050.3310155-14040-20t-1.3-DichloroethaneND50.0055.2410549.159865-13570-20t-1.3-DichloroptopeneND50.0051.35<	1,2-Dibromoethane	ND	50.00	49.71	99	47.17	94	80-120	5	0-20	
1,4-DichlorobenzeneND50.0047.929645.429175-12550-201,1-DichloroethaneND50.0049.609945.799270-13580-201,2-DichloroethaneND50.0051.5110347.459570-13080-201,1-DichloroethaneND50.0050.4310146.929470-13070-20c-1,2-DichloroetheneND50.0050.4310146.929470-12560-20t-1,2-DichloroetheneND50.0050.7110348.309760-14070-20t-1,2-DichloroptopaneND50.0050.7110146.849470-13280-20t-1,3-DichloroptopeneND50.0051.5510348.819870-13050-20t-1,3-DichloroptopeneND50.0051.5510348.819870-13050-20t-1,3-DichloroptopeneND50.0040.488138.877855-14040-20t-1,3-DichloroptopeneND50.0047.029446.119260-13520-20Methylene ChlorideND50.0052.5110349.119561-13570-201,1,1,2-TetrachloroethaneND50.0051.3510349.119186.13570-201,1,1,2-TetrachloroethaneND50.00 <t< td=""><td>1,2-Dichlorobenzene</td><td>ND</td><td>50.00</td><td>46.00</td><td>92</td><td>43.73</td><td>87</td><td>70-120</td><td>5</td><td>0-20</td><td></td></t<>	1,2-Dichlorobenzene	ND	50.00	46.00	92	43.73	87	70-120	5	0-20	
1,1-DichloroethaneND50.0049.609945.799270-13580-201,2-DichloroethaneND50.0051.5110347.459570-13080-201,1-DichloroethaneND50.0050.4310146.929470-13070-20c-1,2-DichloroethaneND50.0049.9910046.949470-12560-20t-1,2-DichloropthaneND50.0051.6810348.309760-14070-201,2-DichloroptpaneND50.0051.7510348.819870-13050-20c-1,3-DichloroptpaneND50.0051.5510348.819870-13050-20t-1,3-DichloroptpaneND50.0049.488138.877855-14040-20t-1,3-DichloroptpaneND50.0049.089846.939475-15240-20t-1,3-DichloroptpaneND50.0049.089846.939475-15240-20t-1,3-DichloroptpaneND50.0049.089846.939475-15240-20t-1,3-DichloroptpaneND50.0052.4411050.3310155-14090-20t-1,3-DichloropthaneND50.0052.4411050.3310155-14040-20t-1,1,1-TettachloroethaneND50.0051.55<	1,3-Dichlorobenzene	ND	50.00	44.88	90	43.00	86	75-125	4	0-20	
1,2-DichloroethaneND50.0051.5110347.459570-13080-201,1-DichloroetheneND50.0050.4310146.929470-13070-20c-1,2-DichloroetheneND50.0049.9910046.949470-12560-20t-1,2-DichloroetheneND50.0051.6810348.309760-14070-201,2-DichloroptopaneND50.0051.5510348.819870-13050-20c-1,3-DichloroptopeneND50.0051.5510348.819870-13050-20t-1,3-DichloroptopeneND50.0051.5510348.819875-12540-20t-1,3-DichloroptopeneND50.0049.089846.939475-12540-20t-1,3-DichloroptopeneND50.0055.2411050.3310155.14090-20t-1,3-DichloroptopeneND50.0055.2411050.3310155.14090-20t-1,1,2-PertachloroethaneND50.0051.5510549.159866.13570-201,1,2-TetrachloroethaneND50.0051.5510549.159865.136640-203,41,1,2-TetrachloroethaneND50.0051.351060.695.0165.13570-201,1,2-Tetrachloroethane	1,4-Dichlorobenzene	ND	50.00	47.92	96	45.42	91	75-125	5	0-20	
1,1-DichloroetheneND50.0050.4310146.929470-13070-20c-1,2-DichloroetheneND50.0049.9910046.949470-1256020t-1,2-DichloroetheneND50.0051.6810348.309760-14070201,2-DichloroptopaneND50.0050.7110146.849475-1258020c-1,3-DichloroptopeneND50.0051.5510348.819870-1305020t-1,3-DichloroptopeneND50.0040.488138.877855-1404020EthylbenzeneND50.0049.089846.939475-1254020Methyl-2-PentanoneND50.0047.029446.119260-13520201,1,2-TetrachloroethaneND50.0052.5110549.159865-13570201,1,2-TetrachloroethaneND50.0051.3510349.319980-13040201,1,2-TetrachloroethaneND50.0076.4515372.0014445-150602031,1,2-TetrachloroethaneND50.0076.4515372.0014445-150602031,2,4-TrichloroethaneND50.0048.199645.869265-13550201,2,4-TrichloroethaneND50.00	1,1-Dichloroethane	ND	50.00	49.60	99	45.79	92	70-135	8	0-20	
c.1,2-DichloroetheneND50.0049.9910046.949470-12560-20t-1,2-DichloroetheneND50.0051.6810348.309760-14070-201,2-DichloropropaneND50.0050.7110146.849475-12580-20c-1,3-DichloropropeneND50.0051.5510348.819870-13050-20t-1,3-DichloropropeneND50.0040.488138.877855-14040-20t-1,3-DichloropropeneND50.0049.089846.939475-12540-20EthylbenzeneND50.0047.029446.119260-13520-204-Methyl-2-PentanoneND50.0047.029446.119260-13520-205,yreneND50.0052.5110549.159865-13570-201,1,2-TetrachloroethaneND50.0051.3510349.319980-13040-203,41,1,2-ZetrachloroethaneND50.0076.4515372.2014445-15060-203,41,2,4-TrichloroethaneND50.0076.4515372.2014445-15060-203,41,2,4-TrichloroethaneND50.0048.199645.869265-13550-201,1,1-TrichloroethaneND	1,2-Dichloroethane	ND	50.00	51.51	103	47.45	95	70-130	8	0-20	
t1.2-DichloroetheneND50.0051.6810348.309760-14070-201,2-DichloropropaneND50.0050.7110146.849475-12580-20c-1,3-DichloropropeneND50.0051.5510348.819870-13050-20t-1,3-DichloropropeneND50.0040.488138.877855-14040-20t-1,3-DichloropropeneND50.0049.089846.939475-12540-20EthylbenzeneND50.0055.2411050.3310155-14090-204-Methyl-2-PentanoneND50.0047.029446.119260-13520-20StyreneND50.0052.5110349.319980-13040-201,1,2-TetrachloroethaneND50.0051.3510349.319980-13040-201,1,2-TetrachloroethaneND50.0076.4515372.2014445-15060-20341,1,2-TetrachloroethaneND50.0048.189945.899275-12070-201,2,4-TrichlorobenzeneND50.0048.199645.869265-13550-201,2,4-TrichloroethaneND50.0048.199645.869265-13550-201,1,1-TrichloroethaneND50.00	1,1-Dichloroethene	ND	50.00	50.43	101	46.92	94	70-130	7	0-20	
1,2-DichloropropaneND50.0050.7110146.849475-12580-20c-1,3-DichloropropeneND50.0051.5510348.819870-13050-20t-1,3-DichloropropeneND50.0040.488138.877855-14040-20EthylbenzeneND50.0049.089846.939475-12540-20Methylene ChlorideND50.0047.029460.3310155-14090-204-Methyl-2-PentanoneND50.0052.5110549.159865-13570-20StyreneND50.0051.3510349.159865-13570-201,1,2-TetrachloroethaneND50.0051.3510349.319980-13040-201,1,2-TetrachloroethaneND50.0051.3510349.319165-13060-203.4TetrachloroethaneND50.0076.4515372.2014445-15060-203.4TolueneND50.0048.199645.869255-13070-201,2,4-TrichlorobehaneND50.0048.199644.879065-13070-201,1,1-TrichloroethaneND50.0048.199644.879065-13070-201,1,1-TrichloroethaneND50.0048.19 <td>c-1,2-Dichloroethene</td> <td>ND</td> <td>50.00</td> <td>49.99</td> <td>100</td> <td>46.94</td> <td>94</td> <td>70-125</td> <td>6</td> <td>0-20</td> <td></td>	c-1,2-Dichloroethene	ND	50.00	49.99	100	46.94	94	70-125	6	0-20	
