Final Second Quarter 2013 - Quarterly Groundwater Monitoring Report Inside Tunnel Wells

Red Hill Bulk Fuel Storage Facility
Joint Base Pearl Harbor-Hickam, Oahu, Hawaii

DOH Facility ID: 9-102271

DOH Release ID: 990051, 010011, and 020028

July 2013

Department of the Navy Naval Facilities Engineering Command, Hawaii 400 Marshall Road JBPHH HI 96860-3139

Contract Number N62742-12-D-1853, CTO 0002

Final Second Quarter 2013 - Quarterly Groundwater Monitoring Report Inside Tunnel Wells

Red Hill Bulk Fuel Storage Facility
Joint Base Pearl Harbor-Hickam, Oahu, Hawaii

DOH Facility ID: 9-102271

DOH Release ID: 990051, 010011, and 020028

July 2013

Prepared for:

Department of the Navy Naval Facilities Engineering Command, Hawaii 400 Marshall Road JBPHH, HI 96860-3139

Prepared by:

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734

Prepared under:

Contract Number N62742-12-D-1853, CTO 0002

FINAL SECOND QUARTER 2013 - QUARTERLY GROUNDWATER MONITORING REPORT INSIDE TUNNEL WELLS RED HILL BULK FUEL STORAGE FACILITY

Long-Term Groundwater and Soil Vapor Monitoring Red Hill Bulk Fuel Storage Facility Joint-Base Pearl Harbor-Hickam, Oahu, Hawaii

Prepared for:

Department of the Navy Commanding Officer, Naval Facilities Engineering Command, Hawaii 400 Marshall Road JBPHH, HI 96860-3139

Prepared by:

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734 (808) 261-0740

Prepared under:

Contract Number: N62742-12-D-1853 Contract Task Order: 0002

Approvai Signature.		
71 3	Darren Uchima, Navy Technical Represer	ntative Date
Approval Signature:	Robert	7/2/2013
	Robert Chong, ESI Project Manager	Date
Approval Signature:	This von der Zad	7/2/2013
	Iris van der Zander, ESI QA Manager	Date

Contract No. N62742-12-D-1853	Contract Task Order 0002
This Page Intentionally Left Blan	k.

TABLE OF CONTENTS

<u>Section</u>	<u>Title</u>	<u>Page</u>
ES	EXECUTIVE SUMMARY	ES-1
1.0	INTRODUCTION	1-1
1.1	Site Description	1-1
1.2	Physical Settings	1-2
1.3	Background	1-3
2.0	GROUNDWATER SAMPLING	2-1
2.1	Groundwater Sampling	2-1
2.2	Analytical Results	2-1
2.3	Groundwater Contaminant Trends	2-2
2.4	Waste Disposal	2-3
3.0	DATA QUALITY ASSESSMENT	3-1
3.1	Data Validation and Assessment	3-1
3.2	Data Assessment and Usability Conclusions	3-3
4.0	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	4-1
5.0	FUTURE WORK	5-1
6.0	REFERENCES	6-1

LIST OF TABLES

<u>Number</u>	<u>Title</u>	<u>Page</u>
1.1	Current Status of USTs	1-2
2.1	Analytical Results for Groundwater Sampling (April 22 and 23, 2013)	2-5
3.1	Quality Control Results for Groundwater Sampling (April 22, 2013)	3-5

LIST OF FIGURES

<u>Number</u>	<u>Title</u>
1	Site Location
2	Site Layout

APPENDICES

<u>Appendix</u>	<u>Title</u>
Α	Groundwater Sampling Logs
В	Field Notes
С	Laboratory Reports
D	Historical Groundwater Exceedance Trends
E	Waste Disposal Manifest

ACRONYMS AND ABBREVIATIONS

ACRONYMS/

ABBREVIATIONS DEFINITION/MEANING

% percent

bgs below ground surface

COPC Contaminant of Potential Concern

DLNR State of Hawaii Department of Land and Natural Resources

DOH State of Hawaii Department of Health

DON Department of the Navy
EAL Environmental Action Level
EPA Environmental Protection Agency
ESI Environmental Science International

F-76 Marine Diesel Fuel ID Identification

JBPHH Joint Base Pearl Harbor-Hickam

JP-5 Jet Fuel Propellant-5
JP-8 Jet Fuel Propellant-8
LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

LOD Limit of Detection
LOQ Limit of Quantitation
µg/L micrograms per liter

MS Matrix Spike

MSD Matrix Spike Duplicate

NAVFAC Naval Facilities Engineering Command

NAVSUP FLC Naval Supply Systems Command Fleet Logistics Center

PAH Polycyclic Aromatic Hydrocarbons

PARCCS Precision, Accuracy, Representativeness, Completeness, Comparability,

and Sensitivity

pH hydrogen activity

RHSF Red Hill Bulk Fuel Storage Facility

RPD Relative Percent Difference
SAP Sampling and Analysis Plan
TEC The Environmental Company, Inc.
TPH Total Petroleum Hydrocarbons

TPH-d Total Petroleum Hydrocarbons as diesel TPH-g Total Petroleum Hydrocarbons as gasoline

U.S. United States of America
UST Underground Storage Tank
VOC Volatile Organic Compound

WP Work Plan

Contract No. N62742-12-D-1853 Contract Task Order 0002 This Page Intentionally Left Blank.		
This Page Intentionally Left Blank.	Contract No. N62742-12-D-1853	Contract Task Order 0002
This Page Intentionally Left Blank.		
This Page Intentionally Left Blank.		
This Page Intentionally Left Blank.		
This Page Intentionally Left Blank.		
This Page Intentionally Left Blank.		
This Page Intentionally Left Blank.		
This Page Intentionally Left Blank.		
This Page Intentionally Left Blank.		
This Page Intentionally Left Blank.		
This Page Intentionally Left Blank.		
This Page Intentionally Left Blank.		
This Page Intentionally Left Blank.		
This Page Intentionally Left Blank.		
This Page Intentionally Left Blank.		
This Page Intentionally Left Blank.		
This Page Intentionally Left Blank.		
	This Page Intentionally Left Blank	•

EXECUTIVE SUMMARY

This quarterly groundwater monitoring report presents the results of the second quarter 2013 groundwater sampling conducted on April 22 and 23, 2013, at the Red Hill Bulk Fuel Storage Facility [RHSF], Joint Base Pearl Harbor-Hickam [JBPHH], Hawaii. The RHSF is located in Halawa Heights on the Island of Oahu. There are 18 active and 2 inactive Underground Storage Tanks [USTs] located at the RHSF. The State of Hawaii Department of Health [DOH] Facility Identification [ID] number is 9-102271. The DOH Release ID numbers are 990051, 010011, and 020028.

The groundwater sampling was conducted as part of the long-term groundwater and soil vapor monitoring at the RHSF, under Naval Facilities Engineering Command [NAVFAC] Contract Number N62742-12-D-1853. The sampling was conducted in accordance with the approved Work Plan [WP]/Sampling and Analysis Plan [SAP] prepared by Environmental Science International [ESI].

On April 22 and 23, 2013, ESI personnel collected groundwater samples from five monitoring wells at the RHSF (wells RHMW01, RHMW02, RHMW03, RHMW05, and RHMW2254-01). A summary of the analytical results is provided below.

- RHMW01 Total Petroleum Hydrocarbons as diesel [TPH-d] (340 micrograms per liter [µg/L]) and dissolved lead (0.641 µg/L) were detected. TPH-d was detected at a concentration above the DOH Environmental Action Levels [EALs] for both drinking water toxicity and gross contamination.
- RHMW02 TPH-d (2,600 μg/L), Total Petroleum Hydrocarbons as gasoline [TPH-g] (54 μg/L), acenaphthene (0.58 μg/L), fluorene (0.24 μg/L), 1-methylnaphthalene (16 μg/L), 2-methylnaphthalene (13 μg/L), naphthalene (53 μg/L), ethylbenzene (0.21 μg/L), and xylenes (0.58 μg/L) were detected. TPH-d, 1-methylnaphthalene, and naphthalene were detected at concentrations above the DOH EALs for both drinking water toxicity and gross contamination. 2-Methylnaphthalene was detected at a concentration above the DOH EAL only for gross contamination.
- RHMW03 TPH-d (69 µg/L) was detected. None of the chemical constituents analyzed for were detected at concentrations above the DOH EALs.
- RHMW05 TPH-d (27 μg/L), TPH-g (15 μg/L), and naphthalene (0.033 μg/L) were detected. None of the chemical constituents analyzed for were detected at concentrations above the DOH EALs.
- RHMW2254-01 Total lead (0.828 μg/L) was detected. None of the chemical constituents analyzed for were detected at concentrations above the DOH EALs.

Since the wells were last sampled (January 2013), groundwater contaminant concentrations in four wells (RHMW01, RHMW03, RHMW05, and RHMW2254-01) remained at low concentrations and did not change significantly, or were not detected. Only the groundwater samples from RHMW01 and RHMW02 showed concentrations of COPCs exceeding the DOH EALs.

TPH-d concentrations detected in the sample collected from well RHMW01 have increased above the DOH EALs for both drinking water toxicity and gross contamination for the first time since February 2012.

TPH-d concentrations detected in the sample collected from well RHMW02 are consistent with previous analytical data, but increased in concentration relative to the last quarterly groundwater sampling event. This is consistent with an increase in concentration in well RHMW01 during this event. TPH-g, 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene concentrations have decreased since the last sampling event; however, elevated concentrations have been detected in groundwater samples collected during past sampling events.

With the exception of TPH-g, concentrations of COPCs in well RHMW02 have not changed significantly. TPH-d, 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene concentrations have been decreasing since groundwater monitoring was initiated in 2005. This is the first sampling event that 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene concentrations decreased since April 2012.

Based on the results of the groundwater monitoring, ESI recommends continuing the groundwater monitoring program at the RHSF. If TPH-d concentrations in well RHMW02 continue to increase, we recommend increasing monitoring frequency to monthly in accordance with the RHSF Groundwater Protection Plan.

SECTION 1 – INTRODUCTION

This quarterly groundwater monitoring report presents the results of the second quarter 2013 groundwater sampling conducted on April 22 and 23, 2013, at the RHSF, JBPHH. The RHSF is located in Halawa Heights on the Island of Oahu. The purpose of the sampling is to (1) assess the condition of groundwater beneath the RHSF with respect to chemical constituents associated with jet fuel propellant and marine diesel fuel, and (2) to ensure the Navy remains in compliance with DOH UST release response requirements as described in Hawaii Administrative Rules 11-281 Subchapter 7, Release Response Action. The DOH Facility ID number for the RHSF is 9-102271. The DOH Release ID numbers are 990051, 010011, and 020028.

The groundwater sampling was conducted as part of the long-term groundwater and soil vapor monitoring at the RHSF, under NAVFAC Contract Number N62742-12-D-1853. The sampling was conducted in accordance with the approved WP/SAP prepared by ESI (ESI, 2012).

1.1 SITE DESCRIPTION

The RHSF is located on federal government land (zoned F1- Military and Federal), located in Halawa Heights, approximately 2.5 miles northeast of Pearl Harbor (Figure 1). It is located on a low ridge on the western edge of the Koolau Mountain Range that divides Halawa Valley from Moanalua Valley. The RHSF is bordered on the north by Halawa Correctional Facility and private businesses, on the west by the United States of America [U.S.] Coast Guard reservation, on the south by residential neighborhoods, and on the east by Moanalua Valley. A quarry is located less than a quarter mile away to the northwest. The RHSF occupies 144 acres of land and the majority of the site is at an elevation of approximately 200 to 500 feet above mean sea level.

The RHSF contains 18 active and 2 inactive USTs that are operated by Naval Supply Systems Command Fleet Logistics Center [NAVSUP FLC] Pearl Harbor (formerly Fleet and Industrial Supply Center). Each UST has a capacity of approximately 12.5 million gallons. The RHSF is located approximately 100 feet above the basal aquifer. The USTs contain Jet Fuel Propellant-5 [JP-5], Jet Fuel Propellant-8 [JP-8], and Marine Diesel Fuel [F-76]. The current status of the USTs are summarized in Table 1.1.

Five groundwater monitoring wells (wells RHMW01, RHMW02, RHMW03, RHMW05, and RHMW2254-01) are located within the RHSF lower access tunnel (Figure 2). Two groundwater monitoring wells (wells HDMW2253-03 and OWDFMW01) are located outside of the RHSF tunnel system. Monitoring data for the two wells located outside the tunnel are included in a separate report.

Monitoring wells RHMW01, RHMW02, RHMW03, and RHMW05 are located inside the underground tunnels. Monitoring well RHMW2254-01 is located inside the infiltration gallery of the Department of the Navy [DON] Well 2254-01. The DON Well 2254-01 is located

approximately 2,400 feet downgradient of the USTs and provides approximately 24 percent [%] of the potable water to the Pearl Harbor System, which serves approximately 52,200 military customers. NAVFAC Public Works Department operates the infiltration gallery and DON Well 2254-01.

TABLE 1.1
Current Status of the USTs
Red Hill Bulk Fuel Storage Facility
April 2013 Quarterly Monitoring Report

Tank Identification	Fuel Type	Status	Capacity
F-1	None	Inactive	12.5 million gallons
F-2	JP-8	Active	12.5 million gallons
F-3	JP-8	Active	12.5 million gallons
F-4	JP-8	Active	12.5 million gallons
F-5	JP-8	Active	12.5 million gallons
F-6	JP-8	Active	12.5 million gallons
F-7	JP-5	Active	12.5 million gallons
F-8	JP-5	Active	12.5 million gallons
F-9	JP-5	Active	12.5 million gallons
F-10	JP-5	Active	12.5 million gallons
F-11	JP-5	Active	12.5 million gallons
F-12	JP-5	Active	12.5 million gallons
F-13	F-76	Active	12.5 million gallons
F-14	F-76	Active	12.5 million gallons
F-15	F-76	Active	12.5 million gallons
F-16	F-76	Active	12.5 million gallons
F-17	JP-5	Active	12.5 million gallons
F-18	JP-5	Active	12.5 million gallons
F-19	None	Inactive	12.5 million gallons
F-20	JP-5	Active	12.5 million gallons

F-76 Marine Diesel Fuel

JP-5 Jet Fuel Propellant-5

JP-8 Jet Fuel Propellant-8

1.2 PHYSICAL SETTING

Climatological conditions in the area of the RHSF consist of warm to moderate temperatures and low to moderate rainfall. The RHSF is leeward of the prevailing northeasterly trade winds. The average annual precipitation is approximately 40 inches, which occurs mainly between November and April (State of Hawaii Department of Land and Natural Resources [DLNR], 1986). Annual pan evaporation is approximately 75 inches (DLNR, 1985). Average temperatures range from the low 60's to high 80's (degrees Fahrenheit) (Atlas of Hawaii, 1983).

Oahu consists of the eroded remnants of two shield volcanoes, Waianae and Koolau. The RHSF is located on the southwest flank of the Koolau volcanic shield. Lavas erupted during the shield-building phase of the volcano belong to the *Koolau Volcanic Series* (Stearns and Vaksvik, 1935). Following formation of the Koolau shield, a long period of volcanic quiescence occurred, during which the shield was deeply eroded. Following this erosional period, eruptive activity resumed. Lavas and pyroclastic material erupted during this period belong to the *Honolulu*

Volcanic Series (Stearns and Vaksvik, 1935).

In the immediate area of the RHSF, Koolau Volcanic Series lavas dominate, although there are consolidated and unconsolidated non-calcareous deposits in the vicinity that consist of alluvium generated during erosion of the Koolau volcanic shield. South-southwest of the RHSF, and in isolated exposures to the west, are pyroclastic deposits formed during eruptions from three Honolulu Volcanic Series vents, Salt Lake, Aliamanu, and Makalapa (Stearns and Vaksvik, 1935). Based on established geology and records of the drilled wells (Stearns and Vaksvik, 1938), the RHSF is underlain by Koolau Volcanic Series basalts. The area of the RHSF is classified as *Rock Land*, where 25-90% of the land surface is covered by exposed rock and there are only shallow soils (Foote, et al., 1972).

Groundwater in Hawaii exists in two principal types of aquifers. The first and most important type, in terms of drinking water resources, is the basal aquifer. The basal aquifer exists as a lens of fresh water floating on and displacing seawater within the pore spaces, fractures, and voids of the basalt that forms the underlying mass of each Hawaiian island. In parts of Oahu, groundwater in the basal aquifer is confined by the overlying caprock and is under pressure. Waters that flow freely to the surface from wells that tap the basal aquifer are referred to as artesian.

The second type of aquifer is the caprock aquifer, which consists of various kinds of unconfined and semi-confined groundwater. Commonly, the caprock consists of a thick sequence of nearly impermeable clays, coral, and basalt, which separates the caprock aquifer from the basal aquifer. The impermeable nature of these materials and the artesian nature of the basal aquifer severely restrict the downward migration of groundwater from the upper caprock aquifer. In the area of the RHSF, there is no discernible caprock.

Groundwater in the area of the RHSF is part of the *Waimalu Aquifer System* of the *Pearl Harbor Aquifer Sector*. The aquifer is classified as a basal, unconfined, flank-type; and is currently used as a drinking water source. The aquifer is considered fresh with less than 250 milligrams per liter of chloride and is considered an irreplaceable resource with a high vulnerability to contamination (Mink and Lau, 1990).

The nearest drinking water supply well is DON Well 2254-01, located in the infiltration gallery within the RHSF. The DON Well 2254-01 is located approximately 2,400 feet downgradient of the USTs (Figure 2).

1.3 BACKGROUND

The RHSF was constructed by the U.S. Government in the early 1940s. Twenty USTs and a series of tunnels were constructed. The USTs were constructed of steel and they currently contain JP-5, JP-8, and F-76. Several tanks in the past have stored DON special fuel oil, DON distillate, aviation gasoline, and motor gasoline (Environet, 2010). The fueling system is a self-contained underground unit that was installed into native rock comprised primarily of basalt with

some interbedded tuffs and breccias (Environet, 2010). Each UST measures approximately 245 feet in height and 100 feet in diameter. The upper domes of the tanks lie at a depth varying between 100 feet and 200 feet below ground surface [bgs].

In 1998, Earth Tech conducted a Phase II remedial investigation/feasibility study for the Oily Waste Disposal Facility located within the RHSF. The study involved installing well OWDFMW01 (which was originally MW08) (Earth Tech, 1999).

In February 2001, the DON installed groundwater monitoring well RHMW01 to monitor for contamination in the basal aquifer beneath the RHSF. Well RHMW01 was installed approximately 100 feet below grade within the lower access tunnel. The depth to water was measured at 86 feet below grade at the time of the well completion. In February 2001, a groundwater sample was collected from the well. Total Petroleum Hydrocarbons [TPH] and lead were detected in the samples. Lead was detected at a concentration above the DOH EAL (The Environmental Company, Inc. [TEC], 2009; DOH, 2000).

In 2005, the RHSF groundwater monitoring program was initiated. It involved routine groundwater sampling of wells RHMW01 and RHMW2254-01. Samples were collected in February, June, September, and December of 2005. Lead was detected at concentrations above the DOH EAL in samples collected in February and June. The samples collected in February and June were not filtered prior to analysis, whereas the samples collected in September and December were filtered prior to analysis. Since the samples collected in February and June were not filtered prior to analysis, the lead results were not considered appropriate for a risk assessment (TEC, 2008).

Between June and September 2005, TEC installed three groundwater monitoring wells (wells RHMW02, RHMW03, and RHMW04) within the RHSF (TEC, 2008). Well RHMW04 was installed upgradient of the USTs to provide background geochemistry information for water moving through the basal aquifer beneath the RHSF. Wells RHMW02 and RHMW03 were installed approximately 125 feet below grade within the RHSF lower tunnel and well RHMW04 was installed to a depth of approximately 300 feet bgs outside of the RHSF tunnels. In September 2005, groundwater samples were collected from the three newly installed groundwater monitoring wells (wells RHMW02, RHMW03, and RHMW04) along with the two existing wells (wells RHMW01 and RHMW2254-01). The COPCs with concentrations exceeding DOH EALs are summarized below.

- RHMW01 TPH-d was detected at concentrations above the DOH EAL.
- RHMW02 TPH-g, TPH-d, naphthalene, trichloroethylene, 1-methylnaphthalene, and 2-methylnaphthalene were detected at concentrations above the DOH EALs.
- RHMW03 TPH-d was detected at concentrations above the DOH EAL.

In 2006, TEC installed dedicated sampling pumps in the five wells (wells RHWM01, RHWM02, RHMW03, RHWM04, and RHMW2254-01). In July and December of 2006, groundwater

samples were collected from the five wells. The COPCs with concentrations exceeding DOH EALs are summarized below.

- RHMW01 TPH-d and naphthalene were detected at concentrations above the DOH EALs.
- RHMW02 TPH-g, TPH-d, and naphthalene were detected at concentrations above the DOH EALs.
- RHMW03 TPH-d was detected at concentrations above the DOH EAL.

In 2007, groundwater samples were collected from the four wells RHWM01, RHWM02, RHMW03, and RHMW2254-01. Samples were collected in March, June, and September of 2007. The COPCs with concentrations exceeding DOH EALs are summarized below.

- RHMW01 TPH-d was detected at concentrations above the DOH EAL.
- RHMW02 TPH-g, TPH-d, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were detected at concentrations above the DOH EALs.
- RHMW03 TPH-d was detected at concentrations above the DOH EAL.

In 2008, groundwater samples were collected from wells RHWM01, RHWM02, RHMW03, and RHMW2254-01. Samples were collected in January, April, July, and October of 2008. The COPCs with concentrations exceeding DOH EALs are summarized below. In addition, a groundwater protection plan (TEC, 2008) was prepared.

- RHMW01 TPH-d was detected at concentrations above the DOH EAL.
- RHMW02 TPH-d, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were detected at concentrations above the DOH EALs.
- RHMW03 TPH-d was detected at concentrations above the DOH EAL.

In April 2009, groundwater monitoring well RHMW05 was installed downgradient of the USTs, within the lower access tunnel between RHMW01 and RHMW2254-01. It was installed to identify the extent of contamination downgradient of the USTs. Well RHMW05 was added to the quarterly groundwater sampling program. In 2009, quarterly groundwater samples were collect from wells RHMW01, RHMW02, RHMW03, RHMW05, and RHMW2254-01. Samples were collected in February, May, July, and October of 2009. The COPCs with concentrations exceeding DOH EALs are summarized below.

- RHMW01 TPH-d and 1-methylnaphthalene were detected at concentrations above the DOH EAL.
- RHMW02 TPH-d, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were detected at concentrations above the DOH EALs.
- RHMW03 TPH-d was detected at a concentration above the DOH EAL.
- RHMW05 TPH-d was detected at a concentration above the DOH EAL.

In 2010, groundwater samples were collected from wells RHMW01, RHMW02, RHMW03, RHMW05, and RHMW2254-01. Samples were collected in January, April, July, and October. The COPCs with concentrations exceeding DOH EALs are summarized below.

- RHMW01 TPH-d was detected at concentrations above the DOH EAL.
- RHMW02 TPH-g, TPH-d, naphthalene, and 1-methylnaphthalene were detected at concentrations above the DOH EALs.
- RHMW03 TPH-d was detected at a concentration above the DOH EAL.
- RHMW05 TPH-d was detected at a concentration above the DOH EAL.

In 2011, quarterly groundwater samples were collected from wells RHMW01, RHMW02, RHMW03, RHMW05, and RHMW2254-01. Samples were collected in January, April, July, and October. The COPCs with concentrations exceeding DOH EALs are summarized below.

- RHMW01 TPH-d was detected at concentrations above the DOH EAL.
- RHMW02 TPH-d, naphthalene, ideno[1,2,3-cd]pyrene, and 1-methylnaphthalene were
 detected at concentrations above the DOH EALs.

In 2012, quarterly groundwater samples were collected from wells RHMW01, RHMW02, RHMW03, RHMW05, and RHMW2254-01. Samples were collected in February, April, July, and November. The COPCs with concentrations exceeding DOH EALs are summarized below.

- RHMW01 TPH-d was detected at concentrations above the DOH EAL.
- RHMW02 TPH-d, TPH-g, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were detected at concentrations above the DOH EALs.

In January 2013, quarterly groundwater samples were collected from wells RHMW01, RHMW02, RHMW03, RHMW05, and RHMW2254-01. The COPCs with concentrations exceeding DOH EALs are summarized below.

• RHMW02 – TPH-d, TPH-g, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were detected at concentrations above the DOH EALs.

1.3.1 Previous Reports

The following groundwater monitoring reports were previously submitted to the DOH:

- 1. Groundwater Sampling Report, First Quarter 2005 (submitted April 2005).
- 2. Groundwater Sampling Report, Second Quarter 2005 (submitted August 2005).
- 3. Groundwater Sampling Report, Third Quarter 2005 (submitted November 2005).
- 4. Groundwater Sampling Report, Fourth Quarter 2005 (submitted February 2006).

- 5. Groundwater Monitoring Results, July 2006 (submitted September 2006).
- 6. Groundwater Monitoring Results, December 2006 (submitted January 2007).
- 7. Groundwater Monitoring Results, March 2007 (submitted May 2007).
- 8. Groundwater Monitoring Results, June 2007 (submitted August 2007).
- 9. Groundwater Monitoring Results, September 2007 (submitted October 2007).
- 10. Groundwater Monitoring Report, January 2008 (submitted March 2008).
- 11. Groundwater Monitoring Report, April 2008 (submitted May 2008).
- 12. Groundwater Monitoring Report, July 2008 (submitted October 2008).
- 13. Groundwater Monitoring Report, October and December 2008 (submitted February 2009).
- 14. Groundwater Monitoring Report, February 2009 (submitted May 2009).
- 15. Groundwater Monitoring Report, May 2009 (submitted July 2009).
- 16. Groundwater Monitoring Report, July 2009 (submitted September 2009).
- 17. Groundwater Monitoring Report, October 2009 (submitted December 2009).
- 18. Groundwater Monitoring Report, January, February, and March 2010 (submitted April 2010).
- 19. Groundwater Monitoring Report, April 2010 (submitted May 2010).
- 20. Groundwater Monitoring Report, July 2010 (submitted August 2010).
- 21. Groundwater Monitoring Report, October 2010 (submitted December 2010).
- 22. Groundwater Monitoring Report, January 2011 (submitted March 2011).
- 23. Groundwater Monitoring Report, April 2011 (submitted June 2011).
- 24. Groundwater Monitoring Report, July 2011 (submitted September 2011).
- 25. Groundwater Monitoring Report, October 2011 (submitted December 2011).
- 26. Groundwater Monitoring Report, January-February 2012 (submitted March 2012).
- 27. Groundwater Monitoring Report, April 2012 (Submitted July 2012).
- 28. Groundwater Monitoring Report, October 2012 (Submitted in January 2013).

29. Groundwater Monitoring Report, January 2013 (Submitted in April 2013).

SECTION 2 – GROUNDWATER SAMPLING

On April 22 and 23, 2013, ESI personnel collected groundwater samples from five monitoring wells at the RHSF (wells RHMW01, RHMW02, RHMW03, RHMW05, and RHMW2254-01). The samples were collected in accordance with DOH UST release response requirements (DOH, 2000) and the RHSF Groundwater Protection Plan (TEC, 2008). Prior to purging and sampling, the depth to groundwater and the depth to the bottoms of the wells were measured using a Geotech oil/water interface probe. No measurable product, sheen, or petroleum hydrocarbon odor was detected in any of the wells.

2.1 GROUNDWATER SAMPLING

Prior to collecting groundwater samples, the monitoring wells were purged of water in the well casings. Each well contains a dedicated bladder pump which was used to purge the well and to collect samples. To operate the pump, a portable air compressor with an in-line filter was connected to a QED MP50 MicroPurge Basics Controller box, which was then connected to the pump. The compressor was turned on to power the pump and the controller was used to adjust the pumping rate to less than one liter of water per minute.

Water quality parameters were monitored on a periodic basis during well purging. The water quality parameters that were measured included hydrogen activity [pH], temperature, conductivity, dissolved oxygen, and oxidation reduction potential. The water quality parameters were evaluated to assess whether the natural characteristics of the aquifer formation water were present within the monitoring wells before collecting the samples. At least four readings were collected during the purging process. Purging was considered complete when at least three consecutive water quality measurements stabilized within approximately 10%. The readings were recorded on groundwater monitoring logs. The groundwater monitoring logs are included in Appendix A. In addition, field notes were taken to document the sampling event. The field notes are included in Appendix B.

When the water quality parameters stabilized, groundwater samples were collected from the wells using the bladder pumps. The groundwater samples were collected no more than two hours after purging was completed to decrease groundwater interaction with the monitoring well casing and atmosphere. Prior to collecting the sample, the water level in the monitoring wells was measured and recorded to ensure that water was not drawn down. The groundwater samples were collected at flow rates of approximately 0.14 to 0.42 liters per minute. Samples collected for dissolved lead analysis were filtered in the field using 0.45 micron filters.

2.2 ANALYTICAL RESULTS

The samples were analyzed for TPH-d using U.S. Environmental Protection Agency [EPA] Method 8015M, TPH-g and Volatile Organic Compounds [VOCs] using EPA Method 8260B, Polycyclic Aromatic Hydrocarbons [PAHs] using EPA Method 8270C SIM, dissolved lead using EPA Method 6020, and total lead using EPA Method 200.8. The sample collected from well

RHMW2254-01 was analyzed for total lead (unfiltered) as DON Well 2254-01 is a drinking water supply well. The analytical results are summarized below and in Table 2.1. A copy of the laboratory report is included in Appendix C.

- RHMW01 TPH-d (340 μg/L) and dissolved lead (0.641 μg/L) were detected. TPH-d was
 detected at a concentration above the DOH EALs for both drinking water toxicity and gross
 contamination.
- RHMW02 TPH-d (2,600 μg/L), TPH-g (54 μg/L), acenaphthene (0.58 μg/L), fluorene (0.24 μg/L), 1-methylnaphthalene (16 μg/L), 2-methylnaphthalene (13 μg/L), naphthalene (53 μg/L), ethylbenzene (0.21 μg/L), and xylenes (0.58 μg/L) were detected. TPH-d, 1-methylnaphthalene, and naphthalene were detected at concentrations above the DOH EALs for both drinking water toxicity and gross contamination. 2-methylnaphthalene was detected at a concentration above the DOH EAL only for gross contamination.
- RHMW03 TPH-d (69 μg/L) was detected. None of the chemical constituents analyzed for were detected at concentrations above the DOH EALs.
- RHMW05 TPH-d (27 μg/L), TPH-g (15 μg/L), and naphthalene (0.033 μg/L) were detected. None of the chemical constituents analyzed for were detected at concentrations above the DOH EALs.
- RHMW2254-01 Total lead (0.828 µg/L) was detected. None of the chemical constituents analyzed for were detected at concentrations above the DOH EALs.

2.3 GROUNDWATER CONTAMINANT TRENDS

Historical groundwater contaminant concentration trends of COPCs that exceeded the DOH EALs are presented in Appendix D. A summary of groundwater contaminant trends is provided below.