c-1,3-DichloropropeneND50.0051.5510348.819870-13050-20t-1,3-DichloropropeneND50.0040.488138.877855-14040-20EthylbenzeneND50.0049.089846.939475-12540-20Methylene ChlorideND50.0055.2411050.3310155-14090-204-Methyl-2-PentanoneND50.0055.2411050.3310155-13520-20StyreneND50.0052.5110549.159865-13570-201,1,2-TetrachloroethaneND50.0051.3510349.319980-13040-201,1,2,2-TetrachloroethaneND50.0051.3510349.319980-130640-203,4TetrachloroethaneND50.0076.4515372.2014445-150640-203,4TolueneND50.0049.389945.899275-12070-201,1,2,4-TrichlorobenzeneND50.0048.199645.869265-13550-201,1,1-TrichloroethaneND50.0048.199644.879065-13070-201,1,1-TrichloroethaneND50.0048.019644.879065-13050-201,1,1-TrichloroethaneND50.0048.01 <td>t-1,2-Dichloroethene</td> <td>ND</td> <td>50.00</td> <td>51.68</td> <td>103</td> <td>48.30</td> <td>97</td> <td>60-140</td> <td>7</td> <td>0-20</td> <td></td>	t-1,2-Dichloroethene	ND	50.00	51.68	103	48.30	97	60-140	7	0-20	
t 1,3-DichloropropeneND50.0040.488138.877855-14040-20EthylbenzeneND50.0049.089846.939475-12540-20Methylene ChlorideND50.0055.2411050.3310155-14090-204-Methyl-2-PentanoneND50.0047.029446.119260-13520-20StyreneND50.0052.5110549.159865-13570-201,1,2-TetrachloroethaneND50.0051.3510349.319980-13040-201,1,2,2-TetrachloroethaneND50.0051.3510349.319980-13040-201,1,2,2-TetrachloroethaneND50.0076.4515372.2014445-15060-203,4TolueneND50.0048.199645.899275-12070-201,1,1,1-TrichloroethaneND50.0048.199645.869265-13550-201,1,1-TrichloroethaneND50.0048.019644.879065-13070-201,1,1-TrichloroethaneND50.0048.019644.879065-13070-201,1,1-TrichloroethaneND50.0048.019644.869050-14050-201,1,1-TrichloroethaneND50.0048.0196 </td <td>1,2-Dichloropropane</td> <td>ND</td> <td>50.00</td> <td>50.71</td> <td>101</td> <td>46.84</td> <td>94</td> <td>75-125</td> <td>8</td> <td>0-20</td> <td></td>	1,2-Dichloropropane	ND	50.00	50.71	101	46.84	94	75-125	8	0-20	
EthylbenzeneND50.0049.089846.939475-12540-20Methylene ChlorideND50.0055.2411050.3310155-14090-204-Methyl-2-PentanoneND50.0047.029446.119260-13520-20StyreneND50.0052.5110549.159865-13570-201,1,2-TetrachloroethaneND50.0051.3510349.319980-13040-201,1,2,2-TetrachloroethaneND50.000.358510.6950165-130640-203,4TetrachloroethaneND50.0076.4515372.2014445-15060-203TolueneND50.0048.199645.869265-13550-201,1,1-TrichloroethaneND50.0048.199644.879065-13070-201,1,1-TrichloroethaneND50.0048.019644.879065-13070-201,1,1-TrichloroethaneND50.0048.019644.879065-13070-201,1,1-TrichloroethaneND50.0047.459544.969050-14050-20Hexachloro-1,3-ButadieneND50.0047.459544.969050-14050-20	c-1,3-Dichloropropene	ND	50.00	51.55	103	48.81	98	70-130	5	0-20	
Methylene ChlorideND50.0055.2411050.3310155-14090-204-Methyl-2-PentanoneND50.0047.029446.119260-13520-20StyreneND50.0052.5110549.159865-13570-201,1,2-TetrachloroethaneND50.0051.3510349.319980-13040-201,1,2,2-TetrachloroethaneND50.000.358510.6950165-130640-203,4TetrachloroethaneND50.0076.4515372.2014445-15060-203TolueneND50.0049.389945.899275-12070-201,2,4-TrichloroethaneND50.0048.199644.879065-13050-201,1,1-TrichloroethaneND50.0048.019644.879065-13070-201,1,1-TrichloroethaneND50.0047.459544.969050-14050-20	t-1,3-Dichloropropene	ND	50.00	40.48	81	38.87	78	55-140	4	0-20	
4-Methyl-2-PentanoneND50.0047.029446.119260-13520-20StyreneND50.0052.5110549.159865-13570-201,1,1,2-TetrachloroethaneND50.0051.3510349.319980-13040-201,1,2,2-TetrachloroethaneND50.000.358510.6950165-130640-203,4TetrachloroethaneND50.0076.4515372.2014445-15060-203TolueneND50.0049.389945.899275-12070-201,2,4-TrichlorobenzeneND50.0048.199644.879065-13550-201,1,1-TrichloroethaneND50.0047.459544.969050-14050-20	Ethylbenzene	ND	50.00	49.08	98	46.93	94	75-125	4	0-20	
StyreneND50.0052.5110549.159865-13570-201,1,1,2-TetrachloroethaneND50.0051.3510349.319980-13040-201,1,2,2-TetrachloroethaneND50.000.358510.6950165-130640-203,4TetrachloroethaneND50.0076.4515372.2014445-15060-203TolueneND50.0049.389945.899275-12070-201,2,4-TrichlorobenzeneND50.0048.199644.879065-13550-201,1,1-TrichloroethaneND50.0048.019644.879065-13070-20Hexachloro-1,3-ButadieneND50.0047.459544.969050-14050-20	Methylene Chloride	ND	50.00	55.24	110	50.33	101	55-140	9	0-20	
1,1,2-TetrachloroethaneND50.0051.3510349.319980-13040-201,1,2,2-TetrachloroethaneND50.000.358510.6950165-130640-203,4TetrachloroetheneND50.0076.4515372.2014445-15060-203TolueneND50.0049.389945.899275-12070-201,2,4-TrichloroethaneND50.0048.199645.869265-13550-201,1,1-TrichloroethaneND50.0048.019644.879065-13070-20Hexachloro-1,3-ButadieneND50.0047.459544.969050-14050-20	4-Methyl-2-Pentanone	ND	50.00	47.02	94	46.11	92	60-135	2	0-20	
1,1,2,2-TetrachloroethaneND50.000.358510.6950165-130640-203,4TetrachloroetheneND50.0076.4515372.2014445-15060-203TolueneND50.0049.389945.899275-12070-201,2,4-TrichlorobenzeneND50.0048.199645.869265-13550-201,1,1-TrichloroethaneND50.0048.019644.879065-13070-20Hexachloro-1,3-ButadieneND50.0047.459544.969050-14050-20	Styrene	ND	50.00	52.51	105	49.15	98	65-135	7	0-20	
TetrachloroetheneND50.0076.4515372.2014445-15060-203TolueneND50.0049.389945.899275-12070-201,2,4-TrichlorobenzeneND50.0048.199645.869265-13550-201,1,1-TrichloroethaneND50.0048.019644.879065-13070-20Hexachloro-1,3-ButadieneND50.0047.459544.969050-14050-20	1,1,1,2-Tetrachloroethane	ND	50.00	51.35	103	49.31	99	80-130	4	0-20	
TolueneND50.0049.389945.899275-12070-201,2,4-TrichlorobenzeneND50.0048.199645.869265-13550-201,1,1-TrichloroethaneND50.0048.019644.879065-13070-20Hexachloro-1,3-ButadieneND50.0047.459544.969050-14050-20	1,1,2,2-Tetrachloroethane	ND	50.00	0.3585	5 1	0.6950	1	65-130	64	0-20	3,4
1,2,4-TrichlorobenzeneND50.0048.199645.869265-13550-201,1,1-TrichloroethaneND50.0048.019644.879065-13070-20Hexachloro-1,3-ButadieneND50.0047.459544.969050-14050-20	Tetrachloroethene	ND	50.00	76.45	153	72.20	144	45-150	6	0-20	3
1,1,1-TrichloroethaneND50.0048.019644.879065-13070-20Hexachloro-1,3-ButadieneND50.0047.459544.969050-14050-20	Toluene	ND	50.00	49.38	99	45.89	92	75-120	7	0-20	
Hexachloro-1,3-Butadiene ND 50.00 47.45 95 44.96 90 50-140 5 0-20	1,2,4-Trichlorobenzene	ND	50.00	48.19	96	45.86	92	65-135	5	0-20	
	1,1,1-Trichloroethane	ND	50.00	48.01	96	44.87	90	65-130	7	0-20	
1,1,2-Trichloroethane ND 50.00 50.27 101 47.95 96 75-125 5 0-20	Hexachloro-1,3-Butadiene	ND	50.00	47.45	95	44.96	90	50-140	5	0-20	
	1,1,2-Trichloroethane	ND	50.00	50.27	101	47.95	96	75-125	5	0-20	