- RHMW01 COPCs detected during this round of quarterly sampling were consistent with historical data. TPH-d has historically been detected at concentrations above the DOH EAL for both drinking water toxicity and gross contamination. TPH-d concentrations showed a decreasing trend from 1,500 μg/L in February 2005 to 79 μg/L in February 2013. The TPH-d concentration increased from 79 μg/L in February 2013 to 340 μg/L during this sampling event. This is the first time TPH-d has been detected at a concentration above the DOH EALs for both drinking water toxicity and gross contamination since February 2012.
- RHMW02 TPH-d, TPH-g, 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene have historically been detected at concentrations above the DOH EALs. TPH-d concentrations during the last several rounds of sampling have shown an increasing trend, but concentrations have been lower than the high of 5,420 μg/L in October 2008. 1-Methylnaphthalene, 2-methylnaphthalene, and naphthalene concentrations decreased

since the last event in January 2013. The concentration of 2-methylnaphthalene fell below the drinking water EAL. The TPH-g concentration has decreased from 655 μ g/L in January 2013 to below the gross contamination EAL again with 54 μ g/L detected during this sampling event.

- RHMW03 COPCs detected during this round of quarterly sampling were consistent with historical data. TPH-d has historically been detected at concentrations above the DOH EAL for both drinking water toxicity and gross contamination; however, it has not been detected at concentrations above the DOH EALs since October 2010.
- RHMW05 COPCs detected during this round of quarterly sampling were consistent with historical data. TPH-d has historically been detected at concentrations above the DOH EAL for both drinking water toxicity and gross contamination; however, it has not been detected at concentrations above the DOH EALs since January 2010.
- RHMW2254-01 COPCs detected during this round of quarterly sampling were consistent
 with historical data. TPH-d was detected at a concentration above the DOH EAL for gross
 contamination in January 2008; however, it has not been detected at concentrations above
 the DOH EALs since then.

Historical groundwater contaminants concentrations above the DOH EALs for both drinking water toxicity and gross contamination are presented in Appendix D.

2.4 WASTE DISPOSAL

The purged groundwater and decontamination water generated during sampling of the inside tunnel wells was stored in a 55-gallon drum along with the purged water and decontamination water from the outside tunnel wells. The water was disposed of following receipt of the analytical results for the outside tunnel wells. The drum was stored onsite at Adit 3. On June 5, 2013, the drum of water was picked up by Pacific Commercial Services, LLC, and disposed of at Unitek Solvent Services, Inc. The waste disposal manifest is included in Appendix E.

This Page Intentionally Left Blank.

Contract No. N62742-12-D-1853 Contract Task Order 0002

TABLE 2.1 Analytical Results for Groundwater Sampling (April 22 and 23, 2013) Red Hill Bulk Fuel Storage Facility **April 2013 Quarterly Monitoring Report**

			April 2013 Quarterly Monitoring Report										DIMMINO (FORCE)															
Mathad	Chamiaal	DOH	RHMW2254-01 (ES023)					RHWM01 (ES019)					RHMW02 (ES020)				RHWM03 (ES022)				RHMW05 (ES024)							
Method	Chemical	Drinking Water Toxicity	Gross Contamination	Results	Q	LOQ	LOD	DL	Results	Q	LOQ	LOD	DL	Results	Q	LOQ	LOD	DL	Results	Q	LOQ	LOD	DL	Results	q	LOQ	LOD	DL
EPA 8015B	TPH-d	190	100	N.D.	U	50	20	15	340	HD	50	20	15	2,600	HD	50	20	15	69	HD	50	20	15	27	J	50	20	15
EPA 8260B	TPH-g Acenaphthene	100 370	100 20	N.D. N.D.	U	50 0.2	30 0.051	13 0.021	N.D. N.D.	U	50 0.21	30 0.052	13 0.021	54 0.58		50 0.2	30 0.051	13 0.021	N.D. N.D.	U	50 0.21	30 0.053	0.019	15 N.D.	J U	50 0.19	30 0.048	13 0.020
	Acenaphthylene	240	2,000	N.D.	U	0.2	0.051	0.021	N.D.	U	0.21	0.052	0.021	0.56 N.D.	U	0.2	0.051	0.021	N.D.	U	0.21	0.053	0.019	N.D.	U	0.19	0.048	0.020
	Anthracene	1,800	22	N.D.	U	0.2	0.051	0.035	N.D.	U	0.21	0.052	0.035	N.D.	U	0.2	0.051	0.035	N.D.	Ü	0.21	0.053	0.036	N.D.	U	0.19	0.048	0.033
	Benzo[a]anthracene	0.092	4.7	N.D.	U	0.2	0.051	0.024	N.D.	U	0.21	0.052	0.024	N.D.	U	0.2	0.051	0.024	N.D.	U	0.21	0.053	0.025	N.D.	U	0.19	0.048	0.023
	Benzo[g,h,i]perylene	1,500	0.13	N.D.	U	0.2	0.051	0.022	N.D.	U	0.21	0.052	0.022	N.D.	U	0.2	0.051	0.022	N.D.	U	0.21	0.053	0.023	N.D.	U	0.19	0.048	0.021
	Benzo[a]pyrene Benzo[b]fluoranthene	0.2 0.092	0.81 0.75	N.D. N.D.	U	0.2	0.051 0.051	0.037 0.025	N.D. N.D.	U	0.21	0.052 0.052	0.037	N.D. N.D.	U U	0.2	0.051	0.037 0.025	N.D. N.D.	U	0.21	0.053	0.038	N.D. N.D.	U	0.19 0.19	0.048 0.048	0.035 0.024
	Benzo[k]fluoranthene	0.92	0.75	N.D.	U	0.2	0.051	0.023	N.D.	U	0.21	0.052	0.026	N.D.	U	0.2	0.051	0.023	N.D.	U	0.21	0.053	0.025	N.D.	U	0.19	0.048	0.024
EDA 02700	Chrysene	9.2	1	N.D.	U	0.2	0.051	0.019	N.D.	U	0.21	0.052	0.020	N.D.	U	0.2	0.051	0.019	N.D.	U	0.21	0.053	0.020	N.D.	Ü	0.19	0.048	0.018
EPA 8270C	Dibenzo[a,h]anthracene	0.0092	0.52	N.D.	U	0.2	0.051	0.027	N.D.	U	0.21	0.052	0.028	N.D.	U	0.2	0.051	0.027	N.D.	U	0.21	0.053	0.028	N.D.	U	0.19	0.048	0.026
	Fluoranthene	1,500	130	N.D.	U	0.2	0.051	0.028	N.D.	U	0.21	0.052	0.028	N.D.	U	0.2	0.051	0.028	N.D.	U	0.21	0.053	0.029	N.D.	U	0.19	0.048	0.026
	Fluorene	240	950	N.D.	U	0.2	0.051	0.025	N.D.	U	0.21	0.052	0.025	0.24		0.2	0.051	0.025	N.D.	U	0.21	0.053	0.026	N.D.	U	0.19	0.048	0.024
	Indeno[1,2,3-cd]pyrene 1-Methylnaphthalene	0.092 4.7	0.095 10	N.D. N.D.	U	0.2	0.051 0.051	0.022	N.D. N.D.	U	0.21	0.052 0.052	0.023	N.D. 16	U	0.2	0.051	0.022	N.D. N.D.	U	0.21	0.053	0.023	N.D. N.D.	U	0.19 0.19	0.048 0.048	0.021
	2-Methylnaphthalene	24	10	N.D.	U	0.2	0.051	0.029	N.D.	U	0.21	0.052	0.029	13		2	0.51	0.23	N.D.	U	0.21	0.053	0.030	N.D.	U	0.19	0.048	0.027
	Naphthalene	17	21	N.D.	U	0.2	0.051	0.023	N.D.	U	0.21	0.052	0.024	53		2	0.51	0.23	N.D.	Ü	0.21	0.053	0.024	0.033	J	0.19	0.048	0.022
	Phenanthrene	240	410	N.D.	U	0.2	0.051	0.031	N.D.	U	0.21	0.052	0.031	N.D.	U	0.2	0.051	0.031	N.D.	U	0.21	0.053	0.032	N.D.	U	0.19	0.048	0.030
	Pyrene	180	68	N.D.	U	0.2	0.051	0.025	N.D.	U	0.21	0.052	0.026	N.D.	U	0.2	0.051	0.025	N.D.	U	0.21	0.053	0.026	N.D.	U	0.19	0.048	0.024
	1,1,1-Trichloroethane	200 5	970	N.D.	U	5.0	0.5	0.3	N.D.	U	5.0	0.5	0.3	N.D.	U	5.0	0.5	0.3	N.D.	U	5.0	0.5	0.3	N.D.	U	5.0	0.5	0.3
	1,1,2-Trichloroethane 1,1-Dichloroethane	2.4	50,000 50,000	N.D. N.D.	U	1.0 5.0	0.5 0.5	0.38	N.D. N.D.	U	1.0 5.0	0.5 0.5	0.38	N.D. N.D.	U U	1.0 5.0	0.5	0.38 0.28	N.D. N.D.	U	1.0 5.0	0.5 0.5	0.38	N.D. N.D.	U	1.0 5.0	0.5 0.5	0.38
	1,1-Dichloroethylene	7	1,500	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43
	1,2,3-Trichloropropane	0.6	50,000	N.D.	U	5.0	1.0	0.64	N.D.	U	5.0	1.0	0.64	N.D.	U	5.0	1.0	0.64	N.D.	U	5.0	1.0	0.64	N.D.	U	5.0	1.0	0.64
	1,2,4-Trichlorobenzene	70	3,000	N.D.	U	5.0	1.0	0.5	N.D.	U	5.0	1.0	0.5	N.D.	U	5.0	1.0	0.5	N.D.	U	5.0	1.0	0.5	N.D.	U	5.0	1.0	0.5
	1,2-Dibromo-3- chloropropane	0.04	10	N.D.	U	10	2.0	1.2	N.D.	U	10	2.0	1.2	N.D.	U	10	2.0	1.2	N.D.	U	10	2.0	1.2	N.D.	U	10	2.0	1.2
	1,2-Dibromoethane	0.04 600	50,000	N.D. N.D.	U	1.0	0.5	0.36	N.D.	U	1.0	0.5	0.36	N.D. N.D.	U	1.0	0.5	0.36	N.D.	U	1.0	0.5	0.36	N.D.	U	1.0	0.5	0.36 0.46
	1,2-Dichlorobenzene 1,2-Dichloroethane	0.15	10 7.000	N.D.	U	1.0	0.5 0.5	0.46 0.24	N.D. N.D.	U U	1.0	0.5 0.5	0.46 0.24	N.D.	U U	1.0	0.5	0.46 0.24	N.D. N.D.	U	1.0	0.5 0.5	0.46 0.24	N.D. N.D.	U	1.0	0.5 0.5	0.46
	1,2-Dichloropropane	5	10	N.D.	U	5.0	0.5	0.42	N.D.	U	5.0	0.5	0.42	N.D.	U	5.0	0.5	0.42	N.D.	U	5.0	0.5	0.42	N.D.	U	5.0	0.5	0.42
	1,3-Dichlorobenzene	180	5	N.D.	U	1.0	0.5	0.4	N.D.	U	1.0	0.5	0.4	N.D.	U	1.0	0.5	0.4	N.D.	U	1.0	0.5	0.4	N.D.	U	1.0	0.5	0.4
	1,3-Dichloropropene (total of cis/trans)	0.43	50,000	N.D.	U	2.0	1.0	0.25	N.D.	U	2.0	1.0	0.25	N.D.	U	2.0	1.0	0.25	N.D.	U	2.0	1.0	0.25	N.D.	U	2.0	1.0	0.25
	1,4-Dichlorobenzene	75	5	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43
	Acetone Benzene	22,000 5	20,000 170	N.D. N.D.	U	20 1.0	10 0.5	6 0.14	N.D. N.D.	U	1.0	10 0.5	6 0.14	N.D. N.D.	U	1.0	0.5	6 0.14	N.D. N.D.	U	1.0	10 0.5	6 0.14	N.D. N.D.	U	1.0	10 0.5	6 0.14
	Bromodichloromethane	0.12	50,000	N.D.	U	5.0	0.5	0.14	N.D.	U	5.0	0.5	0.14	N.D.	U	5.0	0.5	0.14	N.D.	U	5.0	0.5	0.14	N.D.	U	5.0	0.5	0.14
	Bromoform	80	510	N.D.	U	10	1.0	0.5	N.D.	U	10	1.0	0.5	N.D.	U	10	1.0	0.5	N.D.	U	10	1.0	0.5	N.D.	U	10	1.0	0.5
	Bromomethane	8.7	50,000	N.D.	ICJ, U	20	5.0	3.9	N.D.	ICJ, U	20	5.0	3.9	N.D.	ICJ, U	20	5.0	3.9	N.D.	ICJ, U	20	5.0	3.9	N.D.	ICJ, U	20	5.0	3.9
	Carbon Tetrachloride	5	520	N.D.	U	1.0	0.5	0.23	N.D.	U	1.0	0.5	0.23	N.D.	U	1.0	0.5	0.23	N.D.	U	1.0	0.5	0.23	N.D.	U	1.0	0.5	0.23
EPA 8260B	Chlorobenzene	100	50	N.D.	U	5.0	0.5	0.17	N.D.	U	5.0	0.5	0.17	N.D.	U	5.0	0.5	0.17	N.D.	U	5.0	0.5	0.17	N.D.	U	5.0	0.5	0.17
	Chloroethane Chloroform	21,000 70	16 2,400	N.D. N.D.	U	10 5.0	5.0 0.5	2.3 0.46	N.D. N.D.	U	10 5.0	5.0 0.5	2.3 0.46	N.D. N.D.	U U	10 5.0	5.0 0.5	2.3 0.46	N.D. N.D.	U	10 5.0	5.0 0.5	2.3 0.46	N.D.	U	10 5.0	5.0 0.5	2.3 0.46
	Chloromethane	1.8	50,000	N.D.	ICJ, U	10	2.0	1.8	N.D.	ICJ, U	10	2.0	1.8	N.D.	ICJ, U	10	2.0	1.8	N.D.	ICJ, U	10	2.0	1.8	N.D.	ICJ, U	10	2.0	1.8
	cis-1,2-Dichloroethylene	70	50,000	N.D.	U	1.0	0.5	0.48	N.D.	U	1.0	0.5	0.48	N.D.	U	1.0	0.5	0.48	N.D.	U	1.0	0.5	0.48	N.D.	U	1.0	0.5	0.48
	Dibromochloromethane	0.16	50,000	N.D.	U	1.0	0.5	0.25	N.D.	U	1.0	0.5	0.25	N.D.	U	1.0	0.5	0.25	N.D.	U	1.0	0.5	0.25	N.D.	U	1.0	0.5	0.25
	Ethylbenzene	700	30	N.D.	U	1.0	0.5	0.14	N.D.	U	1.0	0.5	0.14	0.21	J	1.0	0.5	0.14	N.D.	U	1.0	0.5	0.14	N.D.	U	1.0	0.5	0.14
	Hexachlorobutadiene Methyl ethyl ketopa (2 Rutanana)	0.86	6	N.D.	U	1.0	0.5	0.32	N.D.	U	1.0	0.5	0.32	N.D.	U	1.0	0.5	0.32	N.D.	U	1.0	0.5	0.32	N.D.	U	1.0	0.5	0.32
	Methyl ethyl ketone (2-Butanone) Methyl isobutyl ketone (4-Methyl-2-Pentanone)	7,100 2.000	8,400 1300	N.D.	U	10 10	5.0	2.2 4.4	N.D. N.D.	U	10	5.0 5.0	2.2 4.4	N.D. N.D.	U	10	5.0	2.2 4.4	N.D. N.D.	U	10	5.0 5.0	2.2 4.4	N.D.	U	10	5.0 5.0	2.2 4.4
	Methyl tert-butyl Ether	12	5	N.D.	U	1.0	0.5	0.31	N.D.	U	1.0	0.5	0.31	N.D.	U	1.0	0.5	0.31	N.D.	U	1.0	0.5	0.31	N.D.	U	1.0	0.5	0.31
	Methylene chloride	4.8	9,100	N.D.	U	5.0	1.0	0.64	N.D.	U	5.0	1.0	_		U	5.0	1.0	0.64	N.D.	Ü	5.0	1.0	0.64	N.D.	U	5.0	1.0	0.64
	Styrene	100	10	N.D.	U	1.0	0.5	0.17	N.D.	U	1.0	0.5	_		U	1.0	0.5	0.17	N.D.	U	1.0	0.5	0.17	N.D.	U	1.0	0.5	0.17
	Tetrachloroethane, 1,1,1,2-	0.52	50,000	N.D.	U	1.0	0.5	0.4	N.D.	U	1.0	0.5			U	1.0	0.5	0.4	N.D.	U	1.0	0.5	0.4	N.D.	U	1.0	0.5	0.4
	Tetrachloroethylana	0.067 5	500 170	N.D. N.D.	U	1.0	0.5	0.41	N.D.	U	1.0 5.0	0.5	_		U	1.0 5.0	0.5	0.41	N.D.	U	1.0	0.5	0.41	N.D. N.D.	U	1.0 5.0	0.5	0.41
	Tetrachloroethylene Toluene	1,000	170 40	N.D. N.D.	U	5.0 1.0	0.5 0.5	0.39	N.D. N.D.	U	1.0	0.5 0.5	_	N.D.	U U	1.0	0.5	0.39	N.D. N.D.	U	5.0 1.0	0.5 0.5	0.39	N.D.	U	1.0	0.5 0.5	0.39
	trans-1,2- Dichloroethylene	100	260	N.D.	U	1.0	0.5	0.24	N.D.	U	1.0	0.5	_	N.D.	U	1.0	0.5	0.24	N.D.	U	1.0	0.5	0.24	N.D.	U	1.0	0.5	0.24
	Trichloroethylene	5	310	N.D.	U	1.0	0.5	0.37	N.D.	U	1.0	0.5			U	1.0	0.5	0.37	N.D.	U	1.0	0.5	0.37	N.D.	U	1.0	0.5	0.37
	Vinyl chloride	2	3,400	N.D.	U	1.0	0.5	0.3	N.D.	U	1.0	0.5	_	N.D.	U	1.0	0.5	0.3	N.D.	U	1.0	0.5	0.3	N.D.	U	1.0	0.5	0.3
	Xylenes	10,000	20	N.D.	U	11	1.5	0.23	N.D.	U	11	1.5	0.23	0.58	J	11	1.5	0.23	N.D.	U	11	1.5	0.23	N.D.	U	11	1.5	0.23
EPA 6020	Dissolved Lead	15	50,000	- 0.000	-	-	-	- 0.000	0.641	J	1	0.2		N.D.	U	1	0.2	0.0898	N.D.	U	1	0.2	0.0898	N.D.	U	1	0.2	0.0898
EPA 200.8	Total Lead	15	50,000	0.828	J	1.0	-*	0.0898	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

The data are in micrograms per liter (µg/L). Shaded values exceeded the DOH EALs.

Not Analyzed

DL
Detection Limit or Method Detection Limit (MDL)

DOH EALS
EPA
Environmental Protection Agency

HD
The chromatographic pattern was inconsistent with the profile of the reference fuel standard.

ICJ
Initial calibration verification recovery above method control limit for this analyte.

IH
Calibration verification recovery below method control limit for this analyte.

J
Calibration verification recovery above method control limit for this analyte.

This sample was analyzed by EPA Method 200.8 and therefore does not have an LOD

Calibration verification recovery above method control limit for this analyte.

This sample was analyzed by EPA Method 200.8 and therefore does not have an LOD

Analyte was detected at a concentration below the LOQ and above the DL. Reported value is estimated. Limit of Detection
Limit of Quantitation
Not Detected
Qualifiers
Total Petroleum Hydrocarbons as diesel
Total Petroleum Hydrocarbons as gasoline
Undetected at DL and is reported as less than the LOD.

LOD LOQ N.D. Q TPH-d TPH-g

Contract No. N62742-12-D-1853

This Page Intentionally Left Blank.

SECTION 3 – DATA QUALITY ASSESSMENT

A data quality assessment, which consists of a review of the overall groundwater sample collection and analysis process, was performed in order to determine whether the analytical data generated meets the quality objectives for the project. The data quality assessment was performed in accordance with the approved WP/SAP prepared by ESI (ESI, 2012). The field quality control program consisted of standardized sample collection and management procedures, and the collection of field duplicate samples, matrix spike samples, and trip blank samples. The laboratory quality assurance program consisted of the use of standard analytical methods and the preparation and analyses of Matrix Spike [MS]/Matrix Spike Duplicate [MSD] samples, surrogate spikes, blanks, and Laboratory Control Samples [LCSs].

3.1 Data Validation and Assessment

The objective of data validation is to provide data of known quality for project decisions. Data quality is judged in terms of Precision, Accuracy, Representativeness, Completeness, Comparability, and Sensitivity [PARCCS]. A number of factors may affect the quality of data, including: sample collection methods, sample analysis methods, and adherence to established procedures for sample collection, preservation, management, shipment, and analysis.

Precision

Precision is defined as the reproducibility of replicate measurements. Precision is evaluated by Relative Percentage Difference [RPD] of field duplicates and laboratory LCS/Laboratory Control Sample Duplicates [LCSDs] or MS/MSD results. Field duplicate and MS/MSD samples were collected at a rate of approximately 10% of primary samples. Field duplicates were sent to the laboratory along with the primary samples.

RPDs of MS/MSD results for acetone and 1,1-dichloroethylene were above the acceptable maximum of 20%. As neither COPC was detected in any groundwater sample, and the EALs are significantly higher than Limits of Detection [LODs] for each chemical, this is considered acceptable. All other RPDs for MS/MSD and LCS/LCSD pairs were within the acceptance range.

The RPDs of primary and field duplicate samples are provided in Table 3.1. All duplicate RPDs are less than 20% (below 50% as recommended in the NAVFAC Project Procedures Manual [DON 2007]), and therefore, the data precision is considered acceptable.

Accuracy

Accuracy is defined as the degree of conformity of a measurement to a standard or true value. Accuracy is evaluated through measurement of the percent recovery of an analyte in a reference standard or spiked sample. Accuracy limits for surrogates, laboratory control spike, MS, and MSD samples are established by the individual laboratory.

Between July 2006 and July 2010, naphthalene was analyzed for by both EPA Methods 8260B and 8270C, and both results were reported. In September 2005 and in all data beginning in October 2010, only results using EPA Method 8270C were reported. Naphthalene has historically only been detected at concentrations above the DOH EALs in well RHMW02. In this well, concentrations of naphthalene detected in each sample by EPA Method 8260B were generally two to three times higher than those detected by EPA Method 8270C. We assume this is due to the better preservation of VOCs associated with the use of EPA Method 8260B. This suggests that the naphthalene results provided by EPA Method 8270C may be biased low. Since October 2012, naphthalene concentrations in RHMW02 have exceeded DOH EALs for both gross contamination and drinking water toxicity. The naphthalene concentration detected in July 2012 (17 µg/L) was equal to the DOH EAL for drinking water (17 µg/L) but below the DOH EAL for gross contamination (21 µg/L); it is possible that accounting for the low bias, the actual naphthalene concentration detected during this event exceeded both EALs. Naphthalene concentrations between April 2011 and April 2012 were all an order of magnitude below both EALs, and it is unlikely that decisions based on these data are significantly affected by the low bias

Results for TPH-d in samples ES019, ES020, ES021, and ES022 were flagged "HD." The laboratory indicated a mismatch between the calibration standard and the TPH-d chromatographic profile. Mismatches of this type are not uncommon. The chromatograms are not part of the standard laboratory package and were not reviewed by ESI.

For this monitoring event, the initial calibration for bromomethane and chloromethane were outside the method control limits. Therefore, the data for these analytes may be biased low. Neither COPC was detected in the groundwater samples. The DOH EAL for drinking water exceeds the Limit of Quantitation [LOQ] for bromomethane and is near the LOD; however, no other HVOCs were detected in any of the groundwater samples, so it is unlikely that bromomethane is present at concentrations that warrant concern in any of the groundwater samples.

All surrogate spike recoveries for analyzed constituents were within acceptable percent recovery limits. The percent recovery of acetone in the LCS exceeded recovery limits, indicating a possible high bias. Acetone was not detected in any of the samples; therefore, the high bias does not compromise the usability of the data set. All other LCS recoveries were within recovery limits. Naphthalene, 2-methylnaphthalene and 1-methylnaphthalene concentrations for ES020, the primary sample on which the MS/MSD were performed, were significantly higher than the added spike concentration, which prevented an accurate evaluation of the MS/MSD recovery for these analytes. MS recoveries for acetone and 1,1-dichloroethylene were below the acceptable minimum percentage, suggesting matrix interference may cause a low bias. As neither COPC was detected in any groundwater sample, and the EALs are significantly higher than LODs for each chemical, this is considered acceptable.

All other MS and MSD recoveries were within acceptable recovery limits, therefore, the data accuracy for this monitoring event is considered acceptable.

Representativeness

Representativeness is the degree that data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness was achieved by conducting sampling in compliance with the sample collection procedures described in the WP/SAP (ESI, 2012).

Representativeness is also evaluated via compliance with established sample holding time and sample preservation, and through the analysis of blank samples, including method blank and trip blank samples. The sample holding time and sample preservation were in compliance with EPA guidance. For this sampling event, one trip blank was collected. TPH-g (21 μ g/L) and trichloroethene (0.68 μ g/L) were detected in the trip blank. TPH-g was detected in the trip blank at a concentration below the LOD. Trichloroethene was not detected in any of the groundwater samples. TPH-g was detected in samples ES020, ES021, and ES024. In ES020 and ES021, the TPH-g is likely associated with the gasoline-range organics associated with the high concentrations of TPH-d. In ES024, the concentration detected (15 μ g/L) is very close to the concentration detected in the blank. Therefore, it is likely that the concentration detected in ES024 is an artifact of blank contamination. However, concentrations of TPH-g detected in the samples were no more than approximately half of the EAL, and it is unlikely the contamination in the trip blank significantly affects data usability. Therefore, the groundwater sample data are considered representative of the groundwater quality on site. The quality control results are provided in Table 3.2.

Completeness

Completeness is defined as the overall percentage of valid analytical results (including estimated results) compared to the total number of analytical results reported by the analytical laboratory. No data were rejected for this project, and therefore the completeness goal for this project (90%), was successfully met.

Comparability

Comparability expresses the confidence with which one data set can be compared to another data set. Comparability can be related to accuracy and precision because these quantities are measures of data reliability. Data, with acceptable precision and accuracy, are considered comparable if collection techniques, analytical procedures, methods and reporting are equivalent.

Between July 2006 and July 2010, naphthalene was analyzed for by both EPA Methods 8260B and 8270C, and both results were reported. In September 2005 and in all data beginning in October 2010, only results using EPA Method 8270C were reported. In general, EPA Method 8260B resulted in higher, and as discussed above likely more accurate, results than EPA Method 8270C. However, for the sake of comparability with results from recent events, EPA Method 8270C was used for naphthalene analysis in this event. Consequently, the low bias associated with Method 8270C should be considered when making project decisions.

All TPH-g data through July 2010 were analyzed by EPA Method 8015; beginning in October 2010, EPA Method 8260B was used. There was no event where both methods were used; consequently, there is no way to directly compare the results obtained by method and to assess potential bias. However, there is no reason to believe that using either method should bias the data, and the TPH-g data for all events should be comparable.

Other than the naphthalene bias discussed above, no issues with comparability were identified. The results are considered comparable within this data set and with the data collected from previous sampling events.

Sensitivity

The limits of quantitation [LOQs] are established by the laboratory based on the LODs or instrument detection limits, historical data, and EPA limits established for the methods. The LOQs for samples may require adjustment due to matrix interference or if high levels of target analytes necessitate dilution before analysis. Matrix interference and sample dilutions have the effect of increasing the LOQs. Laboratory LODs and LOQs for several analytes differed from the LODs and LOQs in the WP/SAP because the laboratory updates them quarterly and in some cases, dilution was necessary due to the presence of high concentrations of analytes.

LODs and LOQs for several analytes were greater than the DOH EALs (as stated in the WP/SAP) and therefore it is not possible to determine whether the analytes are present at concentrations greater than or equal to the DOH EALs. As suggested by the DOH Technical Guidance Manual, when the LOQ exceeds the DOH EAL, the project action level will be the LOQ for these analytes. The affected analytes for this monitoring event are 1,1-dichloroethane, 1,2,3-trichloropropane, 1,2-dibromo-3-chloropropane, 1,2-dibromoethane, 1,2-dichloroethane, 1,3-dichloropropene, bromodichloromethane, bromomethane, chloromethane, dibromochloromethane. methylene chloride, 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, benzo[a]anthracene. benzo[g,h,i]perylene, benzo[b]fluoranthene, benzo[k]fluoranthene, dibenzo[a,h]anthracene, and ideno[1,2,3-cd]pyrene.

3.2 Data Assessment and Usability Conclusions

The PARCCS criteria were evaluated, and with a few exceptions, all criteria were met. TPH-g contamination in the trip blank shows that there may be a slight high bias in the TPH-g groundwater sample results; however, it is unlikely that this affects the usability of the data for making project decisions. Other analytes that had issues causing concentrations to be biased high or low were either not detected in groundwater samples, or were detected at concentrations well below project action levels. The data assessment concludes that all data generated during this event are usable for the intended purpose.

Contract No. N62742-12-D-1853 Contract Task Order 0002

TABLE 3.1 Quality Control Results for Groundwater Sampling (April 22, 2013) Red Hill Bulk Fuel Storage Facility **April 2013 Quarterly Monitoring Report**

		DOLL	EAL o					darterly ivi	ionitoring R	•	MM02 (E6024)	(DUD)			EQ Tala					
	Chemical Constituent	DOH		RHMW02 (ES02	20) 			KHI	MW02 (ES021)	(DUP)		RPD Duplicate	ES Trip							
Method		Drinking Water Toxicity	Gross Contamination	Result	Q	LOQ	LOD	DL	Result	Q	LOQ	LOD	DL	(%)	Result	Q	LOQ	LOD	DL	
EPA 8015B	TPH-d	190	100	2,600	HD	50	20	15	3,300	HD	50	20	15	24	-	-	-	-	-	
EPA 8260B	TPH-g	100	100	54		50	30	13	56		50	30	13	4	21	J	50	30	13	
	Acenaphthylana	370 240	20 2,000	0.58 N.D.	U	0.2	0.051 0.051	0.021 0.018	0.65 N.D.	U	0.19 0.19	0.048 0.048	0.020 0.017	11 NA	-	-	-	-	-	
	Acenaphthylene Anthracene	1,800	2,000	N.D.	U	0.2	0.051	0.018	N.D.	U	0.19	0.048	0.017	NA NA	-	-	-	-	-	
	Benzo[a]anthracene	0.092	4.7	N.D.	Ü	0.2	0.051	0.024	N.D.	Ü	0.19	0.048	0.023	NA NA	_	-	-	_	-	
	Benzo[g,h,i]perylene	1,500	0.13	N.D.	U	0.2	0.051	0.022	N.D.	U	0.19	0.048	0.021	NA	-	-	-	-	-	
	Benzo[a]pyrene	0.2	0.81	N.D.	U	0.2	0.051	0.037	N.D.	U	0.19	0.048	0.035	NA	-	-	-	-	-	
	Benzo[b]fluoranthene	0.092	0.75	N.D.	U	0.2	0.051	0.025	N.D.	U	0.19	0.048	0.024	NA	-	-	-	-	-	
	Benzo[k]fluoranthene	0.92	0.4	N.D.	U	0.2	0.051	0.024	N.D.	U	0.19	0.048	0.022	NA NA	-	-	-	-	-	
EPA 8270C	Chrysene	9.2	1	N.D.	U	0.2	0.051	0.019	N.D.	U	0.19	0.048	0.018	NA NA	-	-	-	-	-	
	Dibenzo[a,h]anthracene Fluoranthene	0.0092 1,500	0.52 130	N.D.	U	0.2	0.051 0.051	0.027 0.028	N.D. N.D.	U	0.19 0.19	0.048 0.048	0.025 0.026	NA NA	-	-	-	-	-	
	Fluorene	240	950	0.24	0	0.2	0.051	0.025	0.28	-	0.19	0.048	0.028	15	<u> </u>	-	-		-	
	Indeno[1,2,3-cd]pyrene	0.092	0.095	N.D.	U	0.2	0.051	0.022	N.D.	U	0.19	0.048	0.021	NA NA	-	-	-	-	-	
	1-Methylnaphthalene	4.7	10	16		2.0	0.51	0.29	20		3.8	0.95	0.54	22	-	-	-	-	-	
	2-Methylnaphthalene	24	10	13		2.0	0.51	0.27	16		3.8	0.95	0.50	6	-	-	-	-	-	
	Naphthalene	17	21	53		2.0	0.51	0.23	61		3.8	0.95	0.44	14	-	-	-	-	-	
	Phenanthrene	240	410	N.D.	U	0.2	0.051	0.031	N.D.	U	0.19	0.048	0.029	NA NA	-	-	-	-	-	
	Pyrene	180	68	N.D.	U	0.2	0.051	0.025	N.D.	U	0.19	0.048	0.024	NA NA	-	-	-	-	-	
	1,1,1-Trichloroethane 1,1,2-Trichloroethane	200 5	970 50,000	N.D.	U	5.0 1.0	0.5 0.5	0.30	N.D. N.D.	U	5.0 1.0	0.5 0.5	0.30	NA NA	N.D.	U	5.0 1.0	0.5 0.5	0.30 0.38	
	1,1-Dichloroethane	2.4	50,000	N.D.	U	5.0	0.5	0.38	N.D.	U	5.0	0.5	0.28	NA NA	N.D.	U	5.0	0.5	0.38	
	1,1-Dichloroethylene	7	1,500	N.D.	Ü	1.0	0.5	0.43	N.D.	Ü	1.0	0.5	0.43	NA NA	N.D.	Ü	1.0	0.5	0.43	
	1,2,3-Trichloropropane	0.6	50,000	N.D.	U	5.0	1.0	0.64	N.D.	Ü	5.0	1.0	0.64	NA	N.D.	Ü	5.0	1.0	0.64	
	1,2,4-Trichlorobenzene	70	3,000	N.D.	U	5.0	1.0	0.50	N.D.	U	5.0	1.0	0.50	NA	N.D.	U	5.0	1.0	0.50	
	1,2-Dibromo-3- chloropropane	0.04	10	N.D.	U	10	2.0	1.2	N.D.	U	10	2.0	1.2	NA	N.D.	U	10	2.0	1.2	
	1,2-Dibromoethane	0.04	50,000	N.D.	U	1.0	0.5	0.36	N.D.	U	1.0	0.5	0.36	NA	N.D.	U	1.0	0.5	0.36	
	1,2-Dichlorobenzene	600	10	N.D.	U	1.0	0.5	0.46	N.D.	U	1.0	0.5	0.46	NA NA	N.D.	U	1.0	0.5	0.46	
	1,2-Dichloroethane	0.15 5	7,000 10	N.D.	U	1.0 5.0	0.5	0.24	N.D. N.D.	U	1.0 5.0	0.5 0.5	0.24	NA NA	N.D.	U	1.0 5.0	0.5	0.24 0.42	
	1,2-Dichloropropane 1,3-Dichlorobenzene	180	5	N.D.	U	1.0	0.5 0.5	0.42 0.40	N.D.	U	1.0	0.5	0.42 0.40	NA NA	N.D.	U	1.0	0.5 0.5	0.42	
	1,3-Dichloropropene (total of cis/trans)	0.43	50,000	N.D.	Ü	2.0	1.0	0.25	N.D.	Ü	2.0	1.0	0.25	NA NA	N.D.	Ü	2.0	1.0	0.25	
	1,4-Dichlorobenzene	75	5	N.D.	Ü	1.0	0.5	0.43	N.D.	Ü	1.0	0.5	0.43	NA	N.D.	Ü	1.0	0.5	0.43	
	Acetone	22,000	20,000	N.D.	U	20	10	6.0	N.D.	U	20	10	6.0	NA	N.D.	U	20	10	6.0	
	Benzene	5	170	N.D.	U	1.0	0.5	0.14	N.D.	U	1.0	0.5	0.14	NA	N.D.	U	1.0	0.5	0.14	
	Bromodichloromethane	0.12	50,000	N.D.	U	5.0	0.5	0.21	N.D.	U	5.0	0.5	0.21	NA	N.D.	U	5.0	0.5	0.21	
	Bromoform	80	510	N.D.	U	10	1.0	0.5	N.D.	U	10	1.0	0.5	NA	N.D.	U	10	1.0	0.5	
	Bromomethane	8.7	50,000	N.D.	ICJ, U	20	5.0	3.9	N.D.	ICJ, U	20	5.0	3.9	NA NA	N.D.	ICJ, U	20	5.0	3.9	
EPA 8260B	Carbon Tetrachloride Chlorobenzene	5 100	520 50	N.D.	U	1.0 5.0	0.5 0.5	0.23 0.17	N.D. N.D.	U	1.0 5.0	0.5 0.5	0.23 0.17	NA NA	N.D. N.D.	U	1.0 5.0	0.5 0.5	0.23 0.17	
EPA 0200B	Chloroethane	21,000	16	N.D.	U	10	5.0	2.3	N.D.	U	10	5.0	2.3	NA NA	N.D.	U	10	5.0	2.3	
	Chloroform	70	2,400	N.D.	Ü	5.0	0.5	0.46	N.D.	Ü	5.0	0.5	0.46	NA NA	N.D.	Ü	5.0	0.5	0.46	
	Chloromethane	1.8	50,000	N.D.	ICJ, U	10	2.0	1.8	N.D.	ICJ, U	10	2.0	1.8	NA	N.D.	ICJ, U	10	2.0	1.8	
	cis-1,2-Dichloroethylene	70	50,000	N.D.	U	1.0	0.5	0.48	N.D.	U	1.0	0.5	0.48	NA	N.D.	U	1.0	0.5	0.48	
	Dibromochloromethane	0.16	50,000	N.D.	U	1.0	0.5	0.25	N.D.	U	1.0	0.5	0.25	NA	N.D.	U	1.0	0.5	0.25	
	Ethylbenzene	700	30	0.21	J	1.0	0.5	0.14	0.21	J	1.0	0.5	0.14	0	N.D.	U	1.0	0.5	0.14	
	Hexachlorobutadiene	0.86	6	N.D.	U	1.0	0.5	0.32	N.D.	U	1.0	0.5	0.32	NA NA	N.D.	U	1.0	0.5	0.32	
	Methyl ethyl ketone (2-Butanone) Methyl isobutyl ketone (4-Methyl-2-Pentanone)	7,100	8,400	N.D.	U	10	5.0	2.2	N.D.	U	10	5.0	2.2	NA NA	N.D.	U	10	5.0	2.2	
	Methyl tert-butyl Ether	2,000 12	1300 5	N.D.	U	1.0	5.0 0.5	4.4 0.31	N.D. N.D.	U	1.0	5.0 0.5	4.4 0.31	NA NA	N.D.	U	1.0	5.0 0.5	4.4 0.31	
	Methylene chloride	4.8	9,100	N.D.	U	5.0	1.0	0.64	N.D.	U	5.0	1.0	0.64	NA NA	N.D.	U	5.0	1.0	0.64	
	Styrene	100	10	N.D.	Ü	1.0	0.5	0.17	N.D.	Ü	1.0	0.5	0.17	NA	N.D.	Ü	1.0	0.5	0.17	
	Tetrachloroethane, 1,1,1,2-	0.52	50,000	N.D.	U	1.0	0.5	0.40	N.D.	U	1.0	0.5	0.40	NA	N.D.	U	1.0	0.5	0.40	
	Tetrachloroethane, 1,1,2,2-	0.067	500	N.D.	U	1.0	0.5	0.41	N.D.	U	1.0	0.5	0.41	NA	N.D.	U	1.0	0.5	0.41	
	Tetrachloroethylene	5	170	N.D.	U	5.0	0.5	0.39	N.D.	U	5.0	0.5	0.39	NA	N.D.	U	5.0	0.5	0.39	
	Toluene	1,000	40	N.D.	U	1.0	0.5	0.24	N.D.	U	1.0	0.5	0.24	NA NA	N.D.	U	1.0	0.5	0.24	
	trans-1,2- Dichloroethylene	100	260	N.D.	U	1.0	0.5	0.37	N.D.	U	1.0	0.5	0.37	NA NA	N.D.	U	1.0	0.5	0.37	
	Trichloroethylene Vinyl chloride	5 2	310 3,400	N.D.	U	1.0	0.5	0.37	N.D. N.D.	U	1.0	0.5	0.37	NA NA	0.68 N.D.	U	1.0	0.5	0.37 0.30	
	Xylenes	10,000	3,400	0.58	J	1.0	0.5 1.5	0.30 0.23	0.58	J	1.0	0.5 1.5	0.30 0.23	0	N.D.	U	1.0	0.5 1.5	0.30	
EPA 6020	Lead	15	50,000	N.D.	U	1.0	0.2	0.0898	N.D.	U	1.0	0.2	0.0898	NA NA	N.D.	-	- ''	-	-	
LF /1 00/20	Loau	ເວ	50,000	N.D.	U	1.0	U.Z	0.0090	N.D.	U	1.0	0.2	0.0090	INA		-	_	_		

The data are in micrograms per liter (µg/L). Shaded values exceeded the DOH EALs.

Not Analyzed

DOH EALs

DOH Tier 1 Environmental Action Levels for groundwater where groundwater is a current drinking water source and surface water is greater than 150 meters from the site (DOH, Fall 2011).

DL

Detection Limit or Method Detection Limit (MDL)

EPA

Environmental Protection Agency

ICJ

Initial calibration verification recovery above method control limit for this analyte.

IJ

Calibration verification recovery above method control limit for this analyte.

J

Analyte was detected at a concentration below the LOQ and above the DL. Reported value is estimated.

LOD

Limit of Detection

LOQ Limit of Quantitation

Both results for duplicate pair were non-detect, no RPD calculations Not Detected Qualifiers NA N.D.

Q TPH-g TPH-d

Total Petroleum Hydrocarbons as gasoline
Total Petroleum Hydrocarbons as diesel
Undetected at DL and is reported as less than the LOD.

Contract No. N62742-12-D-1853

This Page Intentionally Left Blank.

SECTION 4 - SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

On April 22 and 23, 2013, ESI personnel collected groundwater samples from five monitoring wells at the RHSF (wells RHMW01, RHMW02, RHMW03, RHMW05, and RHMW2254-01).

The groundwater sampling was conducted as part of the long-term groundwater and soil vapor monitoring at the RHSF, under NAVFAC Contract Number N62742-12-D-1853. The sampling was conducted in accordance with the approved WP/SAP prepared by ESI. A summary of the analytical results is provided below.

- RHMW01 TPH-d (340 µg/L) and dissolved lead (0.641 µg/L) were detected. TPH-d was
 detected at a concentration above the DOH EALs for both drinking water toxicity and gross
 contamination.
- RHMW02 TPH-d (2,600 μg/L), TPH-g (54 μg/L), acenaphthene (0.58 μg/L), fluorene (0.24 μg/L), 1-methylnaphthalene (16 μg/L), 2-methylnaphthalene (13 μg/L), naphthalene (53 μg/L), ethylbenzene (0.21 μg/L), and xylenes (0.58 μg/L) were detected. TPH-d, 1-methylnaphthalene, and naphthalene were detected at concentrations above the DOH EALs for both drinking water toxicity and gross contamination. 2-methylnaphthalene was detected at a concentration above the DOH EAL only for gross contamination.
- RHMW03 TPH-d (69 μg/L) was detected. None of the chemical constituents analyzed for were detected at concentrations above the DOH EALs.
- RHMW05 TPH-d (27 μg/L), TPH-g (15 μg/L), and naphthalene (0.033 μg/L) were detected. None of the chemical constituents analyzed for were detected at concentrations above the DOH EALs.
- RHMW2254-01 Total lead (0.828 μg/L) was detected. None of the chemical constituents analyzed for were detected at concentrations above the DOH EALs.

Groundwater Contaminant Trends

- RHMW01 COPCs detected during this round of quarterly sampling were consistent with historical data. TPH-d has historically been detected at concentrations above the DOH EAL for both drinking water toxicity and gross contamination. TPH-d concentrations showed a decreasing trend from 1,500 μg/L in February 2005 to 79 μg/L in February 2013. The TPH-d concentration increased from 79 μg/L in February 2013 to 340 μg/L during this sampling event. This is the first time TPH-d has been detected at a concentration above the DOH EALs for both drinking water toxicity and gross contamination since February 2012.
- RHMW02 TPH-d, TPH-g, 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene have historically been detected at concentrations above the DOH EALs. TPH-d concentrations during the last several rounds of sampling have shown an increasing trend,

but concentrations have been lower than the high of 5,420 μ g/L in October 2008. 1-Methylnaphthalene, 2-methylnaphthalene, and naphthalene concentrations decreased since the last event in January 2013. The concentration of 2-methylnaphthalene fell below the drinking water EAL. The TPH-g concentration has decreased from 655 μ g/L in January 2013 to below the gross contamination EAL again with 54 μ g/L detected during this sampling event.

- RHMW03 COPCs detected during this round of quarterly sampling were consistent with historical data. TPH-d has historically been detected at concentrations above the DOH EAL for both drinking water toxicity and gross contamination; however, it has not been detected at concentrations above the DOH EALs since October 2010.
- RHMW05 COPCs detected during this round of quarterly sampling were consistent with historical data. TPH-d has historically been detected at concentrations above the DOH EAL for both drinking water toxicity and gross contamination; however, it has not been detected at concentrations above the DOH EALs since January 2010.
- RHMW2254-01 COPCs detected during this round of quarterly sampling were consistent
 with historical data. TPH-d was detected at a concentration above the DOH EAL for gross
 contamination in January 2008; however, it has not been detected at concentrations above
 the DOH EALs since then.

Conclusions and Recommendations

Since the wells were last sampled (January 2013), groundwater contaminant concentrations in four wells (RHMW01, RHMW03, RHMW05, and RHMW2254-01) remained at low concentrations and did not change significantly, or were not detected. Only the groundwater samples from RHMW01 and RHMW02 showed concentrations of COPCs exceeding the DOH EALs.

TPH-d concentrations detected in the sample collected from well RHMW01 have increased above the DOH EALs for both drinking water toxicity and gross contamination for the first time since February 2012.

TPH-d concentrations detected in the sample collected from well RHMW02 are consistent with previous analytical data, but increased in concentration relative to the last quarterly groundwater sampling event. This is consistent with an increase in concentration in well RHMW01 during this event. TPH-g, 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene concentrations have decreased since the last sampling event; however, elevated concentrations have been detected in groundwater samples collected during past sampling events.

With the exception of TPH-g, concentrations of COPCs in well RHMW02 have not changed significantly. TPH-d, 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene concentrations have been decreasing since groundwater monitoring was initiated in 2005. This is the

first sampling event that 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene concentrations decreased since April 2012.

Based on the results of the groundwater monitoring, ESI recommends continuing the groundwater monitoring program at the RHSF. If TPH-d concentrations in well RHMW02 continue to increase, we recommend increasing monitoring frequency to monthly in accordance with the RHSF Groundwater Protection Plan.

This Page Intentionally Left Blank.

SECTION 5 – FUTURE WORK

GROUNDWATER SAMPLING

Future work includes the third quarter 2013 groundwater monitoring which is scheduled for July 2013. It is anticipated that the quarterly groundwater monitoring status report will be submitted in August 2013.

This Page Intentionally Left Blank.

SECTION 6 – REFERENCES

Atlas of Hawaii, 1983, Department of Geography, University of Hawaii Press.

DLNR, 1985, Pan Evaporation: State of Hawai'i 1894-1983: Report R74, Division of Water and Land Development, August 1995.

DLNR, 1986, Rainfall Atlas of Hawaii: Report R76, Division of Water and Land Development, June 1986.

DOH, 2000, Hawaii Department of Health, Technical Guidance Manual for Underground Storage Tank Closure and Release Response, March 2000.

DOH, 2011, Screening for Environmental Hazards at Sites with Contaminated Soil and Groundwater, Hawai'i Department of Health, Hazard Evaluation and Emergency Response, December 2011.

DON, 2007, Project Procedures Manual, U.S. Navy Installation Restoration Program, NAVFAC Pacific, Prepared for Pacific Division, Naval Facilities Engineering Command (NAVFAC Pacific), February 2007.

Earth Tech, 1999, Remedial Investigation, Phase II Technical Report, Red Hill Oily Waste Disposal Facility, Halawa, Oahu, Hawaii, Prepared for Naval Facilities Engineering Command, Pearl Harbor, Hawaii, 1999.

Environet, 2010, Work Plan, Long-Term Monitoring, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, September 2010.

ESI, 2012, Work Plan/Sampling and Analysis Plan, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, October 2012.

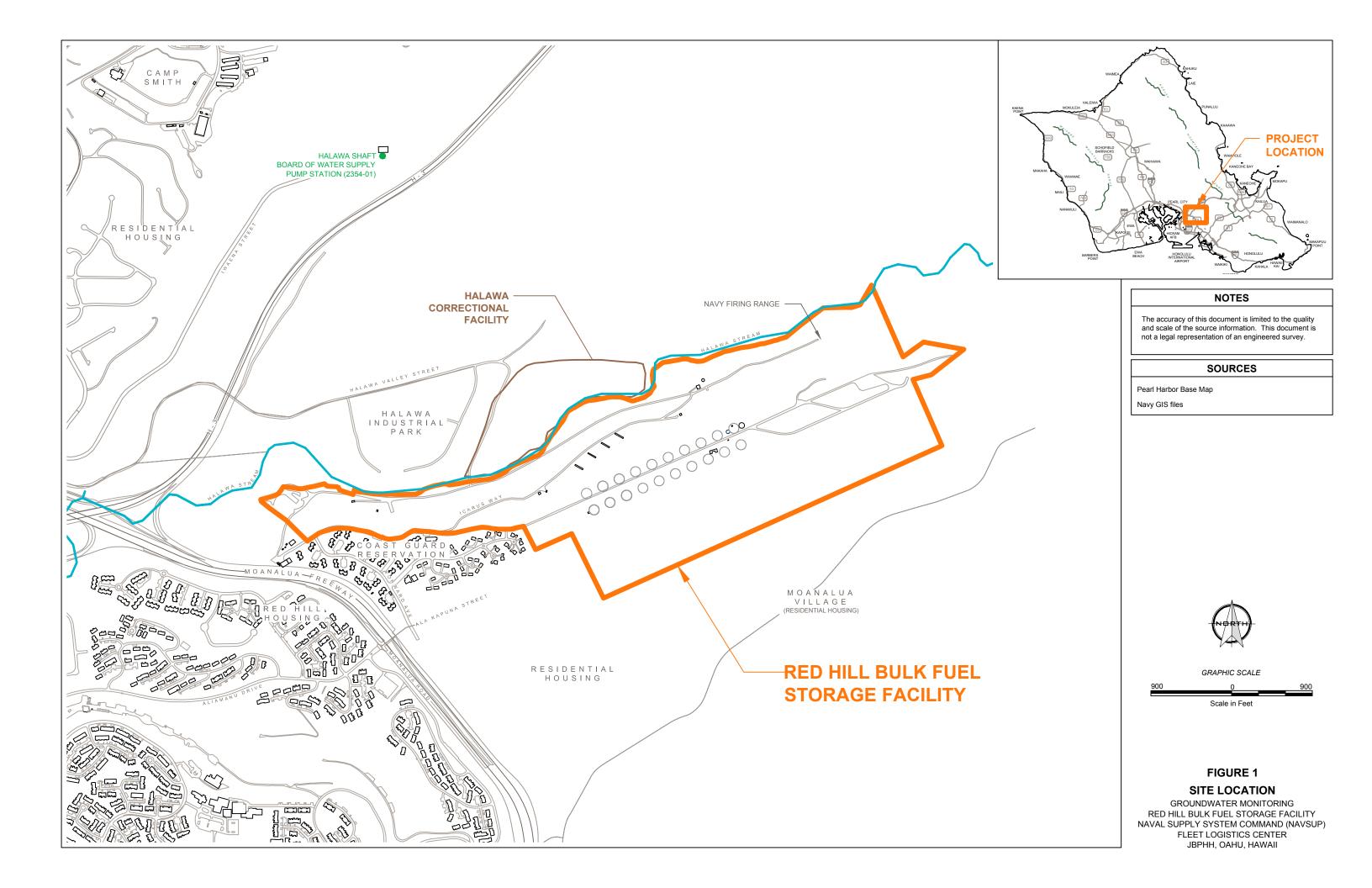
ESI, 2013a, Fourth Quarter 2012 - Quarterly Groundwater Monitoring Report Inside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, January 2013.

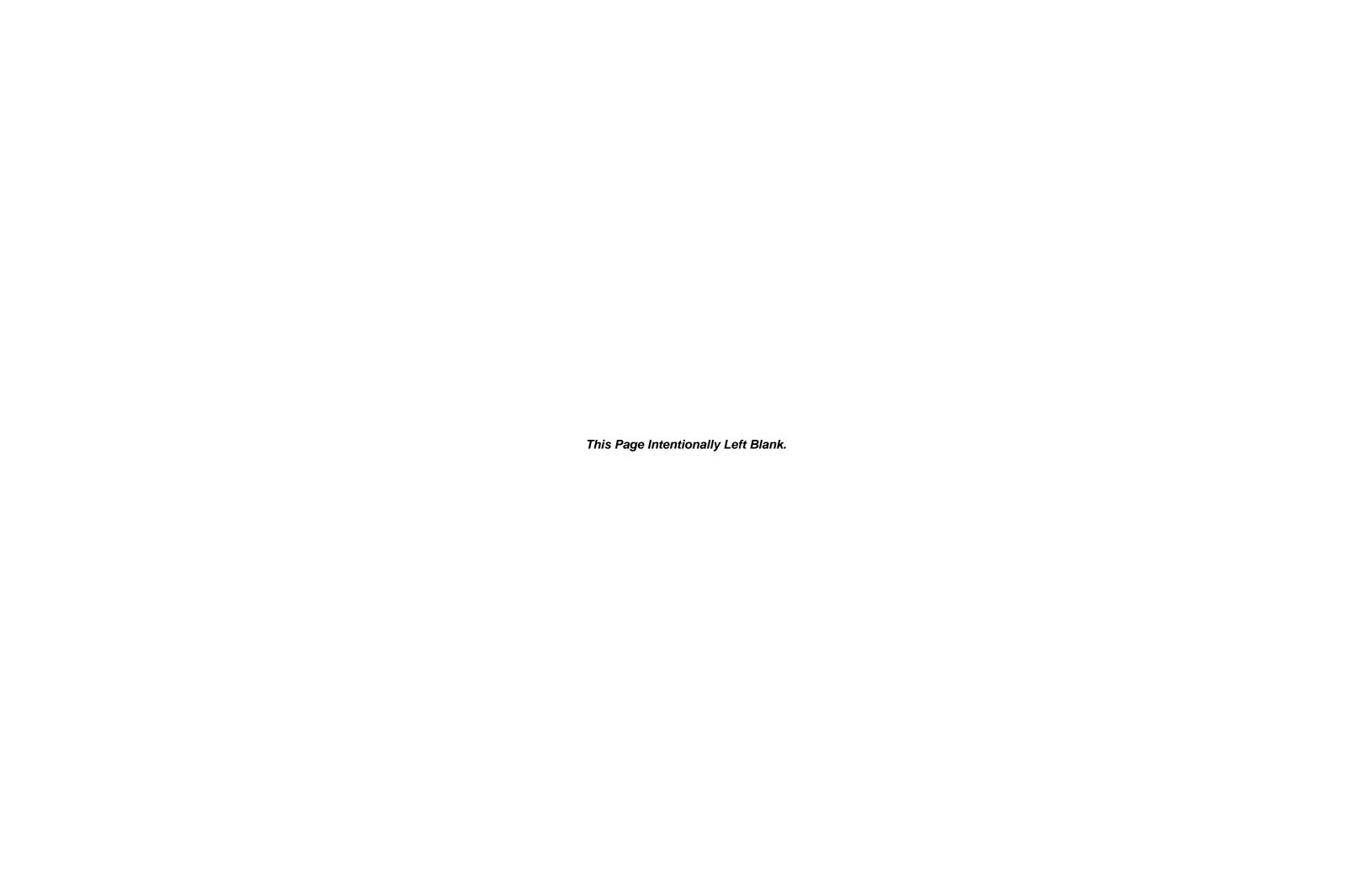
ESI, 2013b, First Quarter 2013 - Quarterly Groundwater Monitoring Report Inside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, April 2013.

Foote et al., 1972, Soil Survey of the Islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii.

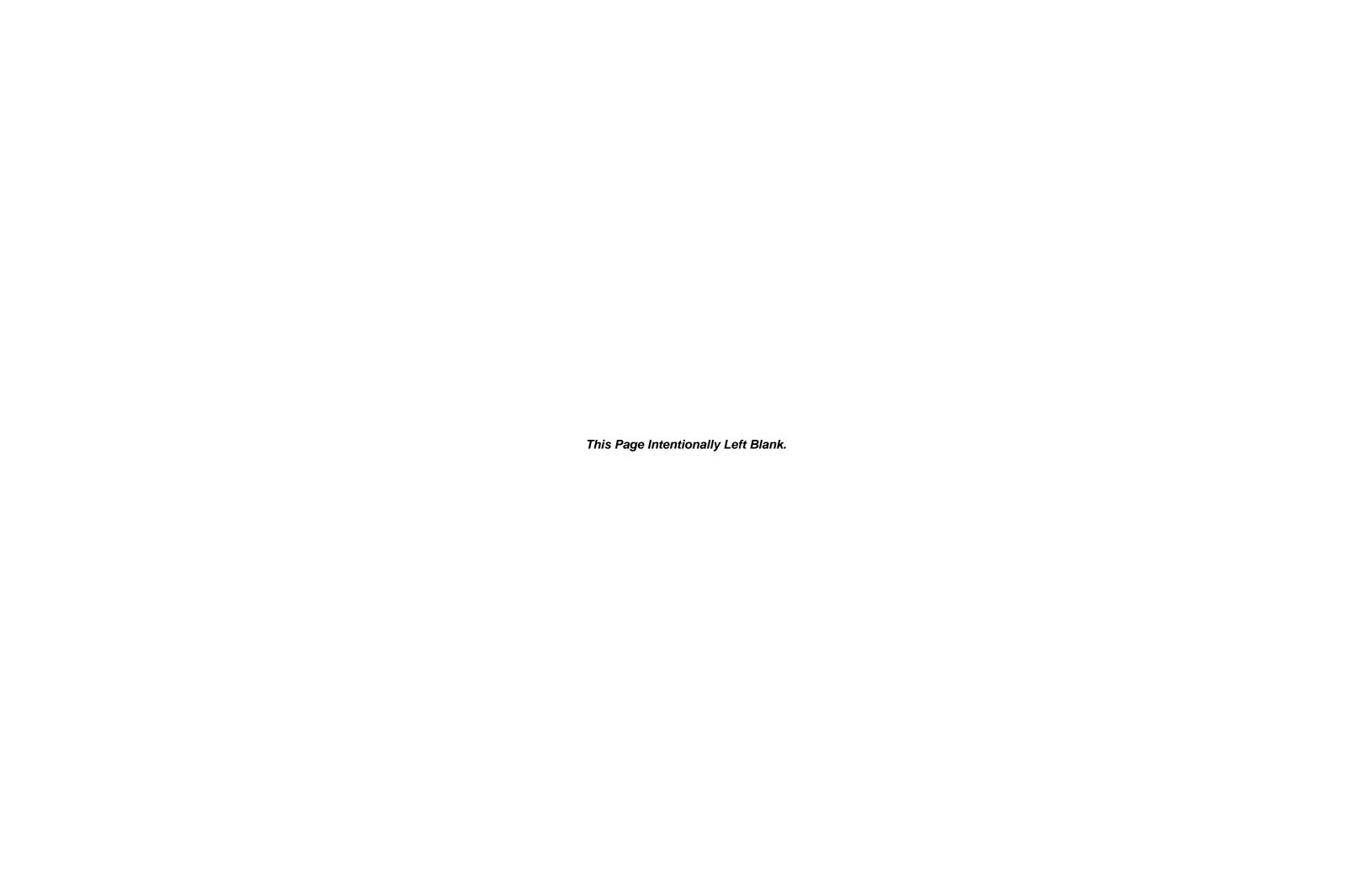
Mink, J. F. and Lau, L. S., 1990, Aquifer Identification and Classification for Oahu: Groundwater Protection Strategy for Hawaii: Water Resources Research Center Technical Report No. 179, February 1990.

Stearns, H. T. and Vaksvik, K. N., 1935, Geology and Groundwater Resources of the Island of Oahu, Hawaii: Hawaii Div. Hydrogr. Bull.


Stearns, H. T. and Vaksvik, K. N., 1938, Records of the Drilled Wells on the Island of Oahu, Hawaii: Hawaii Div. Hydrogr. Bull. 4, 213 p.


TEC, 2008, Final Groundwater Protection Plan, Red Hill Fuel Storage Facility, Prepared for Navy Region Hawaii, Pearl Harbor, Hawaii, January 2008.

TEC, 2009, Quarterly Groundwater Monitoring Report, Red Hill Fuel Storage Facility, Prepared for Navy Region Hawaii, Pearl Harbor, Hawaii, September 2009.