RPD: Relative Percent Difference. CL: Control Limits

Environmental Science Internat	tional, Inc.			Date F	Received:					07/26/13
354 Uluniu Street, Suite 304				Work (Order:				1	3-07-1752
Kailua, HI 96734-2500				Prepa	ation:				E	PA 5030C
				Metho	d:			C	GC/MS / E	PA 8260B
Project: Red Hill LTM 112066									Page	5 of 5
Parameter	<u>Sample</u> Conc.	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> <u>%Rec.</u>	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Trichloroethene	ND	50.00	87.33	175	80.84	162	70-125	8	0-20	3
1,2,3-Trichloropropane	ND	50.00	50.03	100	48.01	96	75-125	4	0-20	
Vinyl Chloride	ND	50.00	50.64	101	47.81	96	50-145	6	0-20	
p/m-Xylene	ND	100.0	98.53	99	93.79	94	75-130	5	0-20	
o-Xylene	ND	50.00	48.14	96	45.54	91	80-120	6	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	42.97	86	41.53	83	65-125	3	0-20	

Return to Contents

RPD: Relative Percent Difference. CL: Control Limits

Environmental Science International, Inc.	Date Received:	07/26/13
354 Uluniu Street, Suite 304	Work Order:	13-07-1752
Kailua, HI 96734-2500	Preparation:	EPA 3020A Total
	Method:	EPA 6020
Project: Red Hill LTM 112066		Page 1 of 1

Quality Control Sample ID	Matrix	Instrument	Date Prepa	red Date Anal	yzed PDS/P	DSD Batch Number
ES 034	Aqueous	ICP/MS 04	07/31/13 00	0:00 07/31/13	17:43 130731	S02
Parameter	Sample Conc.	Spike Added	PDS Conc.	PDS %Rec.	<u>%Rec. CL</u>	<u>Qualifiers</u>
Lead	ND	100.0	106.1	106	75-125	

RPD: Relative Percent Difference. CL: Control Limits

Environmental Science International, Inc.	Date Received:	07/26/13
354 Uluniu Street, Suite 304	Work Order:	13-07-1752
Kailua, HI 96734-2500	Preparation:	EPA 3510C
	Method:	EPA 8015B (M)
Project: Red Hill LTM 112066		Page 1 of 5

Quality Control Sample ID		Matrix		Instrument	Date Prepa	red Date	Analyzed	LCS/LCSD Ba	atch Number
099-15-516-53		Aqueou	S	GC 45	07/30/13	07/31	/13 01:52	130730B09	
Parameter	<u>Spike</u> Added	LCS Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	<u>LCSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
TPH as Diesel	4000	4379	109	4127	103	60-132	6	0-11	

Project: Red Hill LTM 112066

Quality Control Sample ID	Matrix	Instrument	Date Ana	lyzed	LCS Batch Number
099-14-497-42	Aqueous	ICP/MS 04	07/31/13	17:31	130731L02D
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	<u>%Rec.</u>	CL Qualifiers
Lead	100.0	94.32	94	80-120	1

Method:

EPA 6020

Page 2 of 5

alscience nvironmental aboratories, Inc.

Environmental Science International, Inc.	Date Received:	07/26/13
	Date Received.	07/20/13
354 Uluniu Street, Suite 304	Work Order:	13-07-1752
Kailua, HI 96734-2500	Preparation:	EPA 3510C
	Method:	EPA 8270C SIM PAHs
Project: Red Hill LTM 112066		Page 3 of 5

Quality Control - LCS

Project: Red Hill LTM 112066

Quality Control Sample ID	Matrix	Instrument	Date Ana	alyzed	LCS Batch Number
099-15-148-17	Aqueous	GC/MS AAA	08/01/13	15:14	130729L12
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	<u>%Rec. (</u>	<u>CL</u> <u>Qualifiers</u>
Naphthalene	2.000	1.682	84	21-133	
2-Methylnaphthalene	2.000	1.748	87	21-140	
1-Methylnaphthalene	2.000	1.625	81	20-140	
Acenaphthylene	2.000	1.684	84	33-145	
Acenaphthene	2.000	1.736	87	55-121	
Fluorene	2.000	1.883	94	59-121	
Phenanthrene	2.000	1.878	94	54-120	
Anthracene	2.000	1.617	81	27-133	
Fluoranthene	2.000	1.900	95	26-137	
Pyrene	2.000	2.068	103	45-129	
Benzo (a) Anthracene	2.000	2.080	104	33-143	
Chrysene	2.000	1.998	100	17-168	
Benzo (k) Fluoranthene	2.000	2.317	116	24-159	
Benzo (b) Fluoranthene	2.000	2.263	113	24-159	
Benzo (a) Pyrene	2.000	2.295	115	17-163	
Indeno (1,2,3-c,d) Pyrene	2.000	2.148	107	25-175	
Dibenz (a,h) Anthracene	2.000	1.832	92	25-175	
Benzo (g,h,i) Perylene	2.000	1.723	86	25-157	