FIGURES

APPENDIX A Groundwater Sampling Logs

Well ID: RI	HMW01	Location:	Red Hill	l Bulk Fuel Stora	ige Facility Pr	oject No.:	112066		
Initial Water	Level: <u>84</u>	.84 ft	Date:	4/22/2013	Tir	me: 817			
Total Depth	of Well:	97.40 ft	Person	nel Involved:	Justin Lam, Branden Ibara				
Length of Sa	aturated Zone	: <u>-</u>	Weathe	er Conditions:	<u>-</u>				
Volume of V	Vater to be Re	emoved: -	Method	of Removal:	Bladd	er Pump			
Water Level	After Purging	: 83.84 ft	_ Pumpir	ng Rate:	0.14 l	_/min			
Well Purge I	Data:								
Time	Volume Removed	PH	conductivity (mS/cm)	DO (mg/l)	Temperature	Salinity	Redox (ORP) (mV)		
850	0.0 L	7.70	0.363	4.10	25.64	0.17	110.6		
854	1.0 L	7.65	0.365	3.38	25.64	0.17	94.1		
859	2.0 L	7.41	0.367	2.61	25.24	0.17	86.1		
908	3.0 L	7.10	0.366	1.77	25.20	0.17	87.5		
915	4.0 L	7.09	0.365	1.63	25.18	0.17	86.5		
925	5.0 L	7.09	0.364	1.61	25.17	0.17	85.7		
•	ndrawal Metho	od:	Bladder Pur	mp					
Appearance	•								
	Color:		Clear						
	Turbidity: _		Low						
	Sediment: _		None						
	Other:		None						
Laboratory A	Analysis Parar	neters and Pres	servatives:		TPH-g, VOCs - 826	60; PAHs - 827	Oc sim;		
		_		lead - 6020					
	I Types of Sar ntification Num	nple Containers bers: ES019	s: <u>6 - 40m</u> 9 [0915]	nl VOAs, 2 - 1L a	ımber jar, 1 - 500ml	amber jar, 1 -	250ml HDPE		
•	ation Procedu								
Notes: Nor									
Sampled by:		n, Branden Ibar	a						
Sampled De	livered to:	Calscience E		al Lab	Transporters: FedE	х			
Date: <u>4/23</u>	3/2013	2 -		oing (Collons/Lir	Time: 1200				

Well ID: R	HMW02	Location:	Red Hill Bulk Fuel Storage Facility			Project No.: _	112066
Initial Water	Level: 86.5	50 ft	Date:	4/22/2013		Time: 102	20
Total Depth	of Well:	94.35 ft	Personr	nel Involved:	Justin La	am, Branden Iba	ara
Length of S	aturated Zone:		_ Weathe	er Conditions:		-	
Volume of V	Vater to be Ren	noved: <u>5.0 L</u>	Method	of Removal:	Bla		
Water Leve	I After Purging:	86.50 ft	_ Pumpin	g Rate:	0.3	35 L/min	
Well Purge	Data:						
Time	Volume Removed	C pH	onductivity (mS/cm)	DO (mg/l)	Temperature	Salinity	Redox (ORP) (mV)
1030	0.0 L	8.01	0.600	5.60	25.00	0.29	33.9
1033	1.0 L	7.41	0.624	1.80	24.27	0.31	-31.9
1035	2.0 L	7.30	0.621	0.96	24.19	0.31	-35.0
1038	3.0 L	7.26	0.620	0.91	24.17	0.31	-38.0
1041	4.0 L	7.27	0.620	0.89	24.15	0.31	
1044	5.0 L	7.25	0.618	0.87	24.13	0.31	-40.3
						_	
						_	
							_
						_	
				·		_	
Sample Wit	hdrawal Method	d:	Bladder Pum	np			
•	of Sample:			•			
	Color:		Clear				
	Turbidity:		Low				
	Sediment:		None				
	Other:		None				
	–				\/ O O		
Laboratory I	Analysis Param	eters and Pres	ervatives:		TPH-g, VOCs -	8260; PAHs - 8	32/0c sim;
Ni waharan	d Times of Com	nla Cantainara	. 10 1011	lead - 6020	hariar 4 500a	al amahan ian 4	F00mLLIDDE
		-			ber jar, 4 - 500n		500mi HDPE
•	ntification Numb	·		20 M3/M3D [11	00], ES021 (Du	0) [1215]	
	nation Procedure	es: Triple Rins	seu				
Notes: No		, Branden Ibara	<u> </u>				
Sampled De		Calscience E		ıl Lab	Transporters: Fe	edEx	
Date: 4/23/2013					Time: 1200		
		Ca	pacity of Cas	ing (Gallons/Lin			

Well ID: R	HMW03	Location:	Red Hill Bulk Fuel Storage Facility			Project N	o.: <u>1</u>	12066
Initial Water	Level: 10	02.78 ft	Date:	4/22/2013		Time:	1135	
Total Depth	of Well:	110.12 ft	Person	nel Involved:	Justin L	am, Brande	en Ibara	
Length of Sa	aturated Zon	e: <u>-</u>	Weathe	er Conditions:		-		
Volume of V	Vater to be R	Removed: 6.0 L	Method of Removal:		В			
Water Level	After Purgin	ng: 102.78 ft	Pumpin	ng Rate:	0	.33 L/min		
Well Purge								
Time	Volume Removed		onductivity (mS/cm)	DO (mg/l)	Temperature	e Sali	inity	Redox (ORP) (mV)
1140	0.0 L	7.99	0.868	6.90	28.08	0.3	39	68.8
1143	1.0 L	7.55	0.867	5.51	27.34	0.3	39	81.1
1146	2.0 L	7.27	0.861	2.22	26.44	0.4	40	84.0
1149	3.0 L	7.09	0.852	2.24	26.40	0.4	40	86.3
1152	4.0 L	7.06	0.845	1.96	26.31	0.4	40	87.3
1155	5.0 L	7.02	0.845	1.86	26.28	0.4	40	87.6
1158	6.0 L	7.01	0.844	1.84	26.26	0.	40	87.8
						_		
Sample Wit	hdrawal Meth	nod:	Bladder Pu	mp		_		
Appearance	of Sample:			_				
	Color:		Clear					
	Turbidity:		Low					
	Sediment:		None					
	Other:		None					
Laboratory A	Analysis Para	ameters and Prese	ervatives:	TPH-d - 8015;	TPH-g, VOCs	- 8260; PAH	l s - 8270	ıc sim;
				lead - 6020				
Number and	d Types of Sa	ample Containers:	6 - 40m	nl VOAs, 2 - 1L a	amber jar, 1 - 50	00ml amber	jar, 1 - 2	:50ml HDPE
Sample Ider	ntification Nu	mbers: ES022	[1230]					
Decontamin	ation Proced	lures: Triple Rins	sed					
Notes: Nor								
Sampled by		am, Branden Ibara	all ab	Transporters	'a a 🗆 .		_	
Sampled De Date: 4/2	elivered to: 3/2013	Calscience E	rivironment		Transporters: <u>F</u> Time: 1200	ea⊏X		
Date. 4/2	012013	Car	pacity of Ca	sing (Gallons/Li				

Well ID: F	RHMW05	Location	: Red Hill	Bulk Fuel Stora	age Facility Pr	oject No.:	112066
Initial Wate	er Level: 83.	41 ft	Date:	4/23/2013	Tir	ne: 1005	
Total Depth	n of Well:	-	Personi	nel Involved:	Justin Lam,	Branden Ibara	_
Length of S	Saturated Zone:		Weathe	er Conditions:		-	
Volume of	Water to be Re	moved:	Method	of Removal:	Bladd	er Pump	
Water Leve	el After Purging:	83.41 ft	Pumpin	g Rate:	0.42 l	_/min	
Well Purge	Data:						
Time	Volume Removed	pH	Conductivity (mS/cm)	DO (mg/l)	Temperature	Salinity	Redox (ORP) (mV)
1009	0.0 L	8.41	1.030	7.52	22.60	0.53	203.1
1012	1.0 L	8.03	1.011	7.21	22.32	0.53	215.5
1015	2.0 L	7.86	1.009	7.13	22.28	0.53	217.1
1017	3.0 L	7.78	1.007	7.09	22.26	0.53	217.2
1019	4.0 L	7.69	1.005	6.99	22.23	0.53	215.7
1021	5.0 L	7.68	1.005	6.96	22.21	0.53	214.3
	·						
Sample Wi	thdrawal Metho	 d:	Bladder Pur	 mp			_
Appearanc	e of Sample:			_			
	Color:		Clear				
	Turbidity:		Clear	_			
	Sediment:		None	_			
	Other:		None				
Laboratory	Analysis Param	neters and Pre	servatives:	TPH-d - 8015;	TPH-g, VOCs - 826	60; PAHs - 827	'0c sim;
				lead - 6020			
	nd Types of Samentification Num	•	s: <u>6 - 40m</u> 4 [1030]	I VOAs, 2 - 1L a	amber jar, 1 - 500ml	amber jar, 1 -	250ml HDPE
•	nation Procedu						
Notes: No		Tiple Kil	1500				
Sampled b		n, Branden Iba	ra				
•	elivered to:	•	Environmenta	al Lab	Transporters: FedE	X	
Date: 4/2	23/2013	•		-	Time: 1200	•	
		C-	angolity of Co	oina (Callana/Lir	oor Eoot)		

Well ID: RHMW2254-01 Location			n: Red Hil	l Bulk Fuel Stora	age Facility P	roject No.:	112066		
Initial Wate	er Level:	82.61 ft	Date:	4/23/2013	т	ime: 850			
Total Dept	h of Well:	-	Person	nel Involved:	Justin Lam	, Branden Ibara	<u> </u>		
Length of S	Saturated Zo	one:	Weath	er Conditions:	<u> </u>				
Volume of	Water to be	Removed:	Method	of Removal:	Blad	der Pump			
Water Lev	el After Purg	jing: <u>-</u>	Pumpir	ng Rate:	0.25	L/min			
Well Purge	e Data:								
Time	Volume Remove		Conductivity (mS/cm)	DO (mg/l)	Temperature	Salinity	Redox (ORP) (mV)		
854	0.0 L	7.32	0.694	6.50	24.91	0.33	232.9		
858	1.0 L	7.50	0.607	6.99	24.83	0.29	221.1		
902	2.0 L	7.60	0.602	6.89	24.63	0.29	215.1		
906	3.0 L	7.58	0.595	7.04	24.63	0.29	216.9		
	_								
	_						-		
		<u> </u>							
	<u> </u>								
Sample W	ithdrawal Me	ethod:	Bladder Pu						
	ce of Sample		Diaddel 1 di	mp					
	Color:		Clear						
	Turbidity:		Clear						
	Sediment	<u> </u>	None						
	Other:		None						
Laboratory	Analysis Pa	arameters and Pro	eservatives:	TPH-d - 8015;	TPH-g, VOCs - 82	260; PAHs - 827	'0c sim;		
				lead - 200.8	-				
Number ar	nd Types of	Sample Containe	ers: 6 - 40m	nl VOAs, 2 - 1L a	amber jar, 1 - 500m	nl amber jar, 1 -	250ml HDPE		
Sample Ide	entification N	lumbers: ES0	23, ES023 UF	[0925]					
Decontami	ination Proc	edures: Triple R	Rinsed						
Notes: No	one								
Sampled b		Lam, Branden Ib							
•	Delivered to:	Calscience	Environment		Transporters: Fedl	Ξx			
Date: <u>4/</u>	23/2013			-1 (0-11 /1-1	Time: 1200				

APPENDIX B Field Notes

92

APPENDIX C Laboratory Reports

CALSCIENCE

WORK ORDER NUMBER: 13-04-1789

The difference is service

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For

Client: Environmental Science International, Inc.

Client Project Name: Red Hill LTM 112066

Attention: Robert Chong

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Richard Vellas

Approved for release on 05/1/2013 by: Richard Villafania

Project Manager

ResultLink >

Email your PM >

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Red Hill LTM 112066 Work Order Number: 13-04-1789

1	Work Order Narrative	3
2	Client Sample Data	4 4 5 7 14
3	13-04-1789 Method 200.8 Lead (Aqueous)	30
4	Quality Control Sample Data	33 33 39
5	Sample Analysis Summary	44
6	Glossary of Terms and Qualifiers	45
7	Chain of Custody/Sample Receipt Form	46

Work Order Narrative

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 04/25/2013. They were assigned to Work Order 13-04-1789.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with an immediate holding time (HT </= 15 minutes --40CFR-136.3 Table II footnote 4), is considered a "field" test and reported samples results are not flagged unless the analysis is performed beyond 24 hours of the time of collection.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontract Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Return to Contents

NELAP ID: 03220CA DoD-ELAP ID: L10-41

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

FAX: (714) 894-7501

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Client ID: ES 020

Kailua, HI 96734-2500

Attn: Robert Chona

13-04-1789-3

Work Order: 13-04-1789

Project Name:

Red Hill LTM 112066

Received:

04/25/13 10:30

ANALYTICAL REPORT

13-04-1789-2 Client	nt ID: ES 019				Matrix: Aqueous Units: ug/L			Sampled: 04/22/13 09:15		
EPA 6020 ICP/MS Metals	Extraction	n: EPA 30	20A Total							
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
Lead	0.641	J	0.0898	0.200	1.00	1	04/26/13 00:00	04/26/13 20:50	130426L03D	

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

	13-04-1789-3 Cli	ent ID: ES 0	20			Matrix: A	queous U	nits: ug/L	Sampled: 04	1/22/13 11:00	
	EPA 6020 ICP/MS Metal	s Extraction	n: EPA 30	20A Total							
,	Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
i	Load	<0.200	11	U U8U8	0.200	1 00	1	04/26/13 00:00	04/26/13 20:47	1304361 03D	

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

	13-04-1789-4 Client	ID: ES 02	21			Matrix: Aqu	ieous Ur	nits: ug/L	Sampled: 04	/22/13 12:1)
EPA 6020 ICP/MS Metals Extraction: EPA 3020A Total											
	Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
	Lead	<0.200	U	0.0898	0.200	1.00	1	04/26/13 00:00	04/26/13 20:58	130426L03D	

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

	13-04-1789-5 Clier	4-1789-5 Client ID: ES 022						Matrix: Aqueous Units: ug/L			
	EPA 6020 ICP/MS Metals	Extraction	n: EPA 3	020A Total							
	Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
-	Lead	<0.200	U	0.0898	0.200	1.00	1	04/26/13 00:00	04/26/13 21:01	130426L03D	

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

13-04-1789-7 Client ID: ES 024						Matrix: A	Aqueous (Jnits: ug/L	Sampled: 04	/23/13 10:30
	EPA 6020 ICP/MS Metals	Extraction	n: EPA 3	020A Total						
	Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
	I ead	<0.200	U	0.0898	0.200	1 00	1	04/26/13 00:00	04/26/13 21:04	130426L03D

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

099-14-497-26 Clie	nt ID: Meth	od Blank			Matrix: A	queous U	nits: ug/L	Sampled: 04	/29/13 13:14	
EPA 6020 ICP/MS Metals	Extraction	n: EPA 30	20A Total							
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
Lead	<0.200	U	0.0898	0.200	1.00	1	04/26/13 00:00		130426L03D	

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Attn: Robert Chona

Surr: n-Octacosane (51-141%)

Surr: n-Octacosane (51-141%)

Work Order: 13-04-1789

Project Name:

Red Hill LTM 112066

04/26/13 00:00 04/29/13 14:06 130426B02

04/26/13 00:00 04/29/13 14:23 130426B02

Received:

04/25/13 10:30

ANALYTICAL REPORT

13-04-1789-2 Client	ID: ES 01	9			Matrix: A	queous U	nits: ug/L	Sampled: 04/22/13 09:15		
EPA 8015B (M) TPH Diesel	Extraction	on: EPA 3	510C							
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
TPH as Diesel	340	HD	15	20	50	1	04/26/13 00:00	04/29/13 13:50	130426B02	
Surr: n-Octacosane (51-141%)	92%						04/26/13 00:00	04/29/13 13:50	130426B02	

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

-TPH as Diesel is quantified in the carbon range C10-C28.

	13-04-1789-3 Client I	.0			Matrix: Aq	ueous Ur	nits: ug/L	Sampled: 04/22/13 11:00		
	EPA 8015B (M) TPH Diesel	Extraction	n: EPA 351	10C						
4	Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
-	TPH as Diesel	2600	HD	15	20	50	1	04/26/13 00:00	04/29/13 14:06	130426B02

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

-TPH as Diesel is quantified in the carbon range C10-C28.

13-04-1789-4 Clie	nt ID: ES 0	21			Matrix: A	queous U	nits: ug/L	Sampled: 04	1/22/13 12:15
EPA 8015B (M) TPH Diesel Extraction: EPA 3510C									
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
TPH as Diesel	3300	HD	15	20	50	1	04/26/13 00:00	04/29/13 14:23	130426B02

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

102%

-TPH as Diesel is quantified in the carbon range C10-C28.

13-04-1789-5 Client I	D: ES 0	22			Matrix: A	Aqueous U	nits: ug/L	Sampled: 04	4/22/13 12:30
EPA 8015B (M) TPH Diesel	Extracti	on: EPA 3	510C						
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
TPH as Diesel	69	HD	15	20	50	1	04/26/13 00:00	04/29/13 14:38	130426B02
Surr: n-Octacosane (51-141%)	86%						04/26/13 00:00	04/29/13 14:38	130426B02

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

-TPH as Diesel is quantified in the carbon range C10-C28.

Work Order:

Sampled: 04/22/12 10:20

04/26/13 00:00 04/30/13 10:47 130426B02

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

12-04-1790-7

Surr: n-Octacosane (51-141%)

Project Name:

Received: 04/25/13 10:30

Matrix: Aguague Unite: ug/l

13-04-1789

Red Hill LTM 112066

ANALYTICAL REPORT

13-04-1789-6 Clien	ID: ES 0	23			Matrix: A	Matrix: Aqueous Units: ug/L			Sampled: 04/23/13 09:25		
EPA 8015B (M) TPH Diesel	Extracti	on: EPA 3	510C								
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch		
TPH as Diesel	<20	U	15	20	50	1	04/26/13 00:00	04/29/13 14:55			

04/26/13 00:00 04/29/13 14:55 130426B02 Surr: n-Octacosane (51-141%) 87%

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

-TPH as Diesel is quantified in the carbon range C10-C28.

Client ID: ES 024

	3-04-1769-7 Chefit i	D. E3 02	14			Matrix. A	Sampleu. 04	1/23/13 10.30		
E	EPA 8015B (M) TPH Diesel	Extraction	on: EPA 3	510C						
An	alyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
TP	'H as Diesel	27	J	15	20	50	1	04/26/13 00:00	04/29/13 15:12	130426B02

04/26/13 00:00 04/29/13 15:12 130426B02 Surr: n-Octacosane (51-141%) 90%

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

-TPH as Diesel is quantified in the carbon range C10-C28.

099-15-516-39 Clien	t ID: Meth	nod Blank			Matrix: A	Aqueous U	nits: ug/L	Sampled: 04/30/13 14:1			
EPA 8015B (M) TPH Diesel Extraction: EPA 3510C											
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch		
TPH as Diesel	<20	U	15	20	50	1	04/26/13 00:00	04/30/13 10:47	130426B02		

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

134%

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 13-04-1789

Project Name:

Red Hill LTM 112066

Received: 04/25/13 10:30

13-04-1789-2 Cli	ent ID: ES 0	19			Matrix: A	Aqueous	Units: ug/L	Sampled: 0	4/22/13 09:15
EPA 8270C SIM PAHs	Extraction: E	PA 3510C							
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Naphthalene	<0.052	U	0.024	0.052	0.21	1.03	04/26/13 00:00	04/29/13 11:59	130426L02
2-Methylnaphthalene	<0.052	U	0.027	0.052	0.21	1.03	04/26/13 00:00	04/29/13 11:59	130426L02
1-Methylnaphthalene	<0.052	U	0.029	0.052	0.21	1.03	04/26/13 00:00	04/29/13 11:59	130426L02
Acenaphthylene	<0.052	U	0.018	0.052	0.21	1.03	04/26/13 00:00	04/29/13 11:59	130426L02
Acenaphthene	<0.052	U	0.021	0.052	0.21	1.03	04/26/13 00:00	04/29/13 11:59	130426L02
Fluorene	<0.052	U	0.025	0.052	0.21	1.03	04/26/13 00:00	04/29/13 11:59	130426L02
Phenanthrene	< 0.052	U	0.031	0.052	0.21	1.03	04/26/13 00:00	04/29/13 11:59	130426L02
Anthracene	<0.052	U	0.035	0.052	0.21	1.03	04/26/13 00:00	04/29/13 11:59	130426L02
Fluoranthene	<0.052	U	0.028	0.052	0.21	1.03	04/26/13 00:00	04/29/13 11:59	130426L02
Pyrene	< 0.052	U	0.026	0.052	0.21	1.03	04/26/13 00:00	04/29/13 11:59	130426L02
Benzo (a) Anthracene	<0.052	U	0.024	0.052	0.21	1.03	04/26/13 00:00	04/29/13 11:59	130426L02
Chrysene	<0.052	U	0.020	0.052	0.21	1.03	04/26/13 00:00	04/29/13 11:59	130426L02
Benzo (k) Fluoranthene	<0.052	U	0.024	0.052	0.21	1.03	04/26/13 00:00	04/29/13 11:59	130426L02
Benzo (b) Fluoranthene	<0.052	U	0.026	0.052	0.21	1.03	04/26/13 00:00	04/29/13 11:59	130426L02
Benzo (a) Pyrene	<0.052	U	0.037	0.052	0.21	1.03	04/26/13 00:00	04/29/13 11:59	130426L02
Indeno (1,2,3-c,d) Pyrene	<0.052	U	0.023	0.052	0.21	1.03	04/26/13 00:00	04/29/13 11:59	130426L02
Dibenz (a,h) Anthracene	<0.052	U	0.028	0.052	0.21	1.03	04/26/13 00:00	04/29/13 11:59	130426L02
Benzo (g,h,i) Perylene	<0.052	U	0.022	0.052	0.21	1.03	04/26/13 00:00	04/29/13 11:59	130426L02
Surr: Nitrobenzene-d5 (28-139)	%) 10	3%					04/26/13 00:00	04/29/13 11:59	130426L02
Surr: 2-Fluorobiphenyl (33-144)	%) 11	3%					04/26/13 00:00	04/29/13 11:59	130426L02
Surr: p-Terphenyl-d14 (23-1609	%) 11	9%					04/26/13 00:00	04/29/13 11:59	130426L02

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: Project Name: 13-04-1789

Red Hill LTM 112066

Received: 04/25/13 10:30

13-04-1789-3 Clier	13-04-1789-3 Client ID: ES 020				Matrix: A	Aqueous	Units: ug/L	Sampled: 04/22/13 11:00		
EPA 8270C SIM PAHs E	xtraction: E	PA 3510C								
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
Naphthalene	53		0.23	0.51	2.0	10.2	04/26/13 00:00	04/29/13 15:34	130426L02	
2-Methylnaphthalene	13		0.27	0.51	2.0	10.2	04/26/13 00:00	04/29/13 15:34	130426L02	
1-Methylnaphthalene	16		0.29	0.51	2.0	10.2	04/26/13 00:00	04/29/13 15:34	130426L02	
Acenaphthylene	<0.051	U	0.018	0.051	0.20	1.02	04/26/13 00:00	04/29/13 12:26	130426L02	
Acenaphthene	0.58		0.021	0.051	0.20	1.02	04/26/13 00:00	04/29/13 12:26	130426L02	
Fluorene	0.24		0.025	0.051	0.20	1.02	04/26/13 00:00	04/29/13 12:26	130426L02	
Phenanthrene	<0.051	U	0.031	0.051	0.20	1.02	04/26/13 00:00	04/29/13 12:26	130426L02	
Anthracene	<0.051	U	0.035	0.051	0.20	1.02	04/26/13 00:00	04/29/13 12:26	130426L02	
Fluoranthene	<0.051	U	0.028	0.051	0.20	1.02	04/26/13 00:00	04/29/13 12:26	130426L02	
Pyrene	< 0.051	U	0.025	0.051	0.20	1.02	04/26/13 00:00	04/29/13 12:26	130426L02	
Benzo (a) Anthracene	< 0.051	U	0.024	0.051	0.20	1.02	04/26/13 00:00	04/29/13 12:26	130426L02	
Chrysene	< 0.051	U	0.019	0.051	0.20	1.02	04/26/13 00:00	04/29/13 12:26	130426L02	
Benzo (k) Fluoranthene	<0.051	U	0.024	0.051	0.20	1.02	04/26/13 00:00	04/29/13 12:26	130426L02	
Benzo (b) Fluoranthene	<0.051	U	0.025	0.051	0.20	1.02	04/26/13 00:00	04/29/13 12:26	130426L02	
Benzo (a) Pyrene	<0.051	U	0.037	0.051	0.20	1.02	04/26/13 00:00	04/29/13 12:26	130426L02	
Indeno (1,2,3-c,d) Pyrene	< 0.051	U	0.022	0.051	0.20	1.02	04/26/13 00:00	04/29/13 12:26	130426L02	
Dibenz (a,h) Anthracene	< 0.051	U	0.027	0.051	0.20	1.02	04/26/13 00:00	04/29/13 12:26	130426L02	
Benzo (g,h,i) Perylene	<0.051	U	0.022	0.051	0.20	1.02	04/26/13 00:00	04/29/13 12:26	130426L02	
Surr: Nitrobenzene-d5 (28-139%)	92	2%					04/26/13 00:00	04/29/13 12:26	130426L02	
Surr: 2-Fluorobiphenyl (33-144%)	98	3%					04/26/13 00:00	04/29/13 12:26	130426L02	
Surr: p-Terphenyl-d14 (23-160%)	10	02%					04/26/13 00:00	04/29/13 12:26	130426L02	

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500 Robert Chong

Attn:

Work Order: 13-04-1789

Project Name:

Red Hill LTM 112066

Received:

04/25/13 10:30

13-04-1789-4 Clie			Matrix:	Aqueous	Units: ug/L	Sampled: 04	4/22/13 12:15		
EPA 8270C SIM PAHs	Extraction: E	EPA 3510C							
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Naphthalene	61		0.44	0.95	3.8	19.1	04/26/13 00:00	04/29/13 16:01	130426L02
2-Methylnaphthalene	16		0.50	0.95	3.8	19.1	04/26/13 00:00	04/29/13 16:01	130426L02
1-Methylnaphthalene	20		0.54	0.95	3.8	19.1	04/26/13 00:00	04/29/13 16:01	130426L02
Acenaphthylene	<0.048	U	0.017	0.048	0.19	0.95	04/26/13 00:00	04/29/13 12:53	130426L02
Acenaphthene	0.65		0.020	0.048	0.19	0.95	04/26/13 00:00	04/29/13 12:53	130426L02
Fluorene	0.28		0.023	0.048	0.19	0.95	04/26/13 00:00	04/29/13 12:53	130426L02
Phenanthrene	<0.048	U	0.029	0.048	0.19	0.95	04/26/13 00:00	04/29/13 12:53	130426L02
Anthracene	<0.048	U	0.032	0.048	0.19	0.95	04/26/13 00:00	04/29/13 12:53	130426L02
Fluoranthene	<0.048	U	0.026	0.048	0.19	0.95	04/26/13 00:00	04/29/13 12:53	130426L02
Pyrene	<0.048	U	0.024	0.048	0.19	0.95	04/26/13 00:00	04/29/13 12:53	130426L02
Benzo (a) Anthracene	<0.048	U	0.023	0.048	0.19	0.95	04/26/13 00:00	04/29/13 12:53	130426L02
Chrysene	<0.048	U	0.018	0.048	0.19	0.95	04/26/13 00:00	04/29/13 12:53	130426L02
Benzo (k) Fluoranthene	<0.048	U	0.022	0.048	0.19	0.95	04/26/13 00:00	04/29/13 12:53	130426L02
Benzo (b) Fluoranthene	<0.048	U	0.024	0.048	0.19	0.95	04/26/13 00:00	04/29/13 12:53	130426L02
Benzo (a) Pyrene	<0.048	U	0.035	0.048	0.19	0.95	04/26/13 00:00	04/29/13 12:53	130426L02
Indeno (1,2,3-c,d) Pyrene	<0.048	U	0.021	0.048	0.19	0.95	04/26/13 00:00	04/29/13 12:53	130426L02
Dibenz (a,h) Anthracene	<0.048	U	0.025	0.048	0.19	0.95	04/26/13 00:00	04/29/13 12:53	130426L02
Benzo (g,h,i) Perylene	<0.048	U	0.021	0.048	0.19	0.95	04/26/13 00:00	04/29/13 12:53	130426L02
Surr: Nitrobenzene-d5 (28-139%	6) 10	05%					04/26/13 00:00	04/29/13 12:53	130426L02
Surr: 2-Fluorobiphenyl (33-144%	6) 11	15%					04/26/13 00:00		
Surr: p-Terphenyl-d14 (23-160%	6) 12	20%					04/26/13 00:00	04/29/13 12:53	130426L02

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

13-04-1789 Work Order:

Red Hill LTM 112066 Project Name:

Received: 04/25/13 10:30

13-04-1789-5 Clie	ent ID: ES 0	22			Matrix: A	Aqueous	Units: ug/L	ug/L Sampled: 04/22/13 12:30		
EPA 8270C SIM PAHs	Extraction: E	PA 3510C								
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
Naphthalene	< 0.053	U	0.024	0.053	0.21	1.055	04/26/13 00:00	04/29/13 13:20	130426L02	
2-Methylnaphthalene	< 0.053	U	0.028	0.053	0.21	1.055	04/26/13 00:00	04/29/13 13:20	130426L02	
1-Methylnaphthalene	< 0.053	U	0.030	0.053	0.21	1.055	04/26/13 00:00	04/29/13 13:20	130426L02	
Acenaphthylene	< 0.053	U	0.019	0.053	0.21	1.055	04/26/13 00:00	04/29/13 13:20	130426L02	
Acenaphthene	< 0.053	U	0.022	0.053	0.21	1.055	04/26/13 00:00	04/29/13 13:20	130426L02	
Fluorene	< 0.053	U	0.026	0.053	0.21	1.055	04/26/13 00:00	04/29/13 13:20	130426L02	
Phenanthrene	< 0.053	U	0.032	0.053	0.21	1.055	04/26/13 00:00	04/29/13 13:20	130426L02	
Anthracene	< 0.053	U	0.036	0.053	0.21	1.055	04/26/13 00:00	04/29/13 13:20	130426L02	
Fluoranthene	< 0.053	U	0.029	0.053	0.21	1.055	04/26/13 00:00	04/29/13 13:20	130426L02	
Pyrene	< 0.053	U	0.026	0.053	0.21	1.055	04/26/13 00:00	04/29/13 13:20	130426L02	
Benzo (a) Anthracene	< 0.053	U	0.025	0.053	0.21	1.055	04/26/13 00:00	04/29/13 13:20	130426L02	
Chrysene	< 0.053	U	0.020	0.053	0.21	1.055	04/26/13 00:00	04/29/13 13:20	130426L02	
Benzo (k) Fluoranthene	< 0.053	U	0.025	0.053	0.21	1.055	04/26/13 00:00	04/29/13 13:20	130426L02	
Benzo (b) Fluoranthene	< 0.053	U	0.026	0.053	0.21	1.055	04/26/13 00:00	04/29/13 13:20	130426L02	
Benzo (a) Pyrene	< 0.053	U	0.038	0.053	0.21	1.055	04/26/13 00:00	04/29/13 13:20	130426L02	
Indeno (1,2,3-c,d) Pyrene	< 0.053	U	0.023	0.053	0.21	1.055	04/26/13 00:00	04/29/13 13:20	130426L02	
Dibenz (a,h) Anthracene	< 0.053	U	0.028	0.053	0.21	1.055	04/26/13 00:00	04/29/13 13:20	130426L02	
Benzo (g,h,i) Perylene	<0.053	U	0.023	0.053	0.21	1.055	04/26/13 00:00	04/29/13 13:20	130426L02	
Surr: Nitrobenzene-d5 (28-139%	5) 11	14%					04/26/13 00:00	04/29/13 13:20	130426L02	
Surr: 2-Fluorobiphenyl (33-144%)	5) 11	13%					04/26/13 00:00	04/29/13 13:20	130426L02	
Surr: p-Terphenyl-d14 (23-160%	5) 12	29%					04/26/13 00:00	04/29/13 13:20	130426L02	

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: Project Name:

13-04-1789

Red Hill LTM 112066

Received: 04/25/13 10:30

13-04-1789-6 Clie	nt ID: ES 0	23			Matrix: A	Aqueous	Units: ug/L	Sampled:0	4/23/13 09:25
EPA 8270C SIM PAHs	Extraction: E	PA 3510C							
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Naphthalene	<0.051	U	0.023	0.051	0.20	1.02	04/26/13 00:00	04/29/13 13:47	130426L02
2-Methylnaphthalene	<0.051	U	0.027	0.051	0.20	1.02	04/26/13 00:00	04/29/13 13:47	130426L02
1-Methylnaphthalene	<0.051	U	0.029	0.051	0.20	1.02	04/26/13 00:00	04/29/13 13:47	130426L02
Acenaphthylene	<0.051	U	0.018	0.051	0.20	1.02	04/26/13 00:00	04/29/13 13:47	130426L02
Acenaphthene	<0.051	U	0.021	0.051	0.20	1.02	04/26/13 00:00	04/29/13 13:47	130426L02
Fluorene	<0.051	U	0.025	0.051	0.20	1.02	04/26/13 00:00	04/29/13 13:47	130426L02
Phenanthrene	<0.051	U	0.031	0.051	0.20	1.02	04/26/13 00:00	04/29/13 13:47	130426L02
Anthracene	<0.051	U	0.035	0.051	0.20	1.02	04/26/13 00:00	04/29/13 13:47	130426L02
Fluoranthene	<0.051	U	0.028	0.051	0.20	1.02	04/26/13 00:00	04/29/13 13:47	130426L02
Pyrene	< 0.051	U	0.025	0.051	0.20	1.02	04/26/13 00:00	04/29/13 13:47	130426L02
Benzo (a) Anthracene	< 0.051	U	0.024	0.051	0.20	1.02	04/26/13 00:00	04/29/13 13:47	130426L02
Chrysene	< 0.051	U	0.019	0.051	0.20	1.02	04/26/13 00:00	04/29/13 13:47	130426L02
Benzo (k) Fluoranthene	<0.051	U	0.024	0.051	0.20	1.02	04/26/13 00:00	04/29/13 13:47	130426L02
Benzo (b) Fluoranthene	<0.051	U	0.025	0.051	0.20	1.02	04/26/13 00:00	04/29/13 13:47	130426L02
Benzo (a) Pyrene	<0.051	U	0.037	0.051	0.20	1.02	04/26/13 00:00	04/29/13 13:47	130426L02
Indeno (1,2,3-c,d) Pyrene	< 0.051	U	0.022	0.051	0.20	1.02	04/26/13 00:00	04/29/13 13:47	130426L02
Dibenz (a,h) Anthracene	< 0.051	U	0.027	0.051	0.20	1.02	04/26/13 00:00	04/29/13 13:47	130426L02
Benzo (g,h,i) Perylene	<0.051	U	0.022	0.051	0.20	1.02	04/26/13 00:00	04/29/13 13:47	130426L02
Surr: Nitrobenzene-d5 (28-139%	5) 10	05%					04/26/13 00:00	04/29/13 13:47	130426L02
Surr: 2-Fluorobiphenyl (33-144%)) 10	03%					04/26/13 00:00	04/29/13 13:47	130426L02
Surr: p-Terphenyl-d14 (23-160%)) 11	3%					04/26/13 00:00	04/29/13 13:47	130426L02

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

13-04-1789 Work Order:

Red Hill LTM 112066 Project Name:

Received: 04/25/13 10:30

13-04-1789-7 Clie	lient ID: ES 024				Matrix: Aqueous l		Units: ug/L	Sampled: 04/23/13 10:30	
EPA 8270C SIM PAHs	Extraction: E	PA 3510C							
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Naphthalene	0.033	J	0.022	0.048	0.19	0.97	04/26/13 00:00	04/29/13 14:13	130426L02
2-Methylnaphthalene	<0.048	U	0.026	0.048	0.19	0.97	04/26/13 00:00	04/29/13 14:13	130426L02
1-Methylnaphthalene	<0.048	U	0.027	0.048	0.19	0.97	04/26/13 00:00	04/29/13 14:13	130426L02
Acenaphthylene	<0.048	U	0.017	0.048	0.19	0.97	04/26/13 00:00	04/29/13 14:13	130426L02
Acenaphthene	<0.048	U	0.020	0.048	0.19	0.97	04/26/13 00:00	04/29/13 14:13	130426L02
Fluorene	<0.048	U	0.024	0.048	0.19	0.97	04/26/13 00:00	04/29/13 14:13	130426L02
Phenanthrene	<0.048	U	0.030	0.048	0.19	0.97	04/26/13 00:00	04/29/13 14:13	130426L02
Anthracene	<0.048	U	0.033	0.048	0.19	0.97	04/26/13 00:00	04/29/13 14:13	130426L02
Fluoranthene	<0.048	U	0.026	0.048	0.19	0.97	04/26/13 00:00	04/29/13 14:13	130426L02
Pyrene	<0.048	U	0.024	0.048	0.19	0.97	04/26/13 00:00	04/29/13 14:13	130426L02
Benzo (a) Anthracene	<0.048	U	0.023	0.048	0.19	0.97	04/26/13 00:00	04/29/13 14:13	130426L02
Chrysene	<0.048	U	0.018	0.048	0.19	0.97	04/26/13 00:00	04/29/13 14:13	130426L02
Benzo (k) Fluoranthene	<0.048	U	0.023	0.048	0.19	0.97	04/26/13 00:00	04/29/13 14:13	130426L02
Benzo (b) Fluoranthene	<0.048	U	0.024	0.048	0.19	0.97	04/26/13 00:00	04/29/13 14:13	130426L02
Benzo (a) Pyrene	<0.048	U	0.035	0.048	0.19	0.97	04/26/13 00:00	04/29/13 14:13	130426L02
Indeno (1,2,3-c,d) Pyrene	<0.048	U	0.021	0.048	0.19	0.97	04/26/13 00:00	04/29/13 14:13	130426L02
Dibenz (a,h) Anthracene	<0.048	U	0.026	0.048	0.19	0.97	04/26/13 00:00	04/29/13 14:13	130426L02
Benzo (g,h,i) Perylene	<0.048	U	0.021	0.048	0.19	0.97	04/26/13 00:00	04/29/13 14:13	130426L02
Surr: Nitrobenzene-d5 (28-139%) 108%						04/26/13 00:00	04/29/13 14:13	130426L02
Surr: 2-Fluorobiphenyl (33-144%	6) 10	08%					04/26/13 00:00	04/29/13 14:13	130426L02
Surr: p-Terphenyl-d14 (23-160%	6) 12	24%					04/26/13 00:00	04/29/13 14:13	130426L02

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order:

Project Name:

099-15-148

Red Hill LTM 112066

Received: 04/25/13 10:30

ANALYTICAL REPORT

099-15-148-12 Cli	ent ID: Meth	od Blank			Matrix:	Aqueous	Units: ug/L	Sampled: 04/29/13 11:30		
EPA 8270C SIM PAHs	Extraction: E	EPA 3510C								
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
Naphthalene	<0.050	U	0.023	0.050	0.20	1	04/26/13 00:00	04/29/13 11:05	130426L02	
2-Methylnaphthalene	<0.050	U	0.026	0.050	0.20	1	04/26/13 00:00	04/29/13 11:05	130426L02	
1-Methylnaphthalene	<0.050	U	0.028	0.050	0.20	1	04/26/13 00:00	04/29/13 11:05	130426L02	
Acenaphthylene	<0.050	U	0.018	0.050	0.20	1	04/26/13 00:00	04/29/13 11:05	130426L02	
Acenaphthene	<0.050	U	0.021	0.050	0.20	1	04/26/13 00:00	04/29/13 11:05	130426L02	
Fluorene	<0.050	U	0.024	0.050	0.20	1	04/26/13 00:00	04/29/13 11:05	130426L02	
Phenanthrene	<0.050	U	0.031	0.050	0.20	1	04/26/13 00:00	04/29/13 11:05	130426L02	
Anthracene	<0.050	U	0.034	0.050	0.20	1	04/26/13 00:00	04/29/13 11:05	130426L02	
Fluoranthene	<0.050	U	0.027	0.050	0.20	1	04/26/13 00:00	04/29/13 11:05	130426L02	
Pyrene	<0.050	U	0.025	0.050	0.20	1	04/26/13 00:00	04/29/13 11:05	130426L02	
Benzo (a) Anthracene	<0.050	U	0.024	0.050	0.20	1	04/26/13 00:00	04/29/13 11:05	130426L02	
Chrysene	<0.050	U	0.019	0.050	0.20	1	04/26/13 00:00	04/29/13 11:05	130426L02	
Benzo (k) Fluoranthene	<0.050	U	0.023	0.050	0.20	1	04/26/13 00:00	04/29/13 11:05	130426L02	
Benzo (b) Fluoranthene	<0.050	U	0.025	0.050	0.20	1	04/26/13 00:00	04/29/13 11:05	130426L02	
Benzo (a) Pyrene	<0.050	U	0.036	0.050	0.20	1	04/26/13 00:00	04/29/13 11:05	130426L02	
Indeno (1,2,3-c,d) Pyrene	<0.050	U	0.022	0.050	0.20	1	04/26/13 00:00	04/29/13 11:05	130426L02	
Dibenz (a,h) Anthracene	<0.050	U	0.027	0.050	0.20	1	04/26/13 00:00	04/29/13 11:05	130426L02	
Benzo (g,h,i) Perylene	<0.050	U	0.022	0.050	0.20	1	04/26/13 00:00	04/29/13 11:05	130426L02	
Surr: Nitrobenzene-d5 (28-1399	%) 11	13%					04/26/13 00:00	04/29/13 11:05	130426L02	
Surr: 2-Fluorobiphenyl (33-1449	%) 11	16%					04/26/13 00:00	04/29/13 11:05	130426L02	
Surr: p-Terphenyl-d14 (23-1609	%) 12	25%					04/26/13 00:00	04/29/13 11:05	130426L02	

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

> 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Robert Chong Attn:

13-04-1789 Work Order:

Project Name:

Red Hill LTM 112066

Received:

04/25/13 10:30

ANALYTICAL REPORT

13-04-1789-1 Client ID: ES Trip					Matrix:	Aqueous	Units: ug/L	Sampled: 04/22/13 07:00		
GC/MS GRO/EPA 8260B Vo	olatile Org	anics E	xtraction: El	PA 5030C						
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time Batch		
Acetone	<10	U	6.0	10	20	1	04/26/13 00:00	04/26/13 19:03 130426L01		
Benzene	<0.50	U	0.14	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
Bromodichloromethane	<0.50	U	0.21	0.50	5.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
Bromoform	<1.0	U	0.50	1.0	10	1	04/26/13 00:00	04/26/13 19:03 130426L01		
Bromomethane	<5.0	ICJ,U	3.9	5.0	20	1	04/26/13 00:00	04/26/13 19:03 130426L01		
2-Butanone	<5.0	U	2.2	5.0	10	1	04/26/13 00:00	04/26/13 19:03 130426L01		
Carbon Tetrachloride	<0.50	U	0.23	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
Chlorobenzene	<0.50	U	0.17	0.50	5.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
Chloroethane	<5.0	U	2.3	5.0	10	1	04/26/13 00:00	04/26/13 19:03 130426L01		
Chloroform	<0.50	U	0.46	0.50	5.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
Chloromethane	<2.0	ICJ,U	1.8	2.0	10	1	04/26/13 00:00	04/26/13 19:03 130426L01		
Dibromochloromethane	<0.50	U	0.25	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
1,2-Dibromo-3-Chloropropane	<2.0	U	1.2	2.0	10	1	04/26/13 00:00	04/26/13 19:03 130426L01		
1,2-Dibromoethane	<0.50	U	0.36	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
1,2-Dichlorobenzene	<0.50	U	0.46	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
1,3-Dichlorobenzene	<0.50	U	0.40	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
1,4-Dichlorobenzene	<0.50	U	0.43	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
1,1-Dichloroethane	<0.50	U	0.28	0.50	5.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
1,2-Dichloroethane	<0.50	U	0.24	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
1,1-Dichloroethene	<0.50	U	0.43	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
c-1,2-Dichloroethene	<0.50	U	0.48	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
t-1,2-Dichloroethene	<0.50	U	0.37	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
1,2-Dichloropropane	<0.50	U	0.42	0.50	5.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
c-1,3-Dichloropropene	<0.50	U	0.25	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
t-1,3-Dichloropropene	<0.50	U	0.25	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
Ethylbenzene	<0.50	U	0.14	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
Methylene Chloride	<1.0	U	0.64	1.0	5.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
4-Methyl-2-Pentanone	<5.0	U	4.4	5.0	10	1	04/26/13 00:00	04/26/13 19:03 130426L01		
Styrene	<0.50	U	0.17	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
1,1,1,2-Tetrachloroethane	<0.50	U	0.40	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
1,1,2,2-Tetrachloroethane	<0.50	U	0.41	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
Tetrachloroethene	<0.50	U	0.39	0.50	5.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
Toluene	<0.50	U	0.24	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
1,2,4-Trichlorobenzene	<1.0	U	0.50	1.0	5.0	1	04/26/13 00:00	04/26/13 19:03 130426L01		
1,1,1-Trichloroethane	<0.50	U	0.30	0.50	5.0	1		04/26/13 19:03 130426L01		
Hexachloro-1,3-Butadiene	<0.50	U	0.32	0.50	1.0	1		04/26/13 19:03 130426L01		
1,1,2-Trichloroethane	<0.50	U	0.38	0.50	1.0	1		04/26/13 19:03 130426L01		
Trichloroethene	0.68	J	0.37	0.50	1.0	1		04/26/13 19:03 130426L01		

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

13-04-1789 Work Order:

Project Name:

Red Hill LTM 112066

Received:

04/25/13 10:30

ANALYTICAL REPORT

13-04-1789-1	Client ID: ES Trip				Matrix: Aqueous Units: ug/L			Sampled: 04/22/13 07:0		
GC/MS GRO/EPA 82	60B Volatile C	Organics	Extraction:	EPA 5030C						
Analyte	Resul	t Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
1,2,3-Trichloropropane	<1.0	U	0.64	1.0	5.0	1	04/26/13 00:00	04/26/13 19:03	130426L01	
Vinyl Chloride	<0.50	U	0.30	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03	130426L01	
p/m-Xylene	<1.0	U	0.30	1.0	10	1	04/26/13 00:00	04/26/13 19:03	130426L01	
o-Xylene	<0.50	U	0.23	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03	130426L01	
Methyl-t-Butyl Ether (MTBE	< 0.50	U	0.31	0.50	1.0	1	04/26/13 00:00	04/26/13 19:03	130426L01	
Gasoline Range Organics	21	J	13	30	50	1	04/26/13 00:00	04/26/13 19:03	130426L01	
Surr: Dibromofluoromethan	ne (80-126%)	89%					04/26/13 00:00	04/26/13 19:03	130426L01	
Surr: 1,2-Dichloroethane-d-	4 (80-134%)	104%					04/26/13 00:00	04/26/13 19:03	130426L01	
Surr: Toluene-d8 (80-120%	Surr: Toluene-d8 (80-120%) 100%						04/26/13 00:00	04/26/13 19:03	130426L01	
Surr: Toluene-d8-TPPH (88	Surr: Toluene-d8-TPPH (88-112%) 98%						04/26/13 00:00	04/26/13 19:03	130426L01	
Surr: 1,4-Bromofluorobenz	ene (80-120%)	95%					04/26/13 00:00	04/26/13 19:03	130426L01	

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 13-04-1789

Project Name:

Red Hill LTM 112066

Received: 04/25/13 10:30

ANALYTICAL REPORT

13-04-1789-2 Client ID: ES 019					Matrix: A	Aqueous	Units: ug/L	Sampled: 04	4/22/13 09:15
GC/MS GRO/EPA 8260B V	olatile Org	anics Ex	xtraction: l	EPA 5030C					
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Acetone	<10	U	6.0	10	20	1	04/26/13 00:00	04/26/13 19:31	130426L01
Benzene	<0.50	U	0.14	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
Bromodichloromethane	<0.50	U	0.21	0.50	5.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
Bromoform	<1.0	U	0.50	1.0	10	1	04/26/13 00:00	04/26/13 19:31	130426L01
Bromomethane	<5.0	ICJ,U	3.9	5.0	20	1	04/26/13 00:00	04/26/13 19:31	130426L01
2-Butanone	<5.0	U	2.2	5.0	10	1	04/26/13 00:00	04/26/13 19:31	130426L01
Carbon Tetrachloride	<0.50	U	0.23	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
Chlorobenzene	<0.50	U	0.17	0.50	5.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
Chloroethane	<5.0	U	2.3	5.0	10	1	04/26/13 00:00	04/26/13 19:31	130426L01
Chloroform	<0.50	U	0.46	0.50	5.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
Chloromethane	<2.0	ICJ,U	1.8	2.0	10	1	04/26/13 00:00	04/26/13 19:31	130426L01
Dibromochloromethane	<0.50	U	0.25	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
1,2-Dibromo-3-Chloropropane	<2.0	U	1.2	2.0	10	1	04/26/13 00:00	04/26/13 19:31	130426L01
1,2-Dibromoethane	<0.50	U	0.36	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
1,2-Dichlorobenzene	<0.50	U	0.46	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
1,3-Dichlorobenzene	<0.50	U	0.40	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
1,4-Dichlorobenzene	<0.50	U	0.43	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
1,1-Dichloroethane	<0.50	U	0.28	0.50	5.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
1,2-Dichloroethane	<0.50	U	0.24	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
1,1-Dichloroethene	<0.50	U	0.43	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
c-1,2-Dichloroethene	<0.50	U	0.48	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
t-1,2-Dichloroethene	<0.50	U	0.37	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
1,2-Dichloropropane	< 0.50	U	0.42	0.50	5.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
c-1,3-Dichloropropene	<0.50	U	0.25	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
t-1,3-Dichloropropene	< 0.50	U	0.25	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
Ethylbenzene	<0.50	U	0.14	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
Methylene Chloride	<1.0	U	0.64	1.0	5.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
4-Methyl-2-Pentanone	<5.0	U	4.4	5.0	10	1	04/26/13 00:00	04/26/13 19:31	130426L01
Styrene	<0.50	U	0.17	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
1,1,1,2-Tetrachloroethane	<0.50	U	0.40	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
1,1,2,2-Tetrachloroethane	<0.50	U	0.41	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
Tetrachloroethene	<0.50	U	0.39	0.50	5.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
Toluene	<0.50	U	0.24	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
1,2,4-Trichlorobenzene	<1.0	U	0.50	1.0	5.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
1,1,1-Trichloroethane	<0.50	U	0.30	0.50	5.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
Hexachloro-1,3-Butadiene	<0.50	U	0.32	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
1,1,2-Trichloroethane	<0.50	U	0.38	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01
Trichloroethene	<0.50	U	0.37	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: 13-04-1789

Project Name:

Red Hill LTM 112066

Received:

04/25/13 10:30

ANALYTICAL REPORT

13-04-1789-2	Client ID: ES 019				Matrix: Aqueous Units: ug/L			Sampled: 04/22/13 09:15		
GC/MS GRO/EPA 826	0B Volatile Or	ganics E	xtraction:	ctraction: EPA 5030C						
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
1,2,3-Trichloropropane	<1.0	U	0.64	1.0	5.0	1	04/26/13 00:00	04/26/13 19:31	130426L01	
Vinyl Chloride	<0.50	U	0.30	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01	
p/m-Xylene	<1.0	U	0.30	1.0	10	1	04/26/13 00:00	04/26/13 19:31	130426L01	
o-Xylene	<0.50	U	0.23	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01	
Methyl-t-Butyl Ether (MTBE)	<0.50	U	0.31	0.50	1.0	1	04/26/13 00:00	04/26/13 19:31	130426L01	
Gasoline Range Organics	<30	U	13	30	50	1	04/26/13 00:00	04/26/13 19:31	130426L01	
Surr: Dibromofluoromethane	(80-126%)	88%					04/26/13 00:00	04/26/13 19:31	130426L01	
Surr: 1,2-Dichloroethane-d4	(80-134%)	107%					04/26/13 00:00	04/26/13 19:31	130426L01	
Surr: Toluene-d8 (80-120%)	Surr: Toluene-d8 (80-120%) 100%						04/26/13 00:00	04/26/13 19:31	130426L01	
Surr: Toluene-d8-TPPH (88-	Surr: Toluene-d8-TPPH (88-112%) 99%						04/26/13 00:00	04/26/13 19:31	130426L01	
Surr: 1,4-Bromofluorobenzer	rr: 1,4-Bromofluorobenzene (80-120%) 95%						04/26/13 00:00	04/26/13 19:31	130426L01	

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 13-04-1789

Project Name:

Red Hill LTM 112066

Received:

04/25/13 10:30

ANALYTICAL REPORT

13-04-1789-3 Clien	13-04-1789-3 Client ID: ES 020				Matrix: A	Aqueous	Units: ug/L	Sampled: 04	4/22/13 11:0
GC/MS GRO/EPA 8260B V	/olatile Org	anics	Extraction: I	EPA 5030C					
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Acetone	<10	U	6.0	10	20	1	04/26/13 00:00	04/26/13 20:00	130426L01
Benzene	< 0.50	U	0.14	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
Bromodichloromethane	< 0.50	U	0.21	0.50	5.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
Bromoform	<1.0	U	0.50	1.0	10	1	04/26/13 00:00	04/26/13 20:00	130426L01
Bromomethane	<5.0	ICJ,U	3.9	5.0	20	1	04/26/13 00:00	04/26/13 20:00	130426L01
2-Butanone	<5.0	U	2.2	5.0	10	1	04/26/13 00:00	04/26/13 20:00	130426L01
Carbon Tetrachloride	< 0.50	U	0.23	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
Chlorobenzene	<0.50	U	0.17	0.50	5.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
Chloroethane	<5.0	U	2.3	5.0	10	1	04/26/13 00:00	04/26/13 20:00	130426L01
Chloroform	<0.50	U	0.46	0.50	5.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
Chloromethane	<2.0	ICJ,U	1.8	2.0	10	1	04/26/13 00:00	04/26/13 20:00	130426L01
Dibromochloromethane	< 0.50	U	0.25	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
1,2-Dibromo-3-Chloropropane	<2.0	U	1.2	2.0	10	1	04/26/13 00:00	04/26/13 20:00	130426L01
1,2-Dibromoethane	<0.50	U	0.36	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
1,2-Dichlorobenzene	< 0.50	U	0.46	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
1,3-Dichlorobenzene	< 0.50	U	0.40	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
1,4-Dichlorobenzene	< 0.50	U	0.43	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
1,1-Dichloroethane	< 0.50	U	0.28	0.50	5.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
1,2-Dichloroethane	< 0.50	U	0.24	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
1,1-Dichloroethene	< 0.50	U	0.43	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
c-1,2-Dichloroethene	< 0.50	U	0.48	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
t-1,2-Dichloroethene	< 0.50	U	0.37	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
1,2-Dichloropropane	< 0.50	U	0.42	0.50	5.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
c-1,3-Dichloropropene	< 0.50	U	0.25	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
t-1,3-Dichloropropene	< 0.50	U	0.25	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
Ethylbenzene	0.21	J	0.14	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
Methylene Chloride	<1.0	U	0.64	1.0	5.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
4-Methyl-2-Pentanone	<5.0	U	4.4	5.0	10	1	04/26/13 00:00	04/26/13 20:00	130426L01
Styrene	< 0.50	U	0.17	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
1,1,1,2-Tetrachloroethane	< 0.50	U	0.40	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
1,1,2,2-Tetrachloroethane	<0.50	U	0.41	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
Tetrachloroethene	< 0.50	U	0.39	0.50	5.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
Toluene	< 0.50	U	0.24	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
1,2,4-Trichlorobenzene	<1.0	U	0.50	1.0	5.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
1,1,1-Trichloroethane	<0.50	U	0.30	0.50	5.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
Hexachloro-1,3-Butadiene	<0.50	U	0.32	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
1,1,2-Trichloroethane	<0.50	U	0.38	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
Trichloroethene	< 0.50	U	0.37	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	1304261.01

o Contents

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: Project Name: 13-04-1789

Red Hill LTM 112066

Received:

04/25/13 10:30

ANALYTICAL REPORT

13-04-1789-3 Client ID: ES 020				Matrix: Aqueous Units:		Units: ug/L	its: ug/L Sampled:04		
GC/MS GRO/EPA 826	60B Volatile C	rganics	Extraction:	EPA 5030C					
Analyte	Resul	t Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
1,2,3-Trichloropropane	<1.0	U	0.64	1.0	5.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
Vinyl Chloride	<0.50	U	0.30	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
p/m-Xylene	<1.0	U	0.30	1.0	10	1	04/26/13 00:00	04/26/13 20:00	130426L01
o-Xylene	0.58	J	0.23	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
Methyl-t-Butyl Ether (MTBE)	<0.50	U	0.31	0.50	1.0	1	04/26/13 00:00	04/26/13 20:00	130426L01
Gasoline Range Organics	54		13	30	50	1	04/26/13 00:00	04/26/13 20:00	130426L01
Surr: Dibromofluoromethane	e (80-126%)	87%					04/26/13 00:00	04/26/13 20:00	130426L01
Surr: 1,2-Dichloroethane-d4	(80-134%)	107%					04/26/13 00:00	04/26/13 20:00	130426L01
Surr: Toluene-d8 (80-120%)	Surr: Toluene-d8 (80-120%) 101%						04/26/13 00:00	04/26/13 20:00	130426L01
Surr: Toluene-d8-TPPH (88-	Surr: Toluene-d8-TPPH (88-112%) 99%						04/26/13 00:00	04/26/13 20:00	130426L01
Surr: 1,4-Bromofluorobenze	ne (80-120%)	99%					04/26/13 00:00	04/26/13 20:00	130426L01

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 13-04-1789

Project Name:

Red Hill LTM 112066

Received: 04/25/13 10:30

ANALYTICAL REPORT

13-04-1789-4 Client ID: ES 021				Matrix:	Aqueous	Units: ug/L	Sampled: 04/22/13		12:15
GC/MS GRO/EPA 8260B	Volatile Org	janics E	Extraction: EPA 50	30C					
Analyte	Result	Qual.	DL LO	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
Acetone	<10	U	6.0 10	20	1	04/26/13 00:00	04/26/13 20:28	130426	L01
Benzene	<0.50	U	0.14 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
Bromodichloromethane	<0.50	U	0.21 0.50	5.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
Bromoform	<1.0	U	0.50 1.0	10	1	04/26/13 00:00	04/26/13 20:28	130426	L01
Bromomethane	<5.0	ICJ,U	3.9 5.0	20	1	04/26/13 00:00	04/26/13 20:28	130426	L01
2-Butanone	<5.0	U	2.2 5.0	10	1	04/26/13 00:00	04/26/13 20:28	130426	L01
Carbon Tetrachloride	<0.50	U	0.23 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
Chlorobenzene	<0.50	U	0.17 0.50	5.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
Chloroethane	<5.0	U	2.3 5.0	10	1	04/26/13 00:00	04/26/13 20:28	130426	L01
Chloroform	<0.50	U	0.46 0.50	5.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
Chloromethane	<2.0	ICJ,U	1.8 2.0	10	1	04/26/13 00:00	04/26/13 20:28	130426	L01
Dibromochloromethane	<0.50	U	0.25 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
1,2-Dibromo-3-Chloropropane	<2.0	U	1.2 2.0	10	1	04/26/13 00:00	04/26/13 20:28	130426	L01
1,2-Dibromoethane	<0.50	U	0.36 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
1,2-Dichlorobenzene	<0.50	U	0.46 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
1,3-Dichlorobenzene	< 0.50	U	0.40 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
1,4-Dichlorobenzene	<0.50	U	0.43 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
1,1-Dichloroethane	<0.50	U	0.28 0.50	5.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
1,2-Dichloroethane	<0.50	U	0.24 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
1,1-Dichloroethene	<0.50	U	0.43 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
c-1,2-Dichloroethene	<0.50	U	0.48 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
t-1,2-Dichloroethene	< 0.50	U	0.37 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
1,2-Dichloropropane	<0.50	U	0.42 0.50	5.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
c-1,3-Dichloropropene	<0.50	U	0.25 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
t-1,3-Dichloropropene	< 0.50	U	0.25 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
Ethylbenzene	0.21	J	0.14 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
Methylene Chloride	<1.0	U	0.64 1.0	5.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
4-Methyl-2-Pentanone	<5.0	U	4.4 5.0	10	1	04/26/13 00:00	04/26/13 20:28	130426	L01
Styrene	< 0.50	U	0.17 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
1,1,1,2-Tetrachloroethane	< 0.50	U	0.40 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
1,1,2,2-Tetrachloroethane	<0.50	U	0.41 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
Tetrachloroethene	< 0.50	U	0.39 0.50	5.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
Toluene	< 0.50	U	0.24 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
1,2,4-Trichlorobenzene	<1.0	U	0.50 1.0	5.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
1,1,1-Trichloroethane	< 0.50	U	0.30 0.50	5.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
Hexachloro-1,3-Butadiene	< 0.50	U	0.32 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
1,1,2-Trichloroethane	< 0.50	U	0.38 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01
Trichloroethene	<0.50	U	0.37 0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426	L01

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: Project Name: 13-04-1789

Red Hill LTM 112066

Received:

04/25/13 10:30

ANALYTICAL REPORT

13-04-1789-4 Client ID: ES 021				Matrix: A	Aqueous	Units: ug/L	Sampled: 04	04/22/13 12:15	
GC/MS GRO/EPA 826	60B Volatile C	Organics	Extraction:	EPA 5030C					
Analyte	Resul	t Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
1,2,3-Trichloropropane	<1.0	U	0.64	1.0	5.0	1	04/26/13 00:00	04/26/13 20:28	130426L01
Vinyl Chloride	<0.50	U	0.30	0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426L01
p/m-Xylene	<1.0	U	0.30	1.0	10	1	04/26/13 00:00	04/26/13 20:28	130426L01
o-Xylene	0.58	J	0.23	0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426L01
Methyl-t-Butyl Ether (MTBE)	<0.50	U	0.31	0.50	1.0	1	04/26/13 00:00	04/26/13 20:28	130426L01
Gasoline Range Organics	56		13	30	50	1	04/26/13 00:00	04/26/13 20:28	130426L01
Surr: Dibromofluoromethane	e (80-126%)	84%					04/26/13 00:00	04/26/13 20:28	130426L01
Surr: 1,2-Dichloroethane-d4	(80-134%)	99%					04/26/13 00:00	04/26/13 20:28	130426L01
Surr: Toluene-d8 (80-120%)	Surr: Toluene-d8 (80-120%) 99%						04/26/13 00:00	04/26/13 20:28	130426L01
Surr: Toluene-d8-TPPH (88	Surr: Toluene-d8-TPPH (88-112%) 97%						04/26/13 00:00	04/26/13 20:28	130426L01
Surr: 1,4-Bromofluorobenze	urr: 1,4-Bromofluorobenzene (80-120%) 95%						04/26/13 00:00	04/26/13 20:28	130426L01

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: 13

Project Name:

13-04-1789 Red Hill LTM 112066

Received:

04/25/13 10:30

ANALYTICAL REPORT

13-04-1789-5 Client ID: ES 022 Matrix: Aqueous Units: ug/L	Sampled:0	4/22/13 12:30
GC/MS GRO/EPA 8260B Volatile Organics Extraction: EPA 5030C		
Analyte Result Qual. DL LOD LOQ Factor Date/Time	Analysis Date/Time	Batch
Acetone <10 U 6.0 10 20 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
Benzene <0.50 U 0.14 0.50 1.0 1 04/26/13 00:0	0 04/26/13 20:57	130426L01
Bromodichloromethane <0.50 U 0.21 0.50 5.0 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
Bromoform <1.0 U 0.50 1.0 10 1 04/26/13 00:0	0 04/26/13 20:57	130426L01
Bromomethane <5.0 ICJ,U 3.9 5.0 20 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
2-Butanone <5.0 U 2.2 5.0 10 1 04/26/13 00:0	0 04/26/13 20:57	130426L01
Carbon Tetrachloride <0.50 U 0.23 0.50 1.0 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
Chlorobenzene <0.50 U 0.17 0.50 5.0 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
Chloroethane <5.0 U 2.3 5.0 10 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
Chloroform <0.50 U 0.46 0.50 5.0 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
Chloromethane <2.0 ICJ,U 1.8 2.0 10 1 04/26/13 00:0	0 04/26/13 20:57	130426L01
Dibromochloromethane <0.50 U 0.25 0.50 1.0 1 04/26/13 00:0	0 04/26/13 20:57	130426L01
1,2-Dibromo-3-Chloropropane <2.0 U 1.2 2.0 10 1 04/26/13 00:0	0 04/26/13 20:57	130426L01
1,2-Dibromoethane <0.50 U 0.36 0.50 1.0 1 04/26/13 00:0	0 04/26/13 20:57	130426L01
1,2-Dichlorobenzene <0.50 U 0.46 0.50 1.0 1 04/26/13 00:0	0 04/26/13 20:57	130426L01
1,3-Dichlorobenzene <0.50 U 0.40 0.50 1.0 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
1,4-Dichlorobenzene <0.50 U 0.43 0.50 1.0 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
1,1-Dichloroethane <0.50 U 0.28 0.50 5.0 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
1,2-Dichloroethane <0.50 U 0.24 0.50 1.0 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
1,1-Dichloroethene <0.50 U 0.43 0.50 1.0 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
c-1,2-Dichloroethene <0.50 U 0.48 0.50 1.0 1 04/26/13 00:0	0 04/26/13 20:57	130426L01
t-1,2-Dichloroethene <0.50 U 0.37 0.50 1.0 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
1,2-Dichloropropane <0.50 U 0.42 0.50 5.0 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
c-1,3-Dichloropropene <0.50 U 0.25 0.50 1.0 1 04/26/13 00:0	0 04/26/13 20:57	130426L01
t-1,3-Dichloropropene <0.50 U 0.25 0.50 1.0 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
Ethylbenzene <0.50 U 0.14 0.50 1.0 1 04/26/13 00:0	0 04/26/13 20:57	130426L01
Methylene Chloride <1.0 U 0.64 1.0 5.0 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
4-Methyl-2-Pentanone <5.0 U 4.4 5.0 10 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
Styrene <0.50 U 0.17 0.50 1.0 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
1,1,1,2-Tetrachloroethane <0.50 U 0.40 0.50 1.0 1 04/26/13 00:0	0 04/26/13 20:57	130426L01
1,1,2,2-Tetrachloroethane <0.50 U 0.41 0.50 1.0 1 04/26/13 00:0	0 04/26/13 20:57	130426L01
Tetrachloroethene <0.50 U 0.39 0.50 5.0 1 04/26/13 00:0	0 04/26/13 20:57	130426L01
Toluene <0.50 U 0.24 0.50 1.0 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
1,2,4-Trichlorobenzene <1.0 U 0.50 1.0 5.0 1 04/26/13 00:0	0 04/26/13 20:57	′ 130426L01
	0 04/26/13 20:57	′ 130426L01
	0 04/26/13 20:57	
	0 04/26/13 20:57	
	0 04/26/13 20:57	′ 130426L01

eturn to Conten

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: Project Name:

13-04-1789

Red Hill LTM 112066

Received:

04/25/13 10:30

ANALYTICAL REPORT

13-04-1789-5 Client ID: ES 022					Matrix: Aqueous Units: ug/L			Sampled: 04/22/13 12:3		
GC/MS GRO/EPA 826	0B Volatile O	rganics	Extraction:	EPA 5030C						
Analyte	Resul	t Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
1,2,3-Trichloropropane	<1.0	U	0.64	1.0	5.0	1	04/26/13 00:00	04/26/13 20:57	130426L01	
Vinyl Chloride	<0.50	U	0.30	0.50	1.0	1	04/26/13 00:00	04/26/13 20:57	130426L01	
p/m-Xylene	<1.0	U	0.30	1.0	10	1	04/26/13 00:00	04/26/13 20:57	130426L01	
o-Xylene	<0.50	U	0.23	0.50	1.0	1	04/26/13 00:00	04/26/13 20:57	130426L01	
Methyl-t-Butyl Ether (MTBE)	<0.50	U	0.31	0.50	1.0	1	04/26/13 00:00	04/26/13 20:57	130426L01	
Gasoline Range Organics	<30	U	13	30	50	1	04/26/13 00:00	04/26/13 20:57	130426L01	
Surr: Dibromofluoromethane	e (80-126%)	84%					04/26/13 00:00	04/26/13 20:57	130426L01	
Surr: 1,2-Dichloroethane-d4	(80-134%)	97%					04/26/13 00:00	04/26/13 20:57	130426L01	
Surr: Toluene-d8 (80-120%) 100%		100%					04/26/13 00:00	04/26/13 20:57	130426L01	
Surr: Toluene-d8-TPPH (88-	Surr: Toluene-d8-TPPH (88-112%) 98%						04/26/13 00:00	04/26/13 20:57	130426L01	
Surr: 1,4-Bromofluorobenze	ne (80-120%)	100%					04/26/13 00:00	04/26/13 20:57	130426L01	

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 13-04-1789

Project Name:

Red Hill LTM 112066

Received: 04/25/13 10:30

ANALYTICAL REPORT

13-04-1789-6 Client ID: ES 023				Matrix:	Aqueous	Units: ug/L	Sampled: 04/23/13		09:25
GC/MS GRO/EPA 8260B	Volatile Org	anics	Extraction: EPA 5	030C					
Analyte	Result	Qual.	DL LO	D LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
Acetone	<10	U	6.0 10	20	1	04/26/13 00:00	04/26/13 21:26	130426	L01
Benzene	<0.50	U	0.14 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
Bromodichloromethane	<0.50	U	0.21 0.5	0 5.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
Bromoform	<1.0	U	0.50 1.0	10	1	04/26/13 00:00	04/26/13 21:26	130426	L01
Bromomethane	<5.0	ICJ,U	3.9 5.0	20	1	04/26/13 00:00	04/26/13 21:26	130426	L01
2-Butanone	<5.0	U	2.2 5.0	10	1	04/26/13 00:00	04/26/13 21:26	130426	L01
Carbon Tetrachloride	<0.50	U	0.23 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
Chlorobenzene	<0.50	U	0.17 0.5	5.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
Chloroethane	<5.0	U	2.3 5.0	10	1	04/26/13 00:00	04/26/13 21:26	130426	L01
Chloroform	<0.50	U	0.46 0.5	0 5.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
Chloromethane	<2.0	ICJ,U	1.8 2.0	10	1	04/26/13 00:00	04/26/13 21:26	130426	L01
Dibromochloromethane	<0.50	U	0.25 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
1,2-Dibromo-3-Chloropropane	<2.0	U	1.2 2.0	10	1	04/26/13 00:00	04/26/13 21:26	130426	L01
1,2-Dibromoethane	<0.50	U	0.36 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
1,2-Dichlorobenzene	<0.50	U	0.46 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
1,3-Dichlorobenzene	<0.50	U	0.40 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
1,4-Dichlorobenzene	<0.50	U	0.43 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
1,1-Dichloroethane	<0.50	U	0.28 0.5	0 5.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
1,2-Dichloroethane	<0.50	U	0.24 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
1,1-Dichloroethene	<0.50	U	0.43 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
c-1,2-Dichloroethene	<0.50	U	0.48 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
t-1,2-Dichloroethene	<0.50	U	0.37 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
1,2-Dichloropropane	<0.50	U	0.42 0.5	5.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
c-1,3-Dichloropropene	<0.50	U	0.25 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
t-1,3-Dichloropropene	<0.50	U	0.25 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
Ethylbenzene	<0.50	U	0.14 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
Methylene Chloride	<1.0	U	0.64 1.0	5.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
4-Methyl-2-Pentanone	<5.0	U	4.4 5.0	10	1	04/26/13 00:00	04/26/13 21:26	130426	L01
Styrene	<0.50	U	0.17 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
1,1,1,2-Tetrachloroethane	<0.50	U	0.40 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
1,1,2,2-Tetrachloroethane	<0.50	U	0.41 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
Tetrachloroethene	<0.50	U	0.39 0.5	5.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
Toluene	<0.50	U	0.24 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
1,2,4-Trichlorobenzene	<1.0	U	0.50 1.0	5.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
1,1,1-Trichloroethane	<0.50	U	0.30 0.5		1	04/26/13 00:00	04/26/13 21:26	130426	L01
Hexachloro-1,3-Butadiene	<0.50	U	0.32 0.5		1	04/26/13 00:00	04/26/13 21:26	130426	L01
1,1,2-Trichloroethane	<0.50	U	0.38 0.5	0 1.0	1	04/26/13 00:00	04/26/13 21:26	130426	L01
Trichloroethene	<0.50	U	0.37 0.5		1		04/26/13 21:26		

Contents

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

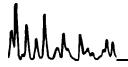
Work Order:

Project Name:

13-04-1789

Red Hill LTM 112066

Received:


04/25/13 10:30

ANALYTICAL REPORT

13-04-1789-6 C	lient ID: ES	023			Matrix: A	Aqueous (Jnits: ug/L	Sampled: 04	4/23/13 09:25
GC/MS GRO/EPA 8260	B Volatile O	rganics E	Extraction:	EPA 5030C					
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
1,2,3-Trichloropropane	<1.0	U	0.64	1.0	5.0	1	04/26/13 00:00	04/26/13 21:26	130426L01
Vinyl Chloride	<0.50	U	0.30	0.50	1.0	1	04/26/13 00:00	04/26/13 21:26	130426L01
p/m-Xylene	<1.0	U	0.30	1.0	10	1	04/26/13 00:00	04/26/13 21:26	130426L01
o-Xylene	< 0.50	U	0.23	0.50	1.0	1	04/26/13 00:00	04/26/13 21:26	130426L01
Methyl-t-Butyl Ether (MTBE)	< 0.50	U	0.31	0.50	1.0	1	04/26/13 00:00	04/26/13 21:26	130426L01
Gasoline Range Organics	<30	U	13	30	50	1	04/26/13 00:00	04/26/13 21:26	130426L01
Surr: Dibromofluoromethane ((80-126%)	86%					04/26/13 00:00	04/26/13 21:26	130426L01
Surr: 1,2-Dichloroethane-d4 (8	80-134%)	95%					04/26/13 00:00	04/26/13 21:26	130426L01
Surr: Toluene-d8 (80-120%)		100%					04/26/13 00:00	04/26/13 21:26	130426L01
Surr: Toluene-d8-TPPH (88-1	12%)	99%					04/26/13 00:00	04/26/13 21:26	130426L01
Surr: 1,4-Bromofluorobenzene	e (80-120%)	98%					04/26/13 00:00	04/26/13 21:26	130426L01

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 13-04-1789

Project Name:

Red Hill LTM 112066

Received: 04/25/13 10:30

ANALYTICAL REPORT

13-04-1789-7 Client	ID: ES 0	24			Matrix:	Aqueous	Units: ug/L	Sampled:04	1/23/13 10:3
GC/MS GRO/EPA 8260B Vo	latile Org	anics E	extraction: EPA	4 5030C					
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Acetone	<10	U	6.0	10	20	1	04/26/13 00:00	04/26/13 21:54	130426L01
Benzene	<0.50	U	0.14	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
Bromodichloromethane	<0.50	U	0.21	0.50	5.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
Bromoform	<1.0	U	0.50	1.0	10	1	04/26/13 00:00	04/26/13 21:54	130426L01
Bromomethane	<5.0	ICJ,U	3.9	5.0	20	1	04/26/13 00:00	04/26/13 21:54	130426L01
2-Butanone	<5.0	U	2.2	5.0	10	1	04/26/13 00:00	04/26/13 21:54	130426L01
Carbon Tetrachloride	<0.50	U	0.23	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
Chlorobenzene	<0.50	U	0.17	0.50	5.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
Chloroethane	<5.0	U	2.3	5.0	10	1	04/26/13 00:00	04/26/13 21:54	130426L01
Chloroform	<0.50	U	0.46	0.50	5.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
Chloromethane	<2.0	ICJ,U	1.8	2.0	10	1	04/26/13 00:00	04/26/13 21:54	130426L01
Dibromochloromethane	<0.50	U	0.25	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
1,2-Dibromo-3-Chloropropane	<2.0	U	1.2	2.0	10	1	04/26/13 00:00	04/26/13 21:54	130426L01
1,2-Dibromoethane	<0.50	U	0.36	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
1,2-Dichlorobenzene	<0.50	U	0.46	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
1,3-Dichlorobenzene	< 0.50	U	0.40	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
1,4-Dichlorobenzene	< 0.50	U	0.43	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
1,1-Dichloroethane	< 0.50	U	0.28	0.50	5.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
1,2-Dichloroethane	<0.50	U	0.24	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
1,1-Dichloroethene	<0.50	U	0.43	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
c-1,2-Dichloroethene	<0.50	U	0.48	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
t-1,2-Dichloroethene	<0.50	U	0.37	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
1,2-Dichloropropane	<0.50	U	0.42	0.50	5.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
c-1,3-Dichloropropene	<0.50	U	0.25	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
t-1,3-Dichloropropene	<0.50	U	0.25	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
Ethylbenzene	<0.50	U	0.14	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
Methylene Chloride	<1.0	U	0.64	1.0	5.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
4-Methyl-2-Pentanone	<5.0	U	4.4	5.0	10	1	04/26/13 00:00	04/26/13 21:54	130426L01
Styrene	<0.50	U	0.17	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
1,1,1,2-Tetrachloroethane	<0.50	U	0.40	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
1,1,2,2-Tetrachloroethane	< 0.50	U	0.41	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
Tetrachloroethene	<0.50	U	0.39	0.50	5.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
Toluene	<0.50	U	0.24	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
1,2,4-Trichlorobenzene	<1.0	U	0.50	1.0	5.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
1,1,1-Trichloroethane	<0.50	U		0.50	5.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
Hexachloro-1,3-Butadiene	<0.50	U		0.50	1.0	1		04/26/13 21:54	
1,1,2-Trichloroethane	<0.50	U		0.50	1.0	1		04/26/13 21:54	
Trichloroethene	<0.50	U	0.37	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order:

Project Name:

13-04-1789 Red Hill LTM 112066

Received: 04/25/13 10:30

ANALYTICAL REPORT

13-04-1789-7 CI	lient ID: ES	024			Matrix: A	Aqueous (Units: ug/L	Sampled: 04	4/23/13 10:30
GC/MS GRO/EPA 8260	B Volatile Or	ganics E	Extraction:	EPA 5030C					
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
1,2,3-Trichloropropane	<1.0	U	0.64	1.0	5.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
Vinyl Chloride	<0.50	U	0.30	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
p/m-Xylene	<1.0	U	0.30	1.0	10	1	04/26/13 00:00	04/26/13 21:54	130426L01
o-Xylene	<0.50	U	0.23	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
Methyl-t-Butyl Ether (MTBE)	<0.50	U	0.31	0.50	1.0	1	04/26/13 00:00	04/26/13 21:54	130426L01
Gasoline Range Organics	15	J	13	30	50	1	04/26/13 00:00	04/26/13 21:54	130426L01
Surr: Dibromofluoromethane (80-126%)	89%					04/26/13 00:00	04/26/13 21:54	130426L01
Surr: 1,2-Dichloroethane-d4 (8	80-134%)	99%					04/26/13 00:00	04/26/13 21:54	130426L01
Surr: Toluene-d8 (80-120%)	:	99%					04/26/13 00:00	04/26/13 21:54	130426L01
Surr: Toluene-d8-TPPH (88-1	12%)	98%					04/26/13 00:00	04/26/13 21:54	130426L01
Surr: 1,4-Bromofluorobenzene	(80-120%)	94%					04/26/13 00:00	04/26/13 21:54	130426L01

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order:

Project Name:

099-13-057

Red Hill LTM 112066

Received: 04/25/13 10:30

ANALYTICAL REPORT

099-13-057-24 Clie	ent ID: Meth	od Blar	nk	Matrix:	Aqueous	Units: ug/L	Sampled: 04	4/26/13	12:55
GC/MS GRO/EPA 8260B	Volatile Org	anics	Extraction: EPA 50300	;					
Analyte	Result	Qual.	DL LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
Acetone	<10	U	6.0 10	20	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
Benzene	<0.50	U	0.14 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
Bromodichloromethane	< 0.50	U	0.21 0.50	5.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
Bromoform	<1.0	U	0.50 1.0	10	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
Bromomethane	<5.0	U	3.9 5.0	20	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
2-Butanone	<5.0	U	2.2 5.0	10	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
Carbon Tetrachloride	<0.50	U	0.23 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
Chlorobenzene	<0.50	U	0.17 0.50	5.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
Chloroethane	<5.0	U	2.3 5.0	10	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
Chloroform	<0.50	U	0.46 0.50	5.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
Chloromethane	<2.0	U	1.8 2.0	10	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
Dibromochloromethane	<0.50	U	0.25 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
1,2-Dibromo-3-Chloropropane	<2.0	U	1.2 2.0	10	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
1,2-Dibromoethane	<0.50	U	0.36 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
1,2-Dichlorobenzene	<0.50	U	0.46 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
1,3-Dichlorobenzene	<0.50	U	0.40 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
1,4-Dichlorobenzene	<0.50	U	0.43 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
1,1-Dichloroethane	<0.50	U	0.28 0.50	5.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
1,2-Dichloroethane	<0.50	U	0.24 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
1,1-Dichloroethene	<0.50	U	0.43 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
c-1,2-Dichloroethene	<0.50	U	0.48 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
t-1,2-Dichloroethene	<0.50	U	0.37 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
1,2-Dichloropropane	<0.50	U	0.42 0.50	5.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
c-1,3-Dichloropropene	<0.50	U	0.25 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
t-1,3-Dichloropropene	<0.50	U	0.25 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
Ethylbenzene	<0.50	U	0.14 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
Methylene Chloride	<1.0	U	0.64 1.0	5.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
4-Methyl-2-Pentanone	<5.0	U	4.4 5.0	10	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
Styrene	<0.50	U	0.17 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
1,1,1,2-Tetrachloroethane	<0.50	U	0.40 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
1,1,2,2-Tetrachloroethane	<0.50	U	0.41 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
Tetrachloroethene	<0.50	U	0.39 0.50	5.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
Toluene	<0.50	U	0.24 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
1,2,4-Trichlorobenzene	<1.0	U	0.50 1.0	5.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
1,1,1-Trichloroethane	<0.50	U	0.30 0.50	5.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
Hexachloro-1,3-Butadiene	<0.50	U	0.32 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
1,1,2-Trichloroethane	<0.50	U	0.38 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01
Trichloroethene	<0.50	U	0.37 0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L	_01

urn to Contents

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: Project Name: 099-13-057

Red Hill LTM 112066

Received: 04/25/13 10:30

ANALYTICAL REPORT

099-13-057-24 Client ID: Method Blank			Matrix: A	Aqueous	Units: ug/L	Sampled: 04/26/13 12:5			
GC/MS GRO/EPA 8	260B Volatile (Organics	Extraction:	EPA 5030C					
Analyte	Resu	lt Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
1,2,3-Trichloropropane	<1.0	U	0.64	1.0	5.0	1	04/26/13 00:00	04/26/13 18:34	130426L01
Vinyl Chloride	<0.50) U	0.30	0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L01
p/m-Xylene	<1.0	U	0.30	1.0	10	1	04/26/13 00:00	04/26/13 18:34	130426L01
o-Xylene	<0.50) U	0.23	0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L01
Methyl-t-Butyl Ether (MTB	E) <0.50) U	0.31	0.50	1.0	1	04/26/13 00:00	04/26/13 18:34	130426L01
Gasoline Range Organics	<30	U	13	30	50	1	04/26/13 00:00	04/26/13 18:34	130426L01
Surr: Dibromofluorometha	ne (80-126%)	88%					04/26/13 00:00	04/26/13 18:34	130426L01
Surr: 1,2-Dichloroethane-	d4 (80-134%)	94%					04/26/13 00:00	04/26/13 18:34	130426L01
Surr: Toluene-d8 (80-120)	%)	98%					04/26/13 00:00	04/26/13 18:34	130426L01
Surr: Toluene-d8-TPPH (8	38-112%)	96%					04/26/13 00:00	04/26/13 18:34	130426L01
Surr: 1,4-Bromofluoroben:	zene (80-120%)	98%					04/26/13 00:00	04/26/13 18:34	130426L01

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

04/25/13

13-04-1789

FAX: (714) 894-7501

Analytical Report

Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500 Date Received: Work Order No: Preparation:

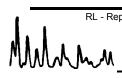
Preparation: N/A Method: EPA 200.8

Project: Red Hill LTM 112066 Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ES 023 UF	13-04-1789-8-A	04/23/13 09:25	Aqueous	ICP/MS 03	04/26/13	04/26/13 21:07	130426L02

Comment(s): -Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

 Parameter
 Result
 RL
 MDL
 DF
 Qual
 Units


 Lead
 0.000828
 0.00100
 0.0000898
 1
 J
 mg/L

Method Blank 099-10-008-2,289 N/A Aqueous ICP/MS 03 04/26/13 04/26/13 130426L02 14:50

Comment(s): -Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

 Parameter
 Result
 RL
 MDL
 DF
 Qual
 Units

 Lead
 <0.0000898</td>
 0.00100
 0.0000898
 1
 U
 mg/L

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method:

04/25/13 13-04-1789 Filtered **EPA 200.8**

Quality Control Sample ID			Matrix	li	nstrument		Date epared	Date Analyzed		ISD Batch umber
13-04-1849-3			Aqueou	ıs IC	CP/MS 03	04/	26/13	04/29/13	1304	426S02A
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Lead	ND	0.1000	0.1028	103	0.1033	103	80-120	0	0-20	

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: N/A
Work Order No: 13-04-1789
Preparation: N/A
Method: EPA 200.8

Quality Control Sample ID	ontrol Sample ID Matrix		Date Analyzed	Lab File	e ID	LCS Batch Number
099-10-008-2,289	Aqueous	ICP/MS 03	04/26/13	130426-L-02_	_034.icp	130426L02
<u>Parameter</u>		Conc Added	Conc Recovered	LCS %Rec	%Rec Cl	Qualifiers
Lead		0.1000	0.09732	97	80-120	

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method: 04/25/13 13-04-1789 EPA 3020A Total EPA 6020

Quality Control Sample ID			Matrix	•	nstrument	Pre	Date epared	Date Analyzed	N	ISD Batch umber
ES 020			Aqueou	ıs l	CP/MS 03	04/	26/13	04/26/13	130	426S03
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Lead	ND	100.0	104.1	104	106.9	107	80-120	3	0-20	

Quality Control - PDS / PDSD

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received Work Order No: Preparation: Method:

04/25/13 13-04-1789 EPA 3020A Total **EPA 6020**

Quality Control Sample ID	Matrix	Instrun	nent	Date [Prepared	Date Analyzed I	PDS/PDSD Batch Number
ES 020	Aqueo	us ICP/M	S 03	04/26/13	04/26/13	130426S03
<u>Parameter</u>	SAMPLE CONC	SPIKE_ADDED	PDS_CONC	PDS %REC	%REC CL	<u>Qualifiers</u>
Lead	ND	100.0	102.6	103	75-125	

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method:

04/25/13 13-04-1789 EPA 3510C EPA 8015B (M)

Quality Control Sample ID			Matrix	li	nstrument		oate pared	Date Analyzed		/ISD Batch lumber
ES 020			Aqueou	ıs G	C 46	04/2	26/13	04/29/13	130)426S02
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Diesel	2555	4000	7574	125	7827	132	55-133	3	0-30	

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method: 04/25/13 13-04-1789 EPA 3510C EPA 8270C SIM PAHs

Quality Control Sample ID	Quality Control Sample ID		Matrix		Instrument		Date epared	Date Analyzed		ISD Batch umber
ES 020			Aqueous		GC/MS AAA	04/	26/13	04/29/13	130	426S02
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Naphthalene	53.41	2.000	36.71	0	37.10	0	21-133	1	0-25	3
2-Methylnaphthalene	12.89	2.000	10.10	0	10.22	0	21-140	1	0-25	3
1-Methylnaphthalene	16.24	2.000	12.82	0	12.94	0	20-140	1	0-25	3
Acenaphthylene	ND	2.000	2.030	102	2.053	103	33-145	1	0-25	
Acenaphthene	0.5828	2.000	2.533	98	2.540	98	49-121	0	0-25	
Fluorene	0.2362	2.000	2.189	98	2.202	98	59-121	1	0-25	
Phenanthrene	ND	2.000	2.063	103	2.081	104	54-120	1	0-25	
Anthracene	ND	2.000	1.746	87	1.837	92	27-133	5	0-25	
Fluoranthene	ND	2.000	2.211	111	2.248	112	26-137	2	0-25	
Pyrene	ND	2.000	2.002	100	2.016	101	18-168	1	0-25	
Benzo (a) Anthracene	ND	2.000	2.315	116	2.340	117	33-143	1	0-25	
Chrysene	ND	2.000	2.053	103	2.070	103	17-168	1	0-25	
Benzo (k) Fluoranthene	ND	2.000	2.140	107	2.152	108	24-159	1	0-25	
Benzo (b) Fluoranthene	ND	2.000	2.208	110	2.269	113	24-159	3	0-25	
Benzo (a) Pyrene	ND	2.000	2.060	103	2.074	104	17-163	1	0-25	
Indeno (1,2,3-c,d) Pyrene	ND	2.000	2.281	114	2.317	116	10-171	2	0-25	
Dibenz (a,h) Anthracene	ND	2.000	1.897	95	1.925	96	10-219	1	0-25	
Benzo (g,h,i) Perylene	ND	2.000	1.829	91	1.864	93	10-227	2	0-25	

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method:

EPA 5030C GC/MS / EPA 8260B

04/25/13

13-04-1789

Project Red Hill LTM 112066

Quality Control Sample ID		Matrix	Matrix Instrument		Date Prepared		Date Analyzed	MS/MSD Batch Number		
ES 020			Aqueou	is C	C/MS LL	04/	26/13	04/26/13	130	426S01
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Acetone	ND	50.00	23.17	46	60.63	121	40-140	89	0-20	4
Benzene	ND	50.00	51.09	102	50.14	100	80-120	2	0-20	
Bromodichloromethane	ND	50.00	51.28	103	51.46	103	75-120	0	0-20	
Bromoform	ND	50.00	51.81	104	55.05	110	70-130	6	0-20	
Bromomethane	ND	50.00	66.84	134	57.08	114	30-145	16	0-20	
2-Butanone	ND	50.00	42.09	84	49.26	99	30-150	16	0-20	
Carbon Tetrachloride	ND	50.00	52.47	105	52.26	105	65-140	0	0-20	
Chlorobenzene	ND	50.00	53.78	108	53.07	106	80-120	1	0-20	
Chloroethane	ND	50.00	50.90	102	48.11	96	60-135	6	0-20	
Chloroform	ND	50.00	54.21	108	51.32	103	65-135	5	0-20	
Chloromethane	ND	50.00	42.26	85	39.78	80	40-125	6	0-20	
Dibromochloromethane	ND	50.00	52.67	105	52.76	106	60-135	0	0-20	
1,2-Dibromo-3-Chloropropane	ND	50.00	50.29	101	53.62	107	50-130	6	0-20	
1,2-Dibromoethane	ND	50.00	52.57	105	52.14	104	80-120	1	0-20	
1,2-Dichlorobenzene	ND	50.00	52.38	105	53.26	107	70-120	2	0-20	
1,3-Dichlorobenzene	ND	50.00	51.53	103	51.59	103	75-125	0	0-20	
1,4-Dichlorobenzene	ND	50.00	48.90	98	49.53	99	75-125	1	0-20	
1,1-Dichloroethane	ND	50.00	44.80	90	44.45	89	70-135	1	0-20	
1,2-Dichloroethane	ND	50.00	50.82	102	50.53	101	70-130	1	0-20	
1,1-Dichloroethene	ND	50.00	28.07	56	45.88	92	70-130	48	0-20	3,4
c-1,2-Dichloroethene	ND	50.00	40.93	82	45.78	92	70-125	11	0-20	
t-1,2-Dichloroethene	ND	50.00	49.45	99	48.99	98	60-140	1	0-20	
1,2-Dichloropropane	ND	50.00	51.54	103	50.80	102	75-125	1	0-20	
c-1,3-Dichloropropene	ND	50.00	53.99	108	53.54	107	70-130	1	0-20	
t-1,3-Dichloropropene	ND	50.00	53.01	106	52.71	105	55-140	1	0-20	
Ethylbenzene	ND	50.00	52.58	105	51.95	104	75-125	1	0-20	
Methylene Chloride	ND	50.00	47.05	94	46.69	93	55-140	1	0-20	
4-Methyl-2-Pentanone	ND	50.00	52.42	105	53.82	108	60-135	3	0-20	
Styrene	ND	50.00	53.08	106	52.16	104	65-135	2	0-20	
1,1,1,2-Tetrachloroethane	ND	50.00	53.58	107	53.44	107	80-130	0	0-20	
1,1,2,2-Tetrachloroethane	ND	50.00	51.44	103	52.49	105	65-130	2	0-20	

RPD - Relative Percent Difference,

CL - Control Limit

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method:

04/25/13 13-04-1789 EPA 5030C

GC/MS / EPA 8260B

Quality Control Sample ID			Matrix		Instrument		Date epared	Date Analyzed		MSD Batch lumber
ES 020			Aqueou	ıs	GC/MS LL	04/	26/13	04/26/13	130)426S01
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Tetrachloroethene	ND	50.00	58.55	117	57.76	116	45-150	1	0-20	
Toluene	ND	50.00	52.32	105	51.89	104	75-120	1	0-20	
1,2,4-Trichlorobenzene	ND	50.00	53.64	107	54.01	108	65-135	1	0-20	
1,1,1-Trichloroethane	ND	50.00	51.69	103	51.28	103	65-130	1	0-20	
Hexachloro-1,3-Butadiene	ND	50.00	53.44	107	53.20	106	50-140	0	0-20	
1,1,2-Trichloroethane	ND	50.00	52.65	105	51.32	103	75-125	3	0-20	
Trichloroethene	ND	50.00	53.15	106	53.02	106	70-125	0	0-20	
1,2,3-Trichloropropane	ND	50.00	54.53	109	54.05	108	75-125	1	0-20	
Vinyl Chloride	ND	50.00	50.29	101	47.60	95	50-145	5	0-20	
p/m-Xylene	ND	100.0	105.2	105	102.5	102	75-130	3	0-20	
o-Xylene	ND	50.00	55.81	112	54.61	109	80-120	2	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	47.73	95	46.88	94	65-125	2	0-20	

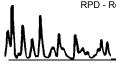
alscience nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method:

13-04-1789 EPA 3020A Total EPA 6020

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File	ID	LCS Batch Number	
099-14-497-26	Aqueous	ICP/MS 03	04/26/13	130426-L-03079.icp		130426L03D	
<u>Parameter</u>		Conc Added	Conc Recovered	LCS %Rec	%Rec CL	<u>Qualifiers</u>	
Lead		100.0	96.07	96	80-120		


Quality Control - LCS/LCS Duplicate

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method: N/A 13-04-1789 EPA 3510C EPA 8015B (M)

Quality Control Sample ID	Matrix	I	nstrument		ate pared	Date Analyzed	d	LCS/LCSD Batch Number	
099-15-516-39	Aqueous		GC 46	04/2	26/13	04/29/13		130426B02	
<u>Parameter</u>	<u>SPIKE</u> ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Diesel	4000	4092	102	3827	96	60-132	7	0-11	

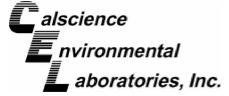
N/A

alscience nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method:

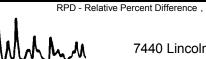
13-04-1789 **EPA 3510C** EPA 8270C SIM PAHs