Total number of LCS compounds: 18 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

Return to Contents

<i>nvironmental</i>	
aboratories, Inc.	

alscience

Environmental Science International, Inc.	Date Received:	07/26/13
354 Uluniu Street, Suite 304	Work Order:	13-07-1752
Kailua, HI 96734-2500	Preparation:	EPA 5030C
	Method:	GC/MS / EPA 8260B
Project: Red Hill LTM 112066		Page 4 of 5

Project: Red Hill LTM 112066

Quality Control Sample ID		Matrix		Instrument	Date Prepa	ared Date A	nalyzed	LCS/LCSD B	atch Number
099-13-057-26			IS	GC/MS LL	07/30/13	07/30/	13 18:56	130730L02	
Parameter	<u>Spike</u> <u>Added</u>	<u>LCS</u> Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	<u>LCSD</u> <u>%Rec.</u>	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Acetone	50.00	75.72	151	N/A	N/A	40-140	N/A	0-20	
Benzene	50.00	53.87	108	N/A	N/A	80-120	N/A	0-20	
Bromodichloromethane	50.00	50.21	100	N/A	N/A	75-120	N/A	0-20	
Bromoform	50.00	58.22	116	N/A	N/A	70-130	N/A	0-20	
Bromomethane	50.00	58.56	117	N/A	N/A	30-145	N/A	0-20	
2-Butanone	50.00	59.63	119	N/A	N/A	30-150	N/A	0-20	
Carbon Tetrachloride	50.00	50.51	101	N/A	N/A	65-140	N/A	0-20	
Chlorobenzene	50.00	50.85	102	N/A	N/A	80-120	N/A	0-20	
Chloroethane	50.00	51.79	104	N/A	N/A	60-135	N/A	0-20	
Chloroform	50.00	49.70	99	N/A	N/A	65-135	N/A	0-20	
Chloromethane	50.00	51.81	104	N/A	N/A	40-125	N/A	0-20	
Dibromochloromethane	50.00	54.93	110	N/A	N/A	60-135	N/A	0-20	
1,2-Dibromo-3-Chloropropane	50.00	48.78	98	N/A	N/A	50-130	N/A	0-20	
1,2-Dibromoethane	50.00	54.27	109	N/A	N/A	80-120	N/A	0-20	
1,2-Dichlorobenzene	50.00	50.66	101	N/A	N/A	70-120	N/A	0-20	
1,3-Dichlorobenzene	50.00	51.06	102	N/A	N/A	75-125	N/A	0-20	
1,4-Dichlorobenzene	50.00	53.41	107	N/A	N/A	75-125	N/A	0-20	
1,1-Dichloroethane	50.00	50.23	100	N/A	N/A	70-135	N/A	0-20	
1,2-Dichloroethane	50.00	49.86	100	N/A	N/A	70-130	N/A	0-20	
1,1-Dichloroethene	50.00	49.81	100	N/A	N/A	70-130	N/A	0-20	
c-1,2-Dichloroethene	50.00	52.16	104	N/A	N/A	70-125	N/A	0-20	
t-1,2-Dichloroethene	50.00	53.49	107	N/A	N/A	60-140	N/A	0-20	
1,2-Dichloropropane	50.00	53.34	107	N/A	N/A	75-125	N/A	0-20	
c-1,3-Dichloropropene	50.00	59.86	120	N/A	N/A	70-130	N/A	0-20	
t-1,3-Dichloropropene	50.00	46.32	93	N/A	N/A	55-140	N/A	0-20	
Ethylbenzene	50.00	54.54	109	N/A	N/A	75-125	N/A	0-20	
Methylene Chloride	50.00	54.06	108	N/A	N/A	55-140	N/A	0-20	
4-Methyl-2-Pentanone	50.00	54.61	109	N/A	N/A	60-135	N/A	0-20	
Styrene	50.00	55.76	112	N/A	N/A	65-135	N/A	0-20	
1,1,1,2-Tetrachloroethane	50.00	53.71	107	N/A	N/A	80-130	N/A	0-20	
1,1,2,2-Tetrachloroethane	50.00	54.37	109	N/A	N/A	65-130	N/A	0-20	
Tetrachloroethene	50.00	53.54	107	N/A	N/A	45-150	N/A	0-20	
Toluene	50.00	52.86	106	N/A	N/A	75-120	N/A	0-20	
1,2,4-Trichlorobenzene	50.00	57.01	114	N/A	N/A	65-135	N/A	0-20	
1,1,1-Trichloroethane	50.00	48.94	98	N/A	N/A	65-130	N/A	0-20	
Hexachloro-1,3-Butadiene	50.00	54.06	108	N/A	N/A	50-140	N/A	0-20	
1,1,2-Trichloroethane	50.00	53.95	108	N/A	N/A	75-125	N/A	0-20	

RPD: Relative Percent Difference. CL: Control Limits

Environmental Science Inter	rnational, In	C.		Date Re	eceived:				07/26/13
354 Uluniu Street, Suite 304	Work O	rder:		13-07-1752					
Kailua, HI 96734-2500	Prepara	ation:			EPA 5030C				
				Method	:			GC/MS /	EPA 8260B
Project: Red Hill LTM 11206	6							Page	e 5 of 5
Parameter	<u>Spike</u> Added	<u>LCS</u> Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD <u>%Rec.</u>	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Trichloroethene	50.00	52.76	106	N/A	N/A	70-125	N/A	0-20	
1,2,3-Trichloropropane	50.00	51.92	104	N/A	N/A	75-125	N/A	0-20	
Vinyl Chloride	50.00	50.66	101	N/A	N/A	50-145	N/A	0-20	
p/m-Xylene	100.0	106.1	106	N/A	N/A	75-130	N/A	0-20	
o-Xylene	50.00	51.18	102	N/A	N/A	80-120	N/A	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	47.32	95	N/A	N/A	65-125	N/A	0-20	
Gasoline Range Organics	1000	1013	101	939.9	94	80-120	8	0-20	

RPD: Relative Percent Difference. CL: Control Limits

Page 1 of 1

Work Order: 13-07-1752

Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6020	EPA 3020A Total	598	ICP/MS 04	1
EPA 8015B (M)	EPA 3510C	682	GC 45	1
EPA 8270C SIM PAHs	EPA 3510C	773	GC/MS AAA	1
GC/MS / EPA 8260B	EPA 5030C	670	GC/MS LL	2

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841 alscience nvironmental aboratories, Inc.

Work Order: 13-07-1752

Page 1 of 1 Qualifiers Definition * See applicable analysis comment. Less than the indicated value. < Greater than the indicated value. > Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further 1 clarification. 2 Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification. 3 Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. Δ The MS/MSD RPD was out of control due to suspected matrix interference. The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference. 5 6 Surrogate recovery below the acceptance limit. 7 Surrogate recovery above the acceptance limit. В Analyte was present in the associated method blank. ΒU Sample analyzed after holding time expired. ΒV Sample received after holding time expired. DL The Detection Limit (DL) is the smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence. Е Concentration exceeds the calibration range. ET Sample was extracted past end of recommended max. holding time. HD The chromatographic pattern was inconsistent with the profile of the reference fuel standard. ICH Initial calibration verification recovery is above the control limit for this analyte. ICJ Initial calibration verification recovery is below the control limit for this analyte. IH Calibration verification recovery is above the control limit for this analyte. IJ Calibration verification recovery is below the control limit for this analyte. Analyte was detected at a concentration below the LOQ and above the DL. Reported value is estimated. J LOD The Limit of Detection (LOD) is the smallest amount or concentration of a substance that must be present in a sample in order to be detected at 99% confidence level. LOQ The Limit of Quantitation (LOQ) is the lowest concentration of a substance that produces a quantitative result within specified limits of precision and bias Q Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. SG The sample extract was subjected to Silica Gel treatment prior to analysis. U Undetected at Detection Limit (DL) and is reported as less than the Limit of Detection (LOD). Х % Recovery and/or RPD out-of-range.