Project: Red Hill LTM 112066

Quality Control Sample ID	ol Sample ID Matrix		Date Analyzed	Lab	File ID	LCS Batch Number		
099-15-148-12	Aqueous	GC/MS AAA	04/29/13	29APR	004.rr	130426L02		
<u>Parameter</u>	Conc Added	Conc Recovered	LCS %Rec	%Rec CL	ME_CL	Qualifiers		
Naphthalene	2.000	2.141	107	21-133	2-152			
2-Methylnaphthalene	2.000	1.977	99	21-140	1-160			
1-Methylnaphthalene	2.000	2.110	105	20-140	0-160			
Acenaphthylene	2.000	2.166	108	33-145	14-164			
Acenaphthene	2.000	2.229	111	55-121	44-132			
Fluorene	2.000	2.263	113	59-121	49-131			
Phenanthrene	2.000	2.376	119	54-120	43-131			
Anthracene	2.000	2.320	116	27-133	9-151			
Fluoranthene	2.000	2.456	123	26-137	8-156			
Pyrene	2.000	2.468	123	45-129	31-143			
Benzo (a) Anthracene	2.000	2.641	132	33-143	15-161			
Chrysene	2.000	2.422	121	17-168	0-193			
Benzo (k) Fluoranthene	2.000	2.459	123	24-159	2-182			
Benzo (b) Fluoranthene	2.000	2.499	125	24-159	2-182			
Benzo (a) Pyrene	2.000	2.300	115	17-163	0-187			
Indeno (1,2,3-c,d) Pyrene	2.000	2.569	128	25-175	0-200			
Dibenz (a,h) Anthracene	2.000	2.110	106	25-175	0-200			
Benzo (g,h,i) Perylene	2.000	2.064	103	25-157	3-179			

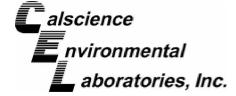
Total number of LCS compounds: 18 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

Quality Control - LCS/LCS Duplicate


Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method: N/A 13-04-1789 EPA 5030C

GC/MS / EPA 8260B


Project: Red Hill LTM 112066

Quality Control Sample ID	M	atrix	Instrumen	t	Date Prepared		ate Ilyzed	LCS	S/LCSD Batcl Number	n
099-13-057-24	Aque	eous	GC/MS LL		04/26/13	04/20	6/13	1	130426L01	
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Acetone	50.00	80.50	161	77.46	155	40-140	23-157	4	0-20	X
Benzene	50.00	46.16	92	48.05	96	80-120	73-127	4	0-20	
Bromodichloromethane	50.00	49.36	99	50.62	101	75-120	68-128	3	0-20	
Bromoform	50.00	57.61	115	57.50	115	70-130	60-140	0	0-20	
Bromomethane	50.00	43.19	86	40.47	81	30-145	11-164	7	0-20	
2-Butanone	50.00	55.37	111	57.29	115	30-150	10-170	3	0-20	
Carbon Tetrachloride	50.00	53.49	107	51.94	104	65-140	52-152	3	0-20	
Chlorobenzene	50.00	50.76	102	51.88	104	80-120	73-127	2	0-20	
Chloroethane	50.00	51.55	103	49.19	98	60-135	48-148	5	0-20	
Chloroform	50.00	49.74	99	48.36	97	65-135	53-147	3	0-20	
Chloromethane	50.00	39.97	80	39.32	79	40-125	26-139	2	0-20	
Dibromochloromethane	50.00	52.46	105	53.87	108	60-135	48-148	3	0-20	
1,2-Dibromo-3-Chloropropane	50.00	49.59	99	51.21	102	50-130	37-143	3	0-20	
1,2-Dibromoethane	50.00	49.55	99	50.55	101	80-120	73-127	2	0-20	
1,2-Dichlorobenzene	50.00	51.04	102	52.16	104	70-120	62-128	2	0-20	
1,3-Dichlorobenzene	50.00	50.31	101	51.13	102	75-125	67-133	2	0-20	
1,4-Dichlorobenzene	50.00	47.69	95	48.85	98	75-125	67-133	2	0-20	
1,1-Dichloroethane	50.00	48.20	96	46.23	92	70-135	59-146	4	0-20	
1,2-Dichloroethane	50.00	46.05	92	48.54	97	70-130	60-140	5	0-20	
1,1-Dichloroethene	50.00	48.68	97	45.42	91	70-130	60-140	7	0-20	
c-1,2-Dichloroethene	50.00	47.98	96	49.70	99	70-125	61-134	4	0-20	
t-1,2-Dichloroethene	50.00	51.65	103	48.02	96	60-140	47-153	7	0-20	
1,2-Dichloropropane	50.00	47.79	96	49.08	98	75-125	67-133	3	0-20	
c-1,3-Dichloropropene	50.00	52.95	106	54.53	109	70-130	60-140	3	0-20	
t-1,3-Dichloropropene	50.00	53.29	107	54.14	108	55-140	41-154	2	0-20	
Ethylbenzene	50.00	49.21	98	50.05	100	75-125	67-133	2	0-20	
Methylene Chloride	50.00	49.28	99	46.21	92	55-140	41-154	6	0-20	
4-Methyl-2-Pentanone	50.00	50.67	101	52.17	104	60-135	48-148	3	0-20	
Styrene	50.00	49.80	100	50.91	102	65-135	53-147	2	0-20	
1,1,1,2-Tetrachloroethane	50.00	52.52	105	53.33	107	80-130	72-138	2	0-20	
1,1,2,2-Tetrachloroethane	50.00	50.22	100	51.49	103	65-130	54-141	2	0-20	
Tetrachloroethene	50.00	49.49	99	50.67	101	45-150	28-168	2	0-20	

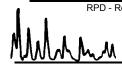
, CL - Control Limit

Quality Control - LCS/LCS Duplicate

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method: N/A 13-04-1789 EPA 5030C GC/MS / EPA 8260B

Project: Red Hill LTM 112066


Quality Control Sample ID	Ma	atrix	Instrumer	ıt	Date Prepared		ate llyzed	LCS	/LCSD Batch Number	
099-13-057-24	Aque	ous	GC/MS LL	-	04/26/13	04/20	6/13	1	30426L01	
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Toluene	50.00	48.86	98	50.04	100	75-120	68-128	2	0-20	
1,2,4-Trichlorobenzene	50.00	50.19	100	51.41	103	65-135	53-147	2	0-20	
1,1,1-Trichloroethane	50.00	50.24	100	49.78	100	65-130	54-141	1	0-20	
Hexachloro-1,3-Butadiene	50.00	51.22	102	52.21	104	50-140	35-155	2	0-20	
1,1,2-Trichloroethane	50.00	49.72	99	50.04	100	75-125	67-133	1	0-20	
Trichloroethene	50.00	49.09	98	50.18	100	70-125	61-134	2	0-20	
1,2,3-Trichloropropane	50.00	50.33	101	51.54	103	75-125	67-133	2	0-20	
Vinyl Chloride	50.00	50.93	102	48.50	97	50-145	34-161	5	0-20	
p/m-Xylene	100.0	98.76	99	100.4	100	75-130	66-139	2	0-20	
o-Xylene	50.00	51.31	103	52.24	104	80-120	73-127	2	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	49.88	100	47.38	95	65-125	55-135	5	0-20	
Gasoline Range Organics	1000	942.3	94	967.7	97	80-120	73-127	3	0-20	

Total number of LCS compounds: 44

Total number of ME compounds: 1

Total number of ME compounds allowed: 2

LCS ME CL validation result: Pass

Sample Analysis Summary Report

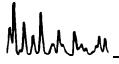
WORK ORDER #: 13-04-1789

Lab Sample Number	Client Sample ID	Method	Extraction	Date/Time Analyzed	Chemist ID	Instrument	Analytical Location
1-A	ES Trip	GC/MS / EPA 8260	EPA 5030C	04/26/2013 19:03	670	GC/MS LL	2
2-G	ES 019	EPA 6020	EPA 3020A T	04/26/2013 20:50	598	ICP/MS 03	1
2-I	ES 019	EPA 8270C SIM PA	EPA 3510C	04/29/2013 11:59	449	GC/MS AA	1
2-H	ES 019	EPA 8015B (M)	EPA 3510C	04/29/2013 13:50	847	GC 46	1
2-A	ES 019	GC/MS / EPA 8260	EPA 5030C	04/26/2013 19:31	670	GC/MS LL	2
3-G	ES 020	EPA 6020	EPA 3020A T	04/26/2013 20:47	598	ICP/MS 03	1
3-I	ES 020	EPA 8270C SIM PA	EPA 3510C	04/29/2013 12:26	449	GC/MS AA	1
3-I	ES 020	EPA 8270C SIM PA	EPA 3510C	04/29/2013 15:34	449	GC/MS AA	1
3-H	ES 020	EPA 8015B (M)	EPA 3510C	04/29/2013 14:06	847	GC 46	1
3-A	ES 020	GC/MS / EPA 8260	EPA 5030C	04/26/2013 20:00	670	GC/MS LL	2
4-G	ES 021	EPA 6020	EPA 3020A T	04/26/2013 20:58	598	ICP/MS 03	1
4-I	ES 021	EPA 8270C SIM PA	EPA 3510C	04/29/2013 12:53	449	GC/MS AA	1
4-I	ES 021	EPA 8270C SIM PA	EPA 3510C	04/29/2013 16:01	449	GC/MS AA	1
4-H	ES 021	EPA 8015B (M)	EPA 3510C	04/29/2013 14:23	847	GC 46	1
4-A	ES 021	GC/MS / EPA 8260	EPA 5030C	04/26/2013 20:28	670	GC/MS LL	2
5-G	ES 022	EPA 6020	EPA 3020A T	04/26/2013 21:01	598	ICP/MS 03	1
5-I	ES 022	EPA 8270C SIM PA	EPA 3510C	04/29/2013 13:20	449	GC/MS AA	1
5-H	ES 022	EPA 8015B (M)	EPA 3510C	04/29/2013 14:38	847	GC 46	1
5-A	ES 022	GC/MS / EPA 8260	EPA 5030C	04/26/2013 20:57	670	GC/MS LL	2
6-I	ES 023	EPA 8270C SIM PA	EPA 3510C	04/29/2013 13:47	449	GC/MS AA	1
6-H	ES 023	EPA 8015B (M)	EPA 3510C	04/29/2013 14:55	847	GC 46	1
6-A	ES 023	GC/MS / EPA 8260	EPA 5030C	04/26/2013 21:26	670	GC/MS LL	2
7-G	ES 024	EPA 6020	EPA 3020A T	04/26/2013 21:04	598	ICP/MS 03	1
7-I	ES 024	EPA 8270C SIM PA	EPA 3510C	04/29/2013 14:13	449	GC/MS AA	1
7-H	ES 024	EPA 8015B (M)	EPA 3510C	04/29/2013 15:12	847	GC 46	1
7-A	ES 024	GC/MS / EPA 8260	EPA 5030C	04/26/2013 21:54	670	GC/MS LL	2
8-A	ES 023 UF	EPA 200.8	N/A	04/26/2013 21:07	598	ICP/MS 03	1

Location	Description
1	7440 Lincoln Way, Garden Grove, CA 92841
2	7445 Lampson Avenue, Garden Grove, CA 92841

05/01/13 1

Glossary of Terms and Qualifiers



Work Order Number: 13-04-1789

Qualifier	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
DL	The Detection Limit (DL) is the smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
ICH	Initial calibration verification recovery is above the control limit for this analyte.
ICJ	Initial calibration verification recovery is below the control limit for this analyte.
IH	Calibration verification recovery is above the control limit for this analyte.
IJ	Calibration verification recovery is below the control limit for this analyte.
J	Analyte was detected at a concentration below the LOQ and above the DL. Reported value is estimated.
LOD	The Limit of Detection (LOD) is the smallest amount or concentration of a substance that must be present in a sample in order to be detected at 99% confidence level.
LOQ	The Limit of Quantitation (LOQ) is the lowest concentration of a substance that produces a quantitative result within specified limits of precision and bias.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
U	Undetected at Detection Limit (DL) and is reported as less than the Limit of Detection (LOD).
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

For any analysis identified as a "field" test with a holding time (HT) </= 15 minutes where the sample is received outside of HT, Calscience will adhere to its internal HT of 24 hours. In cases where sample analysis does not meet Calscience's internal HT, results will be appropriately qualified.

Calscience Environmental Laboratories, Inc. 7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494

Other CA office locations: Concord and San Luis Obispo For courier service / sample drop off information, contact sales@calscience.com or call us.

WO#/LAB USE ONLY

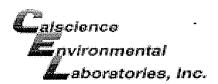
13-04-1789

CHAIN OF	CUSTODY	RECOR
----------	---------	-------

Page

LABORATORY CLIENT:		CLIENT PROJECT NAME / NUMBER: P.O. NO.:
ADDRESS: Cience International		Red Hill LTM 112066
354 Ulunin St. \$ 304		PROJECT CONTACT: SAMPLER(S): (PRINT)
	734 ZIP	Robert Chana BI/JL
TEL: SOS-261-0740 RUKNERESCIENCE I. Com, DFEHER (TURNAROUND TIME:	DEFECTER SET COM	REQUESTED ANALYSES
	cast sences, com	
SAME DAY 24 HR 48 HR 72 HR STANDARD	LOG CODE	
COELT EDF GLOBAL ID	LOG CODE	TPH (g) or GRO \$260 TPH (d) or DRO or (C6C36) or (C5-C44) TPH (d) or DRO or (C6C36) or (C5-C44) TPH (d) or DRO or (C6C36) or (C5-C44) BTEX / MTBE (8260) or (C5-C44) VOCs (8260) Coxygenates (8260) En Core / Terra Core Prep (5035) SVOCs (8270) Pesticides (8081) PCBs (8082) PCBs (8082) T22 Metals (6010B/747X) Cr(VI) [7196 or 7199 or 218.6] [CACA
SPECIAL INSTRUCTIONS:		25 (Signature 1)
		TPH (g) or GRO 6260 TPH (d) or DRO or (C6C36) or (C7PH (d) or DRO or (C6C36) or (C7PH (d) or DRO or (C6C36) or (C7PH (d) or C8260) VOCs (8260) VOCs (8260) En Core / Terra Core Prep (5035) SVOCs (8270) Pesticides (8081) PCBs (8082) PCBs (8082) PCBs (8081) PCBs (8082) Cr(VI) [7196 or 7199 or 218.6] Cr(VI) [7196 or 7199 or 218.6]
		(10 or
	rved id	TPH (g) or GRO 66 TPH (d) or DRO or (C66 TPH (TPH (d) or DRO or (C66 TPH (BTEX / MTBE (8260) or (9260) VOCS (8260) Coxygenates (8260) Pesticides (8270) PCBs (8082) PCBs (8082) T22 Metals (6010B/747 CC(VI) [7196 or 7199 or Cr(VI) [7196 or CR(VI) [7196 or CR
	Unpreserved Preserved Field Filtered	TPH (g) or GF TPH (d) or DF TPH (TPH (Oxygenates (En Core / Ter SVOCs (8270 Pesticides (80 PCBs (8082) PCBs (8082) T22 Metals (6 Cr(VI) [7196 or Cr(VI) [7
	OF Idun A LIE	TPH
1 65 Trip 4/22/13 0700 hater.	3 X	
2 ES 019 4/22/13 0915 materi	OXXX	XXXXX
3 ES 020 4/22/13/100 malest		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4 ES 020MS/MSD 4/12/13 1100 mes 1		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	OXXX	
	OXXX	
7 85 023 4122/13 0925 valor	1 X X X	
8 ES 024 4123/13 1030 mos 1	OXXX	
1.77%		
8 ES 023 UF 4/23/13 0925 When		
Relinquished by: (Signature)	Received by: (Signati	ture/Affiliation) Date: 4/22/, Time:
Branden Itara ESI	.	ture/Affiliation) Date: 4/23/(3 Time: 12:00
Relinquished by: (Signature)	Received by: (Signati	ture/Affiliation) Date: Time:
Relinquished by: (Signature)	Received by: (Signati	ture/Affiliation)
	, tooding by, (orginal	

	24×1 Page 47 of 50
Fed <u>Express</u> US Airbill 8531 6209 161€	D200 1970 Page 47 of 50 Pedec Retrieval Copy
Prom Date 124/13 Sender's FedEx Account Number 136853945	4a Express Package Service Packages up to 150 lbs. 10 most locations 1 FedEx Priority Overnight 5 FedEx Standard Overnight 6 FedEx First Overnight Next business morning FedEx First Overnight
Sender's Branden Ibara Phone 80% 261-0740	7 3 FedEx 2Day Social business day. 20 FedEx Express Sever Third business day.
company Environmental Science International	FodEx Envelope rate not sveilable. Minimum charge: One-pound raty 4b Express Freight Service Packages over 150 lbs. To most locations
Address 354 Ulyniu St. Suite 304	7 FedEx 1Day Freight* 8 FedEx 2Day Freight 83 FedEx 3Day Freight *Cell for Confirmation: *Cell for Confirmation:
City Kailua State Hizip (6734)	
Your Internal Billing Reference	Envelope* Includes Feder Small Pak, Feder Large Pek, and Feder Sturdy Pek Box Tube
Recipient's Sample Control Phone 714 805-540	Available ONLY for FadEx Priority Overlight, FadEx Subay, FadEx Tody Fraight, and FadEx 2Day Fraight to select 2Day Fraight to
company CalScience Laboratories	Does this shipment contain dangerous goods? One box must be checked. No 4 Yes As per attached Shipper's Declaration not regular of the grant of th
Recipient's 7440 Lincoln Way Ma cannot deliver to P.O. Days or P.O. ZP codes. Dent/Roor/Suite/Room Dent/Roor/Suite/Room	Dengerous goods (including Dry tee) centration not required 7 Payment Bill to: Enter FedEx Acct. No. or Credit Card No. below. Shipper's Declaration not required Cargo Aircraft Only Obtain Recip. Acct. No.
Address	1 Sender Acct No. or 2 Recipient 3 Third Party 4 Credit Card 5 Cash/Check
To request a package be held at a specific Fedex isostion, print Fedex address here. City Garden Grove State La ZIP 928411	Fuder Arct. No. Greet Card No. Total Packages Total Weight Total Charges
	†Our Hability is limited to \$100 unless you declare a trigher value. See the FedEx Service Guide for details.
	8 Sign to Authorize Delivery Without a Signature
	By signing you authorize us to deliver this shipmant without obtaining a signature and agree to indomnify and hold us harmless from any resulting claims.
RT 1239	Rev. Date 11/03+Part #159281+©1594-2003 FedEx+PRINTED IN U.S.A. SRY 03/05
ORIGIN ID:HNLA (714) 885-548 CALSCIENCE ENVIRONMENTAL LAB	ORIGIN ID:HNLA (714) 895-5494 SHIP DATE: 29APR13 CALSCIENCE ENVIRONMENTAL LAB ACTWGT: 43.9 LB
7440 LINCOLN WAY FZ JUX18X16 IN	7440 LINCOLN WAY CAD: /POS1400 DIMS: 24x14x14 IN 29
	GARDEN GROVE, CA 928411427 UNITED STATES US TO SAMPLE CONTROL CALSCIENCE ENVIRONMENTAL LARS
CALSCIENCE ENVIRONMENTAL LABS 7440 LINCOLN WAY	CALSCIENCE ENVIRONMENTAL LABS 7440 LINCOLN WAY
GARDEN GROVE CA 92841 (714) 895 6494 PO!	GARDEN GROVE CA 92841 (714) 895 - 5494 REF:
\$ \$108100 \$2 \$ \$100 \$0 \$1 \$1 \$1	PC: PEPT: # RIGERRI RI R R R
Express 9210212021116	
3 of 3 THU - 25 APR AA	2 of 3 THU - 25 APR I
3 of 3 THU - 25 APR AA ** 2DAY **	2 of 3 INU - 25 APK A MPS# 7957 7547 1228 *** 2DAY
Mstr# 8531 6209 1619 0200	Mstr# 8531 6209 1619 0200
VZ APVA 92841 CA-US SNA	VZ APVA 9284
CA-US SNA	THE CONTROL AND THE



WORK ORDER #: 13-04- ☐ [] []

SAMPLE RECEIPT FORM

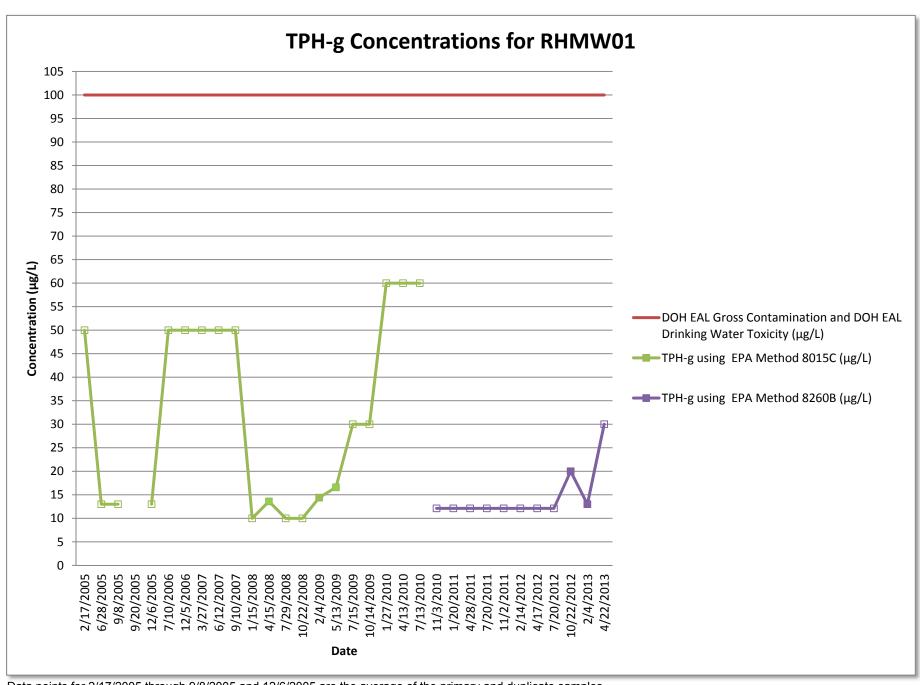
Cooler 1 of 3


	04 /25 /1		
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozen except sediment/tissue)			
Temperature25_ °C - 0.2 °C (CF) = _23_ °C			
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).			
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling.			
☐ Received at ambient temperature, placed on ice for transport by Courier.			
Ambient Temperature: ☐ Air ☐ Filter	Initial: 1	P	
CUSTODY SEALS INTACT:	·		
Cooler □ □ No (Not Intact) □ Not Present □ N/A	Initial: 1	18	
✓Sample □ □ No (Not Intact) □ Not Present	Initial: 📉	<u> </u>	
SAMPLE CONDITION: Yes	No N/	_	
Chain-Of-Custody (COC) document(s) received with samples		_	
COC document(s) received complete		_]	
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.			
□ No analysis requested. □ Not relinquished. □ No date/time relinquished.	,		
Sampler's name indicated on COC			
Sample container label(s) consistent with COC		_	
Proper containers and sufficient volume for analyses requested			
Analyses received within holding time		_	
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours □		- 7	
Proper preservation noted on COC or sample container		-]	
☑ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace			
Tedlar bag(s) free of condensation		1	
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores® □TerraCores® □			
Water: 🗹 VOA 🗹 VOAh □ VOAna₂ □ 125AGB □ 125AGBh □ 125AGBp 🗹 1AGB □ 1AGBna₂ □ 1AGBs			
□500AGB ☑500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □1PBna □500PB			
□250PB			
Air: □Tedlar® □Canister Other: □ Trip Blank Lot#:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Reviewed by: 🛨	N	

WORK ORDER #: **13-04-** [1] 子 [9]

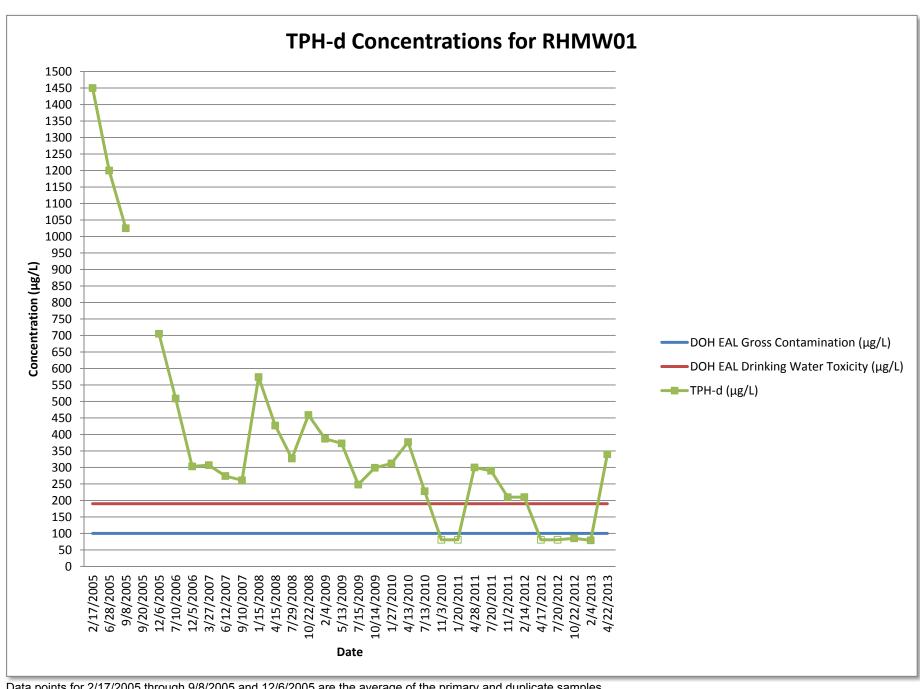
SAMPLE RECEIPT FORM Cooler 2 of 3

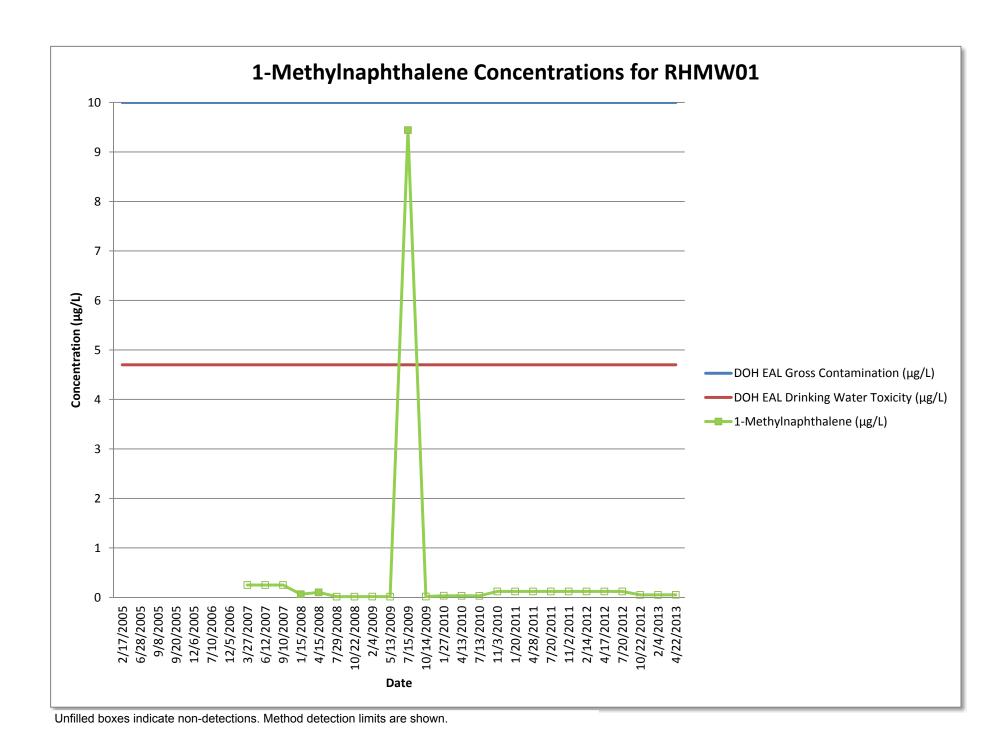
CLIENT: ESI	DATE:	04/25/13						
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 Temperature 3 •) °C - 0.2 °C (CF) = 2 •	<u></u> °C	liment/tissue) □ Sample						
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).								
 □ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling. □ Received at ambient temperature, placed on ice for transport by Courier. 								
Ambient Temperature: ☐ Air ☐ Filter	nsport by Courier.	Initial: <u>1</u> P						
Ambient temperature. E 7111 E 7 11161								
CUSTODY SEALS INTACT:								
Cooler □ □ No (Not Intact) □	Not Present ☐ N/A	Initial:						
Sample 🗆 No (Not Intact) 🗆	Not Present	Initial: TS						
SAMPLE CONDITION:	Vaa	No. NI/A						
Chain-Of-Custody (COC) document(s) received with samples	Yes	No N/A						
COC document(s) received complete	*							
	~							
☐ Collection date/time, matrix, and/or # of containers logged in based of	•							
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time r								
Sampler's name indicated on COC								
Sample container label(s) consistent with COC	_							
Sample container(s) intact and good condition	_							
Proper containers and sufficient volume for analyses requested	,							
Analyses received within holding time								
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received wit								
Proper preservation noted on COC or sample container								
☑ Unpreserved vials received for Volatiles analysis	, ·							
Volatile analysis container(s) free of headspace								
Tedlar bag(s) free of condensation								
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve (_) □EnCores [®] □Terra	Cores® □						
Water:,⊠VOA □VOAh □VOAna₂ □125AGB □125AGBh	. *							
□500AGB ☑500AGJ □500AGJs □250AGB □250CGB	□250CGB s □1PB [□1PB na □500PB						
□250PB ☑250PBn □125PB □125PB znna □100PJ □10	00PJ na₂ □ □ _							
Air: DTedlar [®] DCanister Other: DTrip Blank LContainer: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Reserverservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pu	ot#:Labeled/0	Checked by:S Reviewed by:						

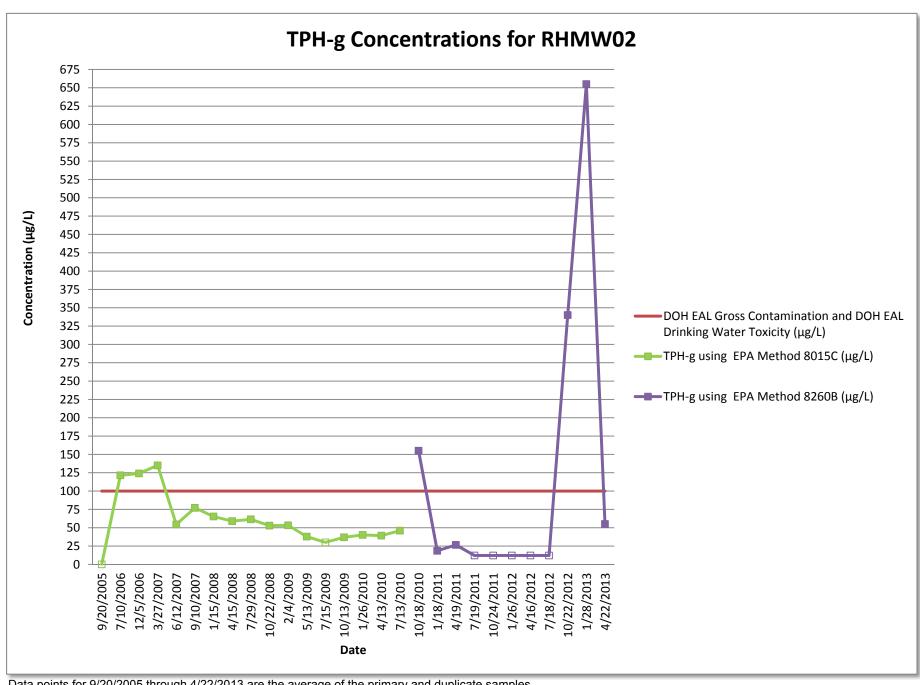

WORK ORDER #: 13-04- 1 7 8 9

SAMPLE RECEIPT FORM Cooler 3 of 3

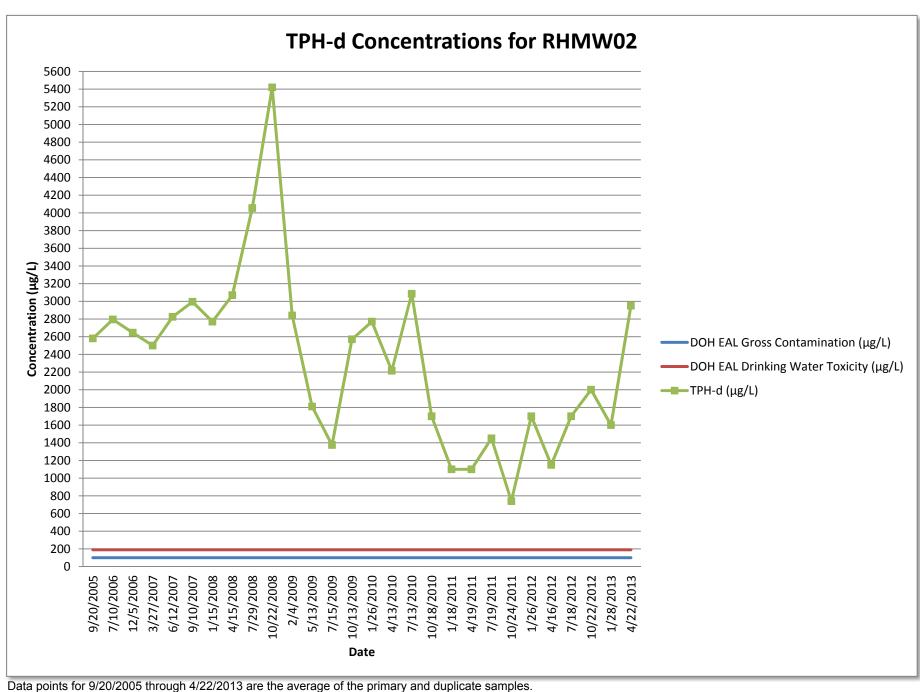
CLIENT: DATE:	5/13
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozen except sediment/tissue Temperature 2 • 9 °C - 0.2 °C (CF) = 2 • 7 °C Ø Blank Sample Sample(s) outside temperature criteria (PM/APM contacted by:). Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling. Received at ambient temperature, placed on ice for transport by Courier. Ambient Temperature: □ Air □ Filter Initial:	
	<u> </u>
CUSTODY SEALS INTACT: Cooler	1.1.
SAMPLE CONDITION: Yes No	N/A
Chain-Of-Custody (COC) document(s) received with samples	
COC document(s) received complete	
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.	
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.	
Sampler's name indicated on COC	
Sample container label(s) consistent with COC	
Sample container(s) intact and good condition	
Proper containers and sufficient volume for analyses requested	
Analyses received within holding time	
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours □ □	
Proper preservation noted on COC or sample container	
☑ Unpreserved vials received for Volatiles analysis	
Volatile analysis container(s) free of headspace	
Tedlar bag(s) free of condensation	Þ
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores® □TerraCores® □_	
Water: ☑VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp ☑1AGB □1AGBna₂ [□1AGB s
□500AGB ☑500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □1PBna □	500PB
□250PB	
Air: ☐Tedlar® ☐Canister Other: ☐ Trip Blank Lot#: Labeled/Checked by: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope Reviewed by: Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂SO₄ u: Ultra-pure znna: ZnAc₂+NaOH f: Filtered Scanned by:	IN,


APPENDIX D Historical Groundwater Exceedance Trends


Data points for 2/17/2005 through 9/8/2005 and 12/6/2005 are the average of the primary and duplicate samples. Unfilled boxes indicate non-detections. Method detection limits are shown.