Glossary of Terms and Qualifiers

Ζ Analyte presence was not confirmed by second column or GC/MS analysis.

> Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

> Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

> A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Calscience l						, In	IC.			****			anaaninteineteine			(CH/	AIN	OF	CU	ST(ODY	RE	COR	D
	Way, Garden Grove, CA office locations: C				5494			WO	¢/LAE	3 USE	ONLY					Date									
	r courier service / san contact <u>sales@calso</u>	nple drop off i	nformatior					1	13.	-07	7-1	175	j2			⁵ age_			[01	:				
LABORATORY CLIENT:	nental Sci	DIACO	Tal	Co di	Ĺ	. Í		CLIE		ROJEC		ME / N		R:	£ •				P.O. N	0.:	00000000000				
	p { the	LOU	<u> HAG</u>	<u>A Mar</u>	NVOTI	<u>er</u>		Ke	d	41		L	M		112	\mathcal{D}	<u>66</u>								
ADDRESS: 354 Ulun	in drift	209	STATE:	angen dan sina mina mini kembahang da	niari no antona magamaj	ZIP:		¥	JECT			1	ſ.						SAMP	LER(S): (PR	INT)			
Kailla Is	<u>Fi 967:</u>	34						Ľ	ak	Xer	<u>ታ</u>		$\underline{\sim}$	he	<u>)</u>	9216133214/7K			13	Ŀ	L	<u>)</u> L	حتو 1000000000000000000000000000000000000		
TEL: 808-28 (-0740	Citon Geeco	IENCEI	.com	:DFF	HER	2							REC	QÜĒ	ÉST	EC) AI	NAI	LYS	SES					
		un tîvî	7	3	SCH	ence	Lu	m		Ple	ease	chec	k box	or fi	ll in t	lank	as n	eede	ed.						10000000
SAME DAY 24 HR GLOBAL ID	48 HR 72 I	HR LAS	TANDAR	D	LOG	CODE									e					6020/747X					
								0	С б						ra Core					3020/	Ś	6			
SPECIAL INSTRUCTIONS:								\mathbb{Q}	ň	Z					l Terra				5		218.6	No.			
								$\langle S \rangle$	<i>X</i>	C6-C44					D				1IS 0.	6010/747X		\mathcal{O}			
								8				J 8260		60)	Ŭ		1		827	010/	0 7199	Y			
					,ed		red		eaard	-C36		BE C	ô	s (82		(0)	(808	2)	A P		7196 [5			
	l na bar		1	NO.	sen	erved	Filte	H(g)	TPH(d)	90 0		/ MT	(826	enate	5035	s (82	ides	(808	Ť	letals		N			
USE SAMPLE ID	SAMF DATE		MATRIX	OF CONT.	Unpreserved	Preserved	Field Filtered	Хтрн(g)	ЖтР	TPH [, HqT	втех / мтве 🗆	VOCs (8260)	Oxygenates (8260)	Prep (5035) 🗆 En Core	SVOCs (8270)	Pesticides (8081)	PCBs (8082)	РАНS П 827 0 SIM	T22 Metals	cr(VI)	Ľ			
1 4.S. Train	7/24/13		Unter	200000000000000000000000000000000000000		$\overline{\mathbf{x}}$		$\overline{\mathbf{A}}$	~		_		Ń	Ť							Ť				
196024	7/24/13	DRIC	holes	1.10	\checkmark	X	X	X	X				X						\bigtriangledown			\mathbf{X}			-
2185034 MG/M	VSD 7/24/13	DUIE	ndes	$\frac{10}{10}$	$\overline{\mathbf{x}}$	X	X	X	X				$\frac{x}{x}$						\mathbf{x}			X			-
260000	7/24/13	09120	ively	10		X	1×	X	\sim				$\overline{\mathbf{x}}$						\mathbf{x}			~			
5 05055 A CC071		0930				$ \rightarrow $	×	1	$\hat{\mathbf{C}}$				$\overline{\mathbf{x}}$									$ \Rightarrow $			
4 25036	7/24/13	000	vertes	ω		X			\sim								and the second s		Δ						_
			-				ļ	 													\searrow				
							ļ	<u> </u>					$ \rightarrow $						L						
												- Contraction													
											-														
													†												
Relinguished by: (Signature)	2 /	·i 7	1/20		eceived	d by: (Signat	ure/Af	filiatio	un)								Date	e:		11000300000000	Time	э: ••••••••••••••••••••••••••••••••••••		7
all the	Zanden I	berna (100 "	1_	*****				A.1.				A	-A	\mathcal{A}_{-}	_/									age
Kelinquished by: (Signature)				R	eceived	a by: (Signat	ure/At	tiliatio	n)			Ish	1 h	La	A	L.,	Date 7	e/ 26	1/13		Time	02	20	33 3
Relinquished by: (Signature)	**********			R	eceived	d by: (Signat	ure/Al	filiatio	n)	10-11-11-11-11-11-11-11-11-11-11-11-11-1		₩	Ħ	-U	″.V.		Date	anteres anteres	/ /		Time			Page 33 of 36
												V	V l	/											õ

DISTRIBUTION: White with final report, Green and Yellow to Client. Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Green and Yellow copies respectively.

11/01/12 Revision

į

•••• Page 34 of 36 Ēx. US Airbill 1752 FedEx Retrieval Copy 853l 6509 7500 0200 Express 1 From 4a Express Package Service Packages up to 150 lbs. *To most locations Sender's FedEx 7 FedEx First Overnigh Earliest next business month delivery to select locations 1 FedEx Priority Overnight 5 FedEx Standard Overnight 6 Date Account Numbe Sender's OTHO 3 FedEx 2Day Second business day FedEx Envelope ration DÂYTA 261 SOK 20 FedEx Express Saver Name FedEx Envelope rate not available. Minimum charge: One-pound rate 4b Express Freight Service Packages over 150 lbs nat Phre 83 FedEx 3Day Freight 7 FedEx 1Day Freight* 8 FedEx 2Day Freight Address Call for Confirmation Dept/Floor/Suite/Roor * Declared value limit \$500 5 Packaging 2 1 Other 2 FedEx Pak* 3 Includes FedEx Small Pek, FedEx Large Pak, and FedEx Study Pak 3 FedEx Box 4 FedEx Tube 712 FedEx Cih 61 Envelope* Your Internal Billing Reference 2 **Special Handling** 6 Include FedEx address in Section 3. 31 HOLD Saturday at FedEx Location Available ONLY for FedEx Prin Gownight and FedEx ZDay to select locations 1 HOLD Weekday at FedEx Location Not available for FedEx First Overnight SATURDAY Delivery Available ONLY for FedEx Priority Overnight, FedEx 2Day, FedEx 1Day Freight, and FedEx 2Day Freight to select ZIP codes 50 To 3 **Recipient's** 4-17) Name Perion to Select 2: 1 Covers Does this shipment contain dangerous goods? One hox must be checked. Vo 4 Yes Shipper's Declarecton Shipper's Declarecton 6 Dry Ice Dry Ice, 9, UN 1845 No 4 Yes As per attached Shipper's Declaration Company Cargo Aircraft Only Dangerous goods (including Dry Ice) cannot be shipped in FedEx packaging. Recipient's ł. Obtain Recip. 7 Payment Bill to: Address

 Bill to:
 Enter FedEx Acct. No. or Credit Card No. below.
 Obtain Hecip.

 2X
 Recipient
 3
 Third Party
 4
 Credit Card
 5
 Cesh/Check

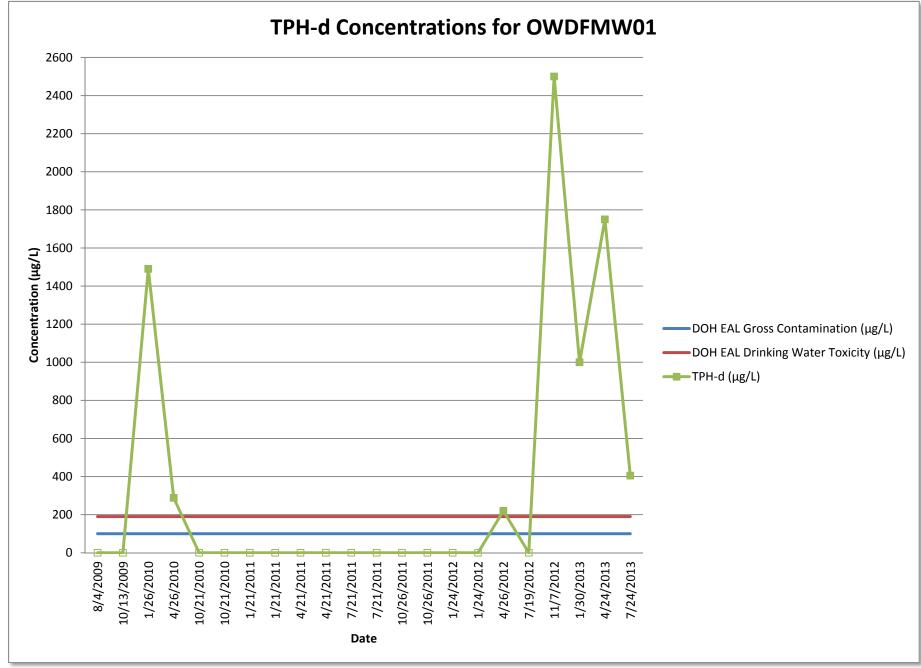
 We control dolive Dept/Four/Suite/Room Sender Acct. No. in Section 1 will be billed. 1 Address To requisive a peckage he held at a specific HedEx location, prim FedEx address here. 2 39 FedEx Accl. No. Credit Card No. Exp. Dato 84 Total Packages Fotal Weight Total Charge 3 2 FOVE State 71P N Confit Card Au Tour liability is littlifed to \$100 unless you declare a higher value. See the FodEx Service Guide for details 1200 71 650 627.24 SARANGANAMARY 4820-262951 # 18-2 SHIP DATE: 24JUL13 ACTWGT: 43.9 LB CAD: /POS1400 DIMS: 22x13x12 IN ORIGIN ID: HNLA 467 BILL RECIPIENT UNITED STATES US **TO SAMPLE CONTROL** CALSCIENCE 7440 LINCOLN WAY **GARDEN GROVE CA 92841** 0552390 (714) 895-5494 REF: DEPT FedEx Express 13111302120126 26 JUL AA FRI 2 of 2 MPS# 7958 0141 6730 2DAY ** Mstr# 8531 6209 1700 0200 92841 Z APVA CA-US SNA

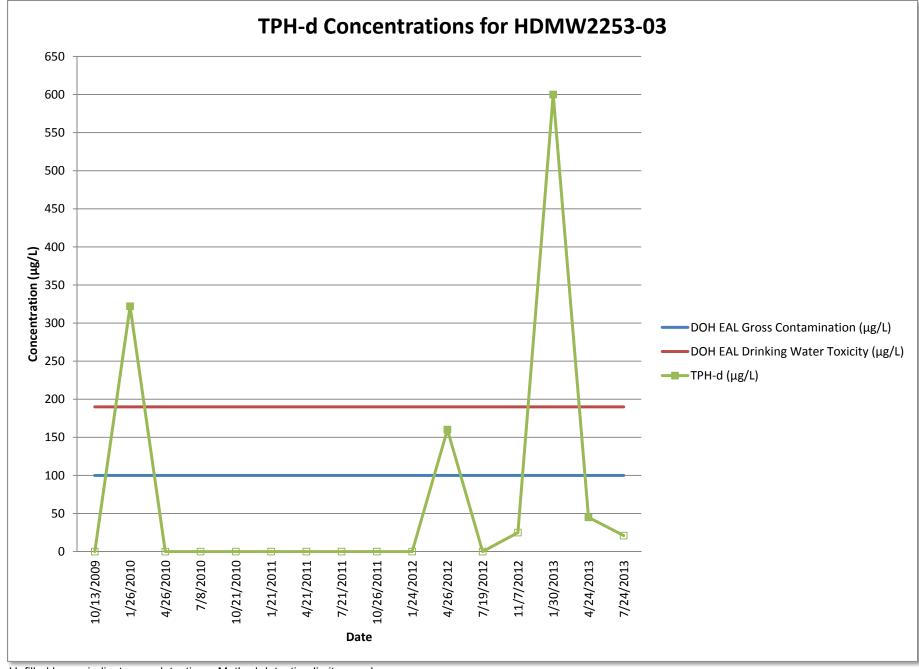
	Page 35 of 36 DRDER #: 13-07-
CLIENT: <u>Env. Science</u>	PT FORM Cooler <u> </u> of <u>2</u> DATE: <u>07 /26 / 13</u>
TEMPERATURE: Thermometer ID: SC3 (Criteria: 0.0 °C - 6.0 Temperature 2 3 °C - 0.2 °C (CF) = 2 6 Image: Sample(s) outside temperature criteria (PM/APM contacted by a sample(s) outside temperature criteria but received on ice/chill Image: Sample(s) outside temperature criteria but received on ice/chill Image: Sample(s) outside temperature criteria but received on ice/chill Image: Sample(s) outside temperature criteria but received on ice for transition	o°C, not frozen except sediment/tissue) oC
Ambient Temperature:	Initial:
	Not Present □ N/A Initial: Not Present Initial:
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples. COC document(s) received complete	n sample labels.
 □ No analysis requested. □ Not relinquished. □ No date/time re Sampler's name indicated on COC Sample container label(s) consistent with COC Sample container(s) intact and good condition Proper containers and sufficient volume for analyses requested 	
Analyses received within holding time pH/Res. Cl/Diss. Sulfide/Diss. Oxygen received within 15-min Proper preservation noted on COC or sample container	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
Volatile analysis container(s) free of headspace Tedlar bag(s) free of condensation CONTAINER TYPE:	
Solid: 4ozCGJ BozCGJ 16ozCGJ Sleeve (Water: VOA VOAh VOAna2 125AGB 125AGB 500AGB 500AGJ 500AGJs 250AGB 250CGB 250PB 250PBny 125PB 125PBznna 100PJ 100 Air: Tedlar [®] Canister Other: Trip Blank Lo	□125AGBp
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Reseal Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure	lable Bag E: Envelope Reviewed by: M