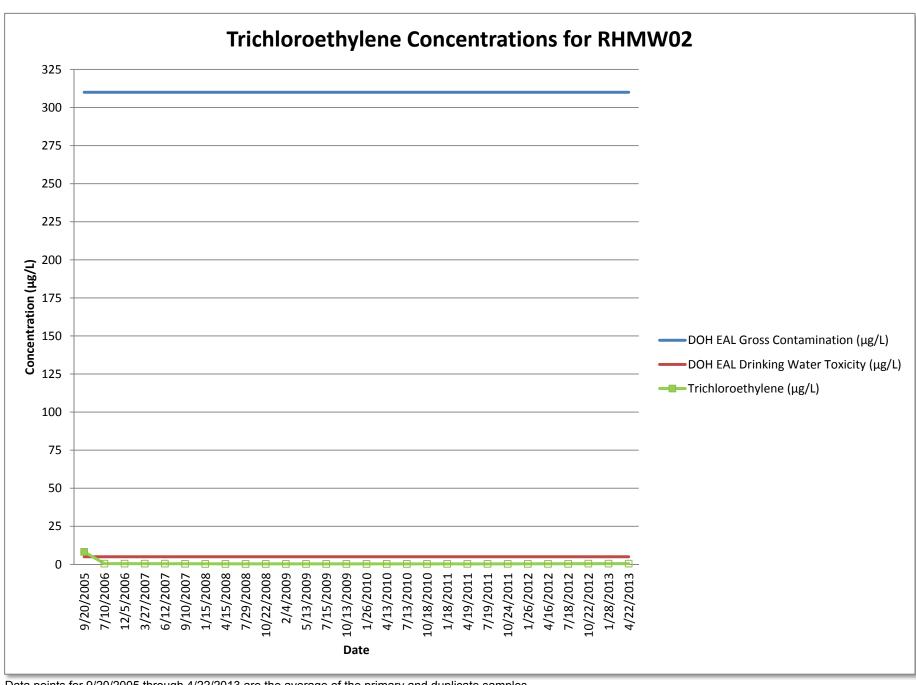


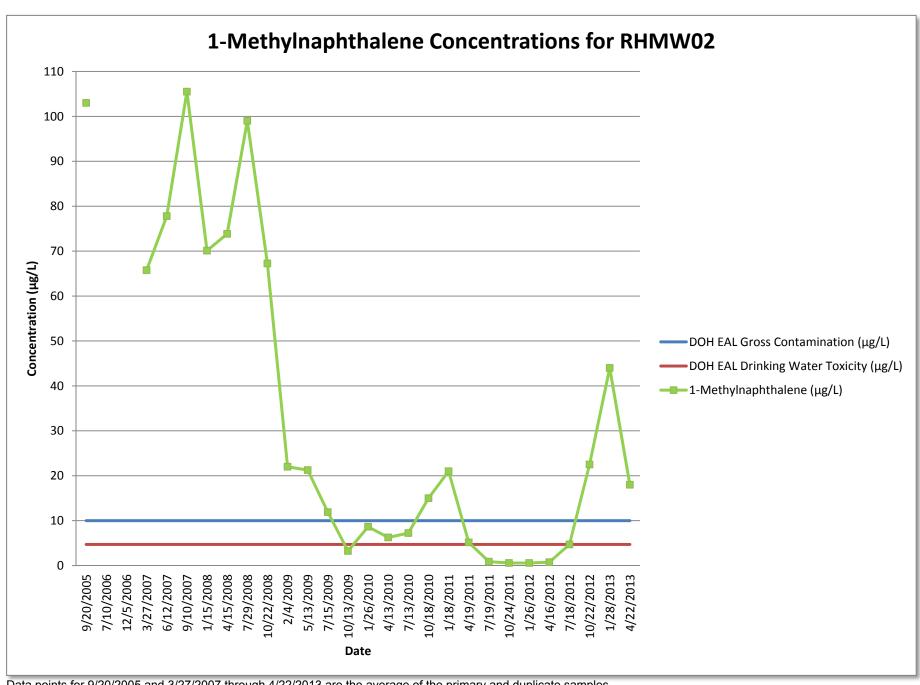
Data points for 2/17/2005 through 9/8/2005 and 12/6/2005 are the average of the primary and duplicate samples. Unfilled boxes indicate non-detections. Method detection limits are shown.

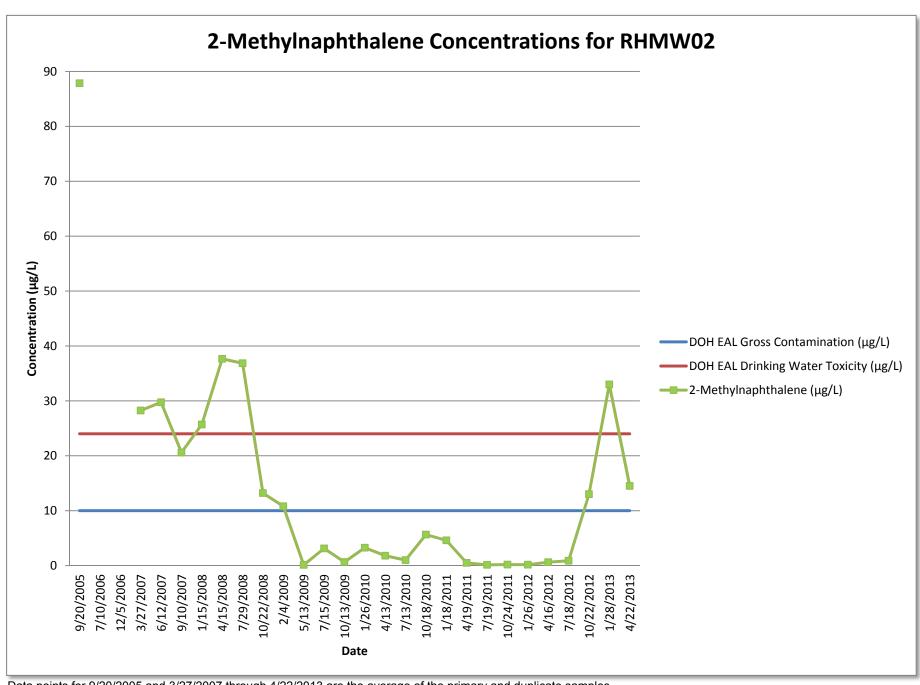

Data points for 9/20/2005 through 4/22/2013 are the average of the primary and duplicate samples.

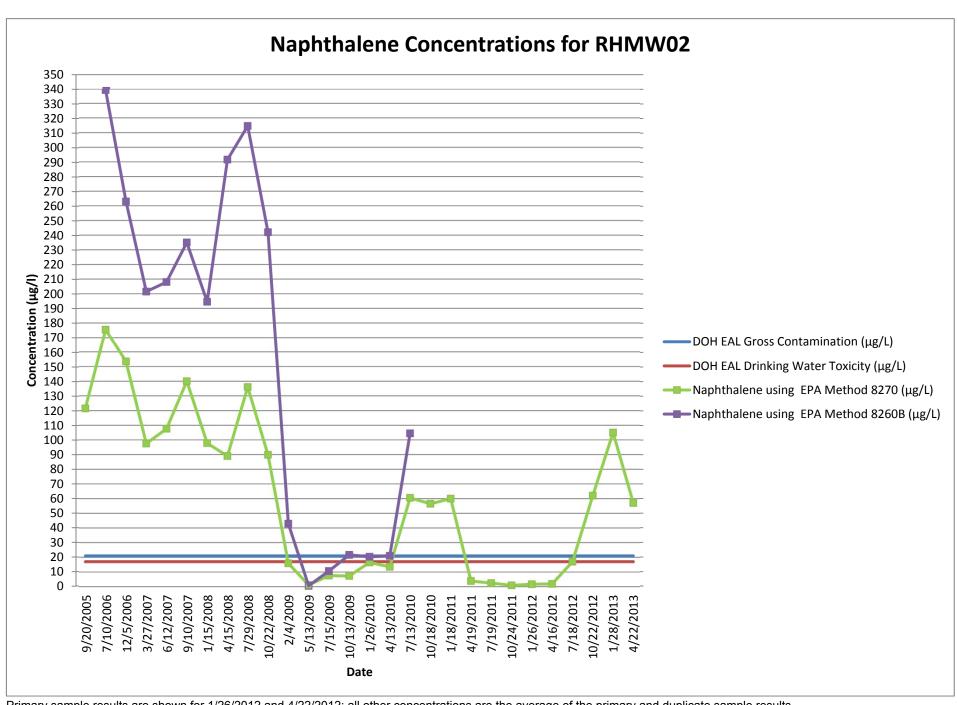
Unfilled boxes indicate non-detections. Method detection limits are shown.

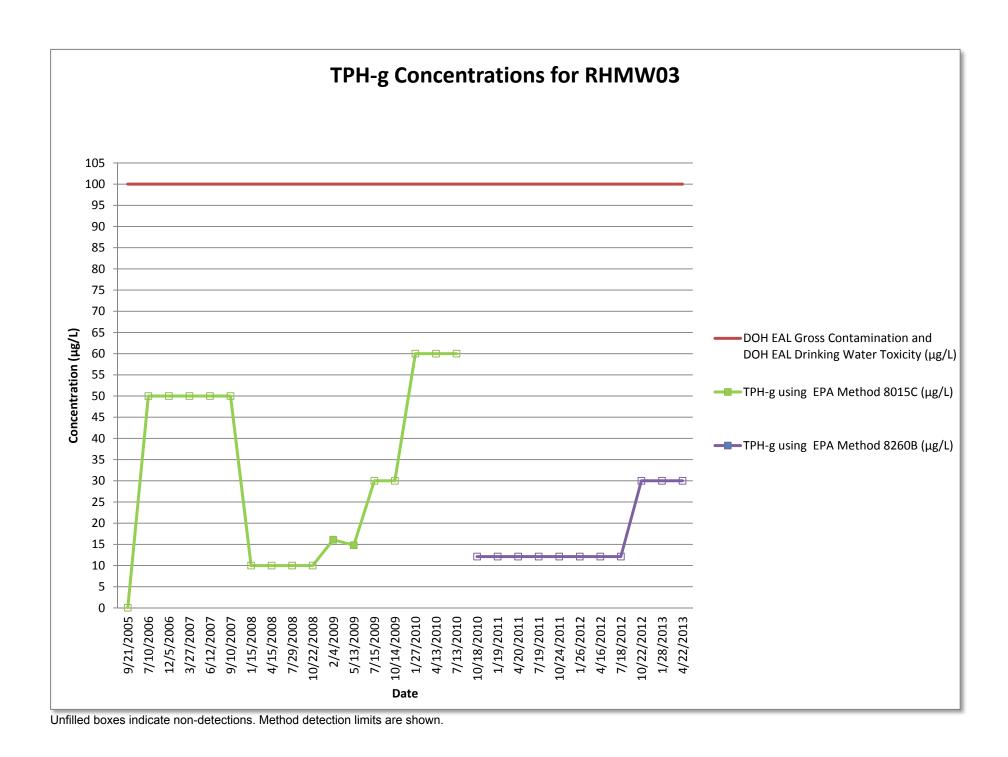
Primary sample results are shown for 1/26/2012 and 7/18/2012; all other concentrations are the average of the primary and duplicate sample results.

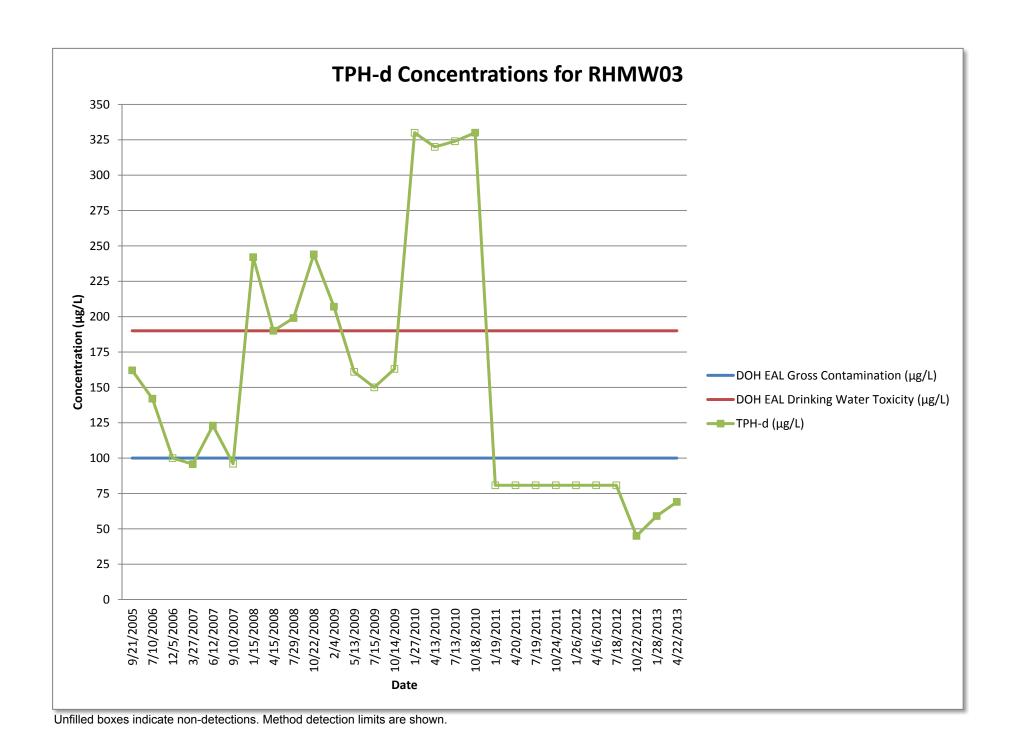

Unfilled boxes indicate non-detections. Method detection limits are shown.


Data points for 9/20/2005 through 4/22/2013 are the average of the primary and duplicate samples. Unfilled boxes indicate non-detections. Method detection limits are shown.

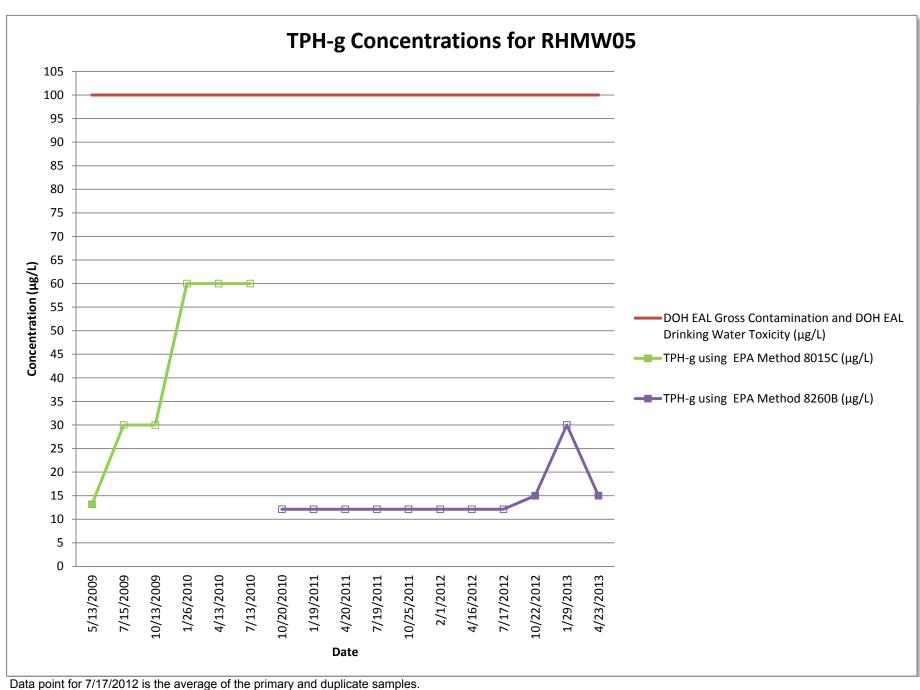

Data points for 9/20/2005 through 4/22/2013 are the average of the primary and duplicate samples. Unfilled boxes indicate non-detections. Method detection limits are shown.

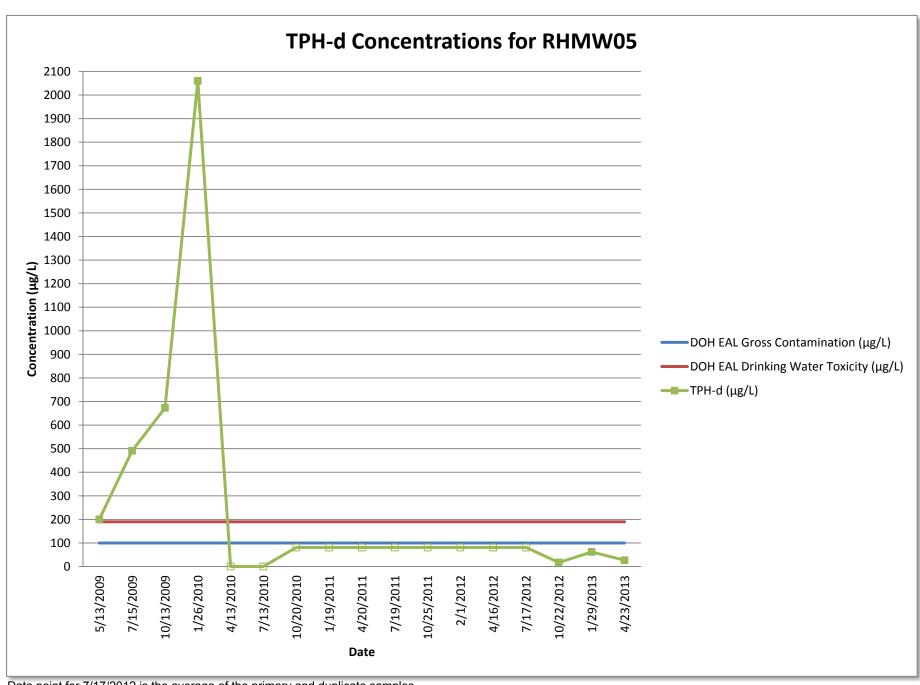

Data points for 9/20/2005 and 3/27/2007 through 4/22/2013 are the average of the primary and duplicate samples. Unfilled boxes indicate non-detections. Method detection limits are shown.

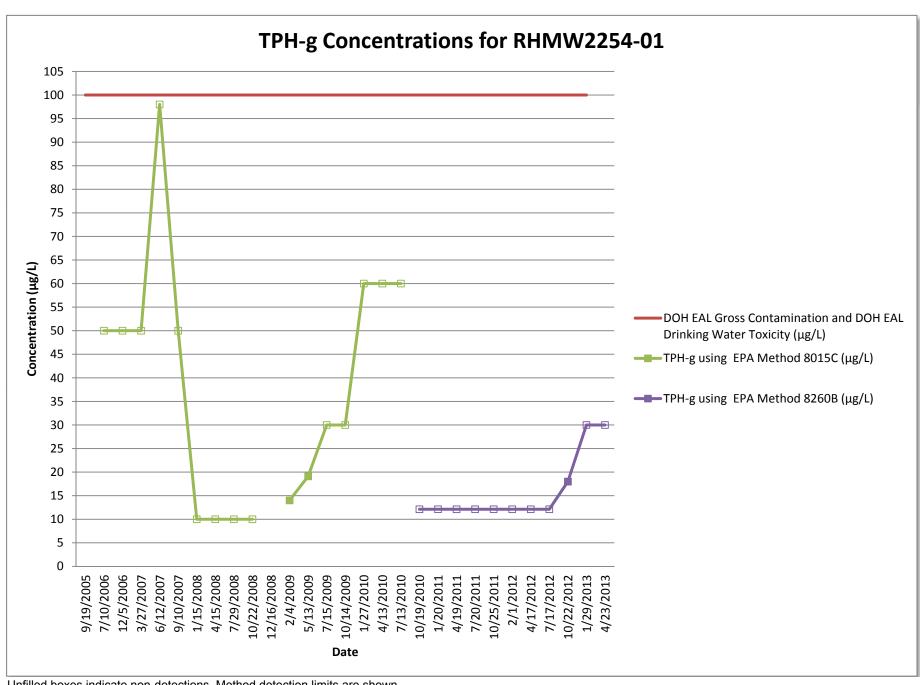

Data points for 9/20/2005 and 3/27/2007 through 4/22/2013 are the average of the primary and duplicate samples. Unfilled boxes indicate non-detections. Method detection limits are shown.

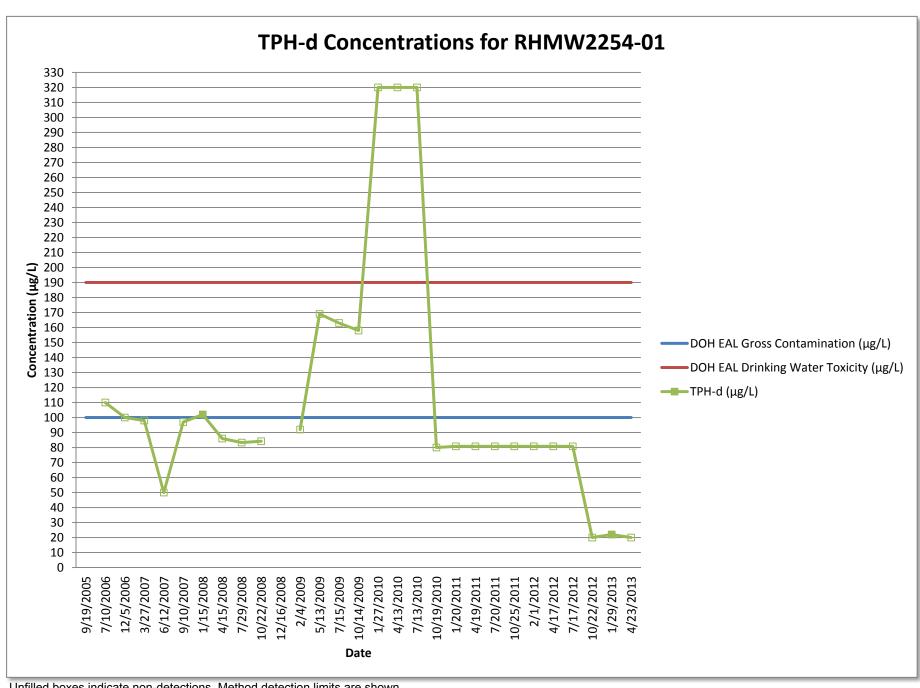


Primary sample results are shown for 1/26/2012 and 4/22/2012; all other concentrations are the average of the primary and duplicate sample results. Unfilled boxes indicate non-detections. Method detection limits are shown.






Unfilled boxes indicate non-detections. Method detection limits are shown. Possible laboratory contamination for 10/23/2012 sampling event.


Data point for 7/17/2012 is the average of the primary and duplicate samples. Unfilled boxes indicate non-detections. Method detection limits are shown.

Unfilled boxes indicate non-detections. Method detection limits are shown. Possible laboratory contamination for 10/23/2012 sampling event.

Unfilled boxes indicate non-detections. Method detection limits are shown. Laboratory data rejected for 1/15/2008 sampling event.

APPENDIX E Waste Disposal Manifest

Δ	NON-HAZARDOUS	Generator ID Number				4. Waste Tracking Number				
7	WASTE MANIFEST	IIITD AAA AFA AAA			808-206-9989		000019554			
	5 Generator's Name and Mailir COMNAVREG HAW 400 MARSHALL JBPHH, HI 968	ng Address AII, C/O NAVFAC HA ROAD, ATTN: ESTREL 60-3139	WAII, CODI	E PRJ4.	RED	•	JLK FUEL			C8553-03
Ш	Generator's Phone:	808-471-4216		- 1		,				
	6. Transporter 1 Company Nam						U.S. EPA ID 1	Number		
	PACIFIC COMME	RCIAL SERVICES, LL	C.	80	8-545-4599		H I	R 0	0 0 0 9	7 8 2 4
	7. Transporter 2 Company Nam					<u>.</u>	U.S. EPA ID I			
	UNITEK SOLVEN	T SERVICES. INCO	80	8-682-8284		HIL	9 8	2 4 4 3	7 1 5	
UNITEK SOLVENT SERVICES, INCOAHU 808-682-8284 8. Designated Facility Name and Site Address							U.S. EPA ID 1			
	91-125 KAOMI	T SERVICES, INC. LOOP 96707 808-682-8284			•		H I	D 9 i	8244	3 7 1 5
			**		10. Cor	ntainers	11. Total	12. Unit		
Ш	9. Waste Shipping Name	e and Description			No.	Туре	Quantity	Wt./Vol.		
GENERATOR -	1200	L NOT REGULATED BY E AND DECONTAMINAT)	001	DΜ	00020	G		NON-RCRA
	2.									
5										
	300	ppm HQ PI Supply TE	+=6							
	⁴ Pcs	SUPPLY TE	丁、							
	13. Special Handling Instruction	ns and Additional Information			<u> </u>				<u> </u>	300 PPN
П	9b1: NR	no and readily morning			2008	9b1:		TOTAL	HALOGEN:	inc to the
	SHIPPING NAME (WHERE A BY HIGHWAY ACCORDING T	TION: I HEREBY DECLARE THAT THAT THAT THE APPLICABLE AND ARE CLASSIFIED, TO APPLICABLE GOVERNMET REGULA	PACKED, MARKED	, AND LAB	ELED AND ARE IN A THAT IF THIS IS	LL RESPECTS USED OIL IT	IN PROPER CO	ONDITION O REGUL	FOR TRANSPO ATION UNDER	4Đ
		DOES NOT CONTAIN PCBS GREATER	ZAZADOONIS MARRET	ATO AND COR	HAZADDONG MAGMEG					
Ш	14. GENERATOR'S/OFFEROF	R'S CERTIFICATION: I hereby declare the ded, and are in all respects in proper cond	at the contents of this	consignment a	re fully and accurately d	lescribed above	by the proper shi	pping nam	ie, and are classi	ied, packaged,
	marked and labeled/placard Generator's/Offeror's Printed/Ty		mon for transport acco		nature	anonal governi	1 / -		Month	Day Year
\forall	Estrelita	·			Estre	lita	Nie	7	DL	10513
اد	15. International Shipments	monorito U.S.		Export from	U.S. Port of	entry/exit:		/		
I.L	Transporter Signature (for expo			,		aving U.S.:				<u>.</u>
	16. Transporter Acknowledgme	ent of Receipt of Materials								
TRANSPORTER	Transporter 1 Printed/Typed Na	ame		Sig	nature	11			Month	* .
SPC	Grader	(-)		1	yee/E X				6 Manth	5 13
Ä	Transporter 2 Printed/Typed Na	ame		'Sig	nature	4	\supset		Month	Day Year
뜨	MOB AU					-			- $ Q $	1615
A	17. Discrepancy				·					
	17a. Discrepancy Indication Sp	pace Quantity	Пуре		Residue		Partial Rej	ection		Full Rejection
		• •								
1					Manifest Reference	e Number:	U.S. EPA ID	Mumber		
≧	17b. Alternate Facility (or Gene	erator)					U.O. EMA ID I	variabet		
딍							1			
Ā	Facility's Phone:								Month	Day Year
빌	17c. Signature of Alternate Fac	cility (or Generator)		1						Day rear
ANS.			Dagen wegitani di disebuah			4. + 134 14. + 1				1
DESIGNATED FACILITY	SEE	CHLOUDE	走り	K/X	MATE	ブント	16/	72		
) 2		<u> </u>	<u> Prikulini karaja</u>			
		or Operator: Certification of receipt of mat	erials covered by the r			(X)			Month	Day, Year
\bigvee	Printed/Typed Name	· JUHANBI	Y	Sig	gnature	X	•		wonth L	1200

DESIGNATED FACILITY TO GENERATOR