- · · ·

SOP T100_	090	(11/20/12)

		· ·	Page 36 of	f 36
Laiscience Lonvironmental Laboratories, inc.	WORK ORDER	R #: 13-0 7	7-00	52
SAM	PLE RECEIPT F	ORM d	cooler 2	of 2
CLIENT: Env. Science			07 /26	
TEMPERATURE: Thermometer ID: SC	3 (Criteria: 0.0 °C – 6.0 °C, not f	rozen except se	diment/tissue	2)
Temperature <u>3</u> .2°C-0.2	°C (CF) = <u>3</u> . ∂ °C	🛛 Blank	☐ Sample	4
Sample(s) outside temperature criteria			,	
□ Sample(s) outside temperature criteria			ina.	
□ Received at ambient temperature, I		• •		
Ambient Temperature:		,	Initial:	10
CUSTODY SEALS INTACT:	in an			
′☑ Cooler □ □ I	No (Not Intact) □ Not Pres	sent 🗆 N/A	Initial:	<u>4</u>
□ Sample □ □ I	No (Not Intact) 👘 🖉 Not Pres	sent	Initial:	HH
SAMPLE CONDITION:		Yes	No	N/A
Chain-Of-Custody (COC) document(s) re		<i>x</i>		
COC document(s) received complete		AND .		
Collection date/time, matrix, and/or # of co				
□ No analysis requested. □ Not relinquis				
Sampler's name indicated on COC Sample container label(s) consistent with				
Sample container(s) intact and good cor				
Proper containers and sufficient volume				
Analyses received within holding time				
pH/Res. Cl/Diss. Sulfide/Diss. Oxygen re		*		e l
Proper preservation noted on COC or sa				
Unpreserved vials received for Volatiles				
Volatile analysis container(s) free of hea				Þ
Tedlar bag(s) free of condensation				
Solid: □4ozCGJ □8ozCGJ □16ozC	GJ □Sleeve () □EnO	Cores [®] □Terra	Cores [®] □	
Water: □VOA □VOAh □VOAna₂ □1	25AGB 0125AGBh 0125AG	GBp ZIAGB	□1AGB na ₂ □	1AGB s
□500AGB	250AGB	GB s □1PB	□1PBna □	500PB
□250PB , 250PBny □125PB □125PE	Bznna □100PJ □100PJna₂ [□	
Air: DTedlar [®] DCanister Other: D Container: C: Clear A: Amber P: Plastic G: Glass J: J Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH	Jar B: Bottle Z: Ziploc/Resealable Bag	E: Envelope	Reviewed by:	tose


.


÷

APPENDIX D

Historical Groundwater Exceedance Trends

Data points for 10/21/2010 through 1/24/2012 and 11/07/2012 through 7/24/2013 are the average of the primary and duplicate samples. Unfilled boxes indicate non-detections. Method detection limits are shown.

Unfilled boxes indicate non-detections. Method detection limits are shown.

APPENDIX E

Waste Disposal Manifest

		NON-HAZARDOUS WASTE MANIFEST	1. Generator ID Number HTR 000		2. Page 1 of 1	3. Emergency Respor		4. Waste Tr	acking Nu	
	╞┝	5. Generator's Name and Mailir	na Address		L	Generator's Site Aridin				000019559
		COMNAVREG HAW	ÀII, C/O NAVFAC ROAD, ATTN: ESTI	HAWAII, COD RELITA HIGA)E PRJ4	2 RED	,	ILK FUEI	,	HIC8553-04 RAGE FACILITY
		6. Transporter 1 Company Nam		·				U.S. EPA ID	Number	
			RCIAL SERVICES,	LLC.	80	08-545-4599	ə			0 0 0 9 7 8 2 4
		7. Transporter 2 Company Nam	le					U.S. EPA ID I	Number	
		8. Designated Facility Name an		. —	8(08-682-8284	ł	U.S. EPA ID I	<u>D 9 8</u> Number	32443715
		91-125 KAOMI	T SERVICES, INC. LOOP 96707 					ΗI	D 9	82443715
	ſ	9. Waste Shipping Name		······································		10. Co	ntainers	11. Total	12. Unit	
						No.	Туре	Quantity	Wt./Vol.	
		(WELL PURG	L NOT REGULATED E AND DECONTAMIN)	0.01		00020	G	NON-RCRA
ENI	5	2.								
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.								
		4	00 PPM	PH=	6					
	ŀ	13. Special Handling Instruction		(c)					L	<u>ka internet i sente de la servera de la s</u> La servera de la servera de
		9b1:NR	121	too DDM.)	2008	9b1:		TOTAL	HALOGEN:
			TION: I HEREBY DECLARE THAT							-
			PPLICABLE) AND ARE CLASSIF O APPLICABLE GOVERNMNET RE							· · ·
		BRAKE CERAY BREOM _ HA	DOES NOT CONTAIN POBS GREA	IER HAZARDOUG MATERS	ALS AND/OR	HAZARDOUS WASTER	·			
		44 OFUEDATODIO CETEDOD	'S CERTIFICATION- L bareby declar	e that the contents of this o	consignment a rding to applic	re fully and accurately d able international and n	escribed above b ational governme	by the proper shi intal regulations.	pping nam	e, and are classified, packaged,
		marked and labeled/placard	ed, and are in all respects in proper (condition for transport acco						
		T4. GENERATOR'S/OFFEROR marked and labeled/placard Generator's/Offeror's Printed/Ty Estrelito	ed, and are in all respects in proper of ped Name	condition for transport acco	Sig	Etre	lita	Hiz	$\overline{\mathbf{x}}$	Month Day Year 08 23 3
	,	marked and labeled/placard Generator's/Offeror's Printed/Ty	ed, and are in all respects in proper of ped Name	condition for transport acco	Sig Export from U	Extre	lita_	Hiz	<u>\</u>	
		marked and labeled/placard Generator's/Offeror's Printed/Ty Estrelito 15. International Shipments Transporter Signature (for expo	ed, and are in all respects in proper of ped Name Higg Import to U.S. rts only):	condition for transport acco		J.S. Port of	lita_ entry/exit: aving U.S.:	Hiz	<u> </u>	
		marked and labeled/placard Generator's/Offeror's Printed/Ty Estrelitor 15. International Shipments Transporter Signature (for expo 16. Transporter Acknowledgmer	ed, and are in all respects in proper of ped Name I good to U.S. Its only): nt of Receipt of Materials	condition for transport acco	Export from U	J.S. Port of Date lea	*	Hiz i	<u>~</u>	08 23 13
		marked and labeled/placard Generator's/Offeror's Printed/Ty Estrelito 15. International Shipments Transporter Signature (for export 16. Transporter Acknowledgmer Transporter 1 Printed/Typed Na Transporter 1 Printed/Typed Na	ed, and are in all respects in proper of ped Name ped Name ped Name ped Name in port to U.S. rts only): nt of Receipt of Materials me MUUAMM	condition for transport acco	Export from U	Ectre J.S. Port of Date les partification	*	Hiz lave		08 23 K3
		marked and labeled/placard Generator's/Offeror's Printed/Ty Estrelitto 15. International Shipments Transporter Signature (for export 16. Transporter Acknowledgmen Transporter 1 Printed/Typed Na Transporter 2 Printed/Typed Na Study of the state of the s	ed, and are in all respects in proper of ped Name ped Name ped Name ped Name in port to U.S. rts only): nt of Receipt of Materials me MUUAMM	condition for transport acco	Export from U	J.S. Port of Date lea	*	Hiz Ime		08 23 13
		marked and labeled/placard Generator's/Offeror's Printed/Ty Estrelitto 15. International Shipments Transporter Signature (for expo 16. Transporter Acknowledgmer Transporter 1 Printed/Typed Na Transporter 2 Printed/Typed Na	ed, and are in all respects in proper of ped Name Higg Import to U.S. rts only): nt of Receipt of Materials me MULAPK me Lematque ace		Export from U	Estre J.S. Port of Date ler returned with the second secon	*	Hiz lave		08 23 13 Month Day Year 8 2.8 77
		marked and labeled/placard Generator's/Offeror's Printed/Ty Estrelito 15. International Shipments Transporter Signature (for export 16. Transporter Acknowledgmer Transporter 1 Printed/Typed Na Transporter 2 Printed/Typed Na Scilling em- Transporter 2 Printed/Typed Na Scilling em- 17. Discrepancy	ed, and are in all respects in proper of ped Name Import to U.S. Its only): It of Receipt of Materials me MULAAA me Lematq	Condition for transport acco	Export from U	LS. Port of Date learner	aving U.S.: (MUU	Hiz Me Dertial Reje		North Day Year
		marked and labeled/placard Generator's/Offeror's Printed/Ty Estrelito 15. International Shipments Transporter Signature (for export 16. Transporter Acknowledgmer Transporter 1 Printed/Typed Na Transporter 2 Printed/Typed Na Scilling em- Transporter 2 Printed/Typed Na Scilling em- 17. Discrepancy	ed, and are in all respects in proper of ped Name ped Name Import to U.S. rts only): nt of Receipt of Materials me <u>Lemat</u> ace Quantity		Export from U	Estre J.S. Port of Date ler returned with the second secon	aving U.S.: (MUU	Hiz lave	2 Section	08 23 13 Month Day Year 8 2.8 77
		marked and labeled/placard Generator's/Offeror's Printed/Ty Estrelito 15. International Shipments Transporter Signature (for export 16. Transporter Acknowledgmer Transporter 1 Printed/Typed Na Transporter 2 Printed/Typed Na Science 2 Printed/Type	ed, and are in all respects in proper of ped Name ped Name Import to U.S. rts only): nt of Receipt of Materials me <u>Lemat</u> ace Quantity		Export from U	LS. Port of Date learner	aving U.S.: (MUU	Hiz Ime Dartial Reje	2 Section	08 23 13 Month Day Year 8 2.8 77
		marked and labeled/placard Generator's/Offeror's Printed/Ty Estrelitto 15. International Shipments Transporter Signature (for export 16. Transporter Acknowledgmer Transporter 1 Printed/Typed Na Transporter 2 Printed/Typed Na Science 17. Discrepancy 17. Discrepancy Indication Spa 17b. Alternate Facility (or Gener Facility's Phone:	ed, and are in all respects in proper of ped Name ped Name import to U.S. Its only): It of Receipt of Materials me MULAAW me Lemada ace Quantity ator)		Export from U	LS. Port of Date learner	aving U.S.: (MUU	Hiz Ime Dartial Reje	2 Section	108 23 13 Month Day Year 8 28 17 Full Rejection
		marked and labeled/placard Generator's/Offeror's Printed/Ty Estrelito 15. International Shipments Transporter Signature (for export 16. Transporter Acknowledgmer Transporter 1 Printed/Typed Na Transporter 2 Printed/Typed Na Science 2 Printed/Type	ed, and are in all respects in proper of ped Name ped Name import to U.S. Its only): It of Receipt of Materials me MULAAW me Lemada ace Quantity ator)		Export from U	LS. Port of Date learner	aving U.S.: (MUU	Hiz Ime Dartial Reje	2 ection	108 23 13 Month Day Year 8 28 17 Full Rejection
		marked and labeled/placard Generator's/Offeror's Printed/Ty Estrelitto 15. International Shipments Transporter Signature (for export 16. Transporter Acknowledgmer Transporter 1 Printed/Typed Na Transporter 2 Printed/Typed Na Science 17. Discrepancy 17. Discrepancy Indication Spa 17b. Alternate Facility (or Gener Facility's Phone:	ed, and are in all respects in proper of ped Name ped Name import to U.S. Its only): It of Receipt of Materials me MULAAW me Cematic Quantity ator) ity (or Generator)		Export from U	LS. Port of Date lei nature 	aving U.S.:	Hiz Mu Dertial Reje	ection	DB Zá Ka Month Day Year Month Day Year S Z.8 7 Full Rejection Month Day Year
		marked and labeled/placard Generator's/Offeror's Printed/Ty Estrelitto 15. International Shipments Transporter Signature (for expor- 16. Transporter 1 Printed/Typed Na Transporter 2 Printed/Typed Na S. U. G. S. J. J. Transporter 2 Printed/Typed Na S. U. G. S. J. 17. Discrepancy 17. Discrepancy Indication Spe 17. Alternate Facility (or Gener Facility's Phone: 17. Signature of Alternate Facil PCS. J. S.	ed, and are in all respects in proper of ped Name ped Name import to U.S. Its only): It of Receipt of Materials me MULAAW me Cematic Quantity ator) ity (or Generator)			Ethe J.S. Port of Date less patterness	aving U.S.: (MUU	Hiz Mu Dertial Reje	ection	DB Zá Ka Month Day Year Month Day Year S Z.8 7 Full Rejection Month Day Year
		marked and labeled/placard Generator's/Offeror's Printed/Ty Estrelitto 15. International Shipments Transporter Signature (for expor- 16. Transporter 1 Printed/Typed Na Transporter 2 Printed/Typed Na S. U. G. S. J. J. Transporter 2 Printed/Typed Na S. U. G. S. J. 17. Discrepancy 17. Discrepancy Indication Spe 17. Alternate Facility (or Gener Facility's Phone: 17. Signature of Alternate Facil PCS. J. S.	ed, and are in all respects in proper of ped Name ped Name in in a properties of Materials me MULAAM me Cematical ace Quantity ator) ity (or Generator) DUNIDES		Sig	Ethe J.S. Port of Date less patterness	aving U.S.:	Hiz Mu Dertial Reje	ection	Month Day Year
Transporter		marked and labeled/placard Generator's/Offeror's Printed/Ty Estrelitto 15. International Shipments Transporter Signature (for expori- 16. Transporter 1 Printed/Typed Na Sector 1 Printed/Typed Na Sector 2	ed, and are in all respects in proper of ped Name ped Name Import to U.S. rts only): rt of Receipt of Materials me <u>Cematic</u> ace Quantity ator) ity (or Generator) <u>PMIN IDE</u> st r Operator: Certification of receipt of <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>Centification of receipt of</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>Centification of receipt of</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>Centification of receipt of</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u> <u>ACE</u>		Sig	LS. Port of Date lea nature * X Residue Manifest Reference	AVING U.S.:	Hiz Image: Partial Reje	2ection	08 23 13 Month Day Year 8 28 17 Full Rejection Month Day Year

,

ł

ŀ

: . .

÷

) N

ŀ

•

:

1

. . .