Final Second Quarter 2013 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells

Red Hill Bulk Fuel Storage Facility
Joint Base Pearl Harbor-Hickam, Oahu, Hawaii

DOH Facility ID: 9-102271

DOH Release ID: 990051, 010011, and 020028

July 2013

Department of the Navy Naval Facilities Engineering Command, Hawaii 400 Marshall Road JBPHH, HI 96860-3139

Contract Number N62742-12-D-1853, CTO 0002

Final Second Quarter 2013 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells

Red Hill Bulk Fuel Storage Facility
Joint Base Pearl Harbor-Hickam, Oahu, Hawaii

DOH Facility ID: 9-102271

DOH Release ID: 990051, 010011, and 020028

July 2013

Prepared for:

Department of the Navy Naval Facilities Engineering Command, Hawaii 400 Marshall Road JBPHH, HI 96860-3139

Prepared by:

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734

Prepared under:

Contract Number N62742-12-D-1853, CTO 0002

FINAL SECOND QUARTER 2013 - QUARTERLY GROUNDWATER MONITORING REPORT OUTSIDE TUNNEL WELLS RED HILL BULK FUEL STORAGE FACILITY

Long-Term Groundwater and Soil Vapor Monitoring Red Hill Bulk Fuel Storage Facility Joint-Base Pearl Harbor-Hickam, Oahu, Hawaii

Prepared for:

Department of the Navy Commanding Officer, Naval Facilities Engineering Command, Hawaii 400 Marshall Road JBPHH, HI 96860-3139

Prepared by:

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734 (808) 261-0740

Prepared under:

Contract Number: N62742-12-D-1853 Contract Task Order: 0002

Approval Signature:		
-	Darren Uchima, Navy Technical Represer	ntative Date
	7. 0.	
Approval Signature:	Koline	7/2/2013
	Robert Chong, ESI Project Manager	Date
	4 0 0	
Approval Signature:	Mis van der Zad	7/2/2013
	Iris van der Zander, ESI QA Manager	Date

TABLE OF CONTENTS

<u>Section</u>	Section Title							
ES	EXECUTIVE SUMMARY	ES-1						
1.0	INTRODUCTION	1-1						
1.1	Site Description	1-1						
1.2	Physical Settings	1-2						
1.3	Background	1-3						
2.0	GROUNDWATER SAMPLING	2-1						
2.1	Groundwater Sampling	2-1						
2.2	Analytical Results	2-1						
2.3	Waste Disposal	2-2						
3.0	DATA QUALITY ASSESSMENT	3-1						
3.1	Data Validation and Assessment	3-1						
3.2	Data Assessment and Usability Conclusions	3-3						
4.0	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	4-1						
5.0	FUTURE WORK	5-1						
6.0	REFERENCES	6-1						

LIST OF TABLES

<u>Number</u>	<u>Title</u>	<u>Page</u>
1.1	Current Status of USTs	1-2
2.1	Analytical Results for Groundwater Sampling (April 24, 2013)	2-3
3.1	Quality Control Results for Groundwater Sampling (April 24, 2013)	3-5

LIST OF FIGURES

<u>Number</u>	<u>Title</u>
1	Site Location
2	Site Layout

APPENDICES

<u>Appendix</u>	<u>Title</u>
Α	Groundwater Sampling Logs
В	Field Notes
С	Laboratory Reports
D	Historical Groundwater Exceedance Trends
E	Waste Disposal Manifest

ACRONYMS AND ABBREVIATIONS

ACRONYMS/
ABBREVIATIONS DEFINITION/MEANING

% percent

COPC Contaminant of Potential Concern

DLNR State of Hawaii Department of Land and Natural Resources

DOH State of Hawaii Department of Health

DON Department of the Navy
EAL Environmental Action Level
EPA Environmental Protection Agency
ESI Environmental Science International

F-76 Marine Diesel Fuel

ID Identification

JBPHH Joint Base Pearl Harbor-Hickam

JP-5 Jet Fuel Propellant-5
JP-8 Jet Fuel Propellant-8
LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

LOD Limit of Detection
LOQ Limit of Quantitation
µg/L micrograms per liter

MS Matrix Spike

MSD Matrix Spike Duplicate

NAVFAC Naval Facilities Engineering Command

NAVSUP FLC Naval Supply Systems Command Fleet Logistics Center

N.D. Not Detected

PAH Polycyclic Aromatic Hydrocarbons

PARCCS Precision, Accuracy, Representativeness, Completeness, Comparability,

and Sensitivity

pH hydrogen activity QC Quality Control

RHSF Red Hill Bulk Fuel Storage Facility
RPD Relative Percent Difference
SAP Sampling and Analysis Plan

TEC The Environmental Company, Inc.
TPH-d Total Petroleum Hydrocarbons as diesel
TPH-g Total Petroleum Hydrocarbons as gasoline

U.S. United States of America
UST Underground Storage Tank
VOC Volatile Organic Compounds

WP Work Plan

Contract No. N62742-12-D-1853	Contract Task Order 0002
This Page Intentionally Left Blank.	

EXECUTIVE SUMMARY

This quarterly monitoring report presents the results of the second quarter 2013 groundwater sampling event conducted on April 24, 2013, at the outside tunnel wells of the Red Hill Bulk Fuel Storage Facility [RHSF], Joint Base Pearl Harbor-Hickam [JBPHH], Hawaii. The RHSF is located in Halawa Heights on the Island of Oahu. There are 18 active and 2 inactive underground storage tanks [USTs] located at the RHSF. The State of Hawaii Department of Health [DOH] Facility Identification [ID] number is 9-102271. The DOH Release ID numbers are 990051, 010011, and 020028.

The groundwater sampling was conducted as part of the long-term groundwater and soil vapor monitoring at the RHSF, under Naval Facilities Engineering Command [NAVFAC] Contract Number N62742-12-D-1853. The sampling was conducted in accordance with the approved Work Plan [WP]/Sampling and Analysis Plan [SAP] prepared by Environmental Science International [ESI].

On April 24, 2013, ESI personnel collected groundwater samples from two outside tunnel monitoring wells (wells HDMW2253-03 and OWDFMW01). A summary of the analytical results is provided below.

- HDMW2253-03 Total Petroleum Hydrocarbons as diesel [TPH-d] (45 micrograms per liter [μg/L]), naphthalene (0.16 μg/L), and lead (0.102 μg/L) were detected. None of the Contaminants of Potential Concern [COPCs] were detected at concentrations above the DOH Environmental Action Levels [EALs] for drinking water toxicity or gross contamination.
- **OWDFMW01** TPH-d (1,900 μg/L), acetone (84 μg/L), naphthalene (0.063 μg/L), and benzene (0.82 μg/L) were detected. TPH-d was detected at a concentration above the DOH EALs for both drinking water toxicity and gross contamination.

Since the wells were last sampled (January 2013), with the exception of TPH-d, groundwater contaminant concentrations remained at low concentrations and did not change significantly, or were not detected. TPH-d concentrations decreased in well HDMW2253-03 and increased in well OWDFMW01 since the last sampling event in January 2013. TPH-d detected in HDMW2253-03 decreased to a concentration below the DOH EAL for both drinking water toxicity and gross contamination. The TPH-d concentration decreased from 600 μ g/L during the last round of sampling to 45 μ g/L during this round of sampling. TPH-d concentrations in well OWDFMW01 increased from 1,000 μ g/L during the last round of sampling to 1,900 μ g/L.

Based on the results of the assessment, continued groundwater monitoring at the RHSF is recommended. If the TPH-d concentrations significantly increase, the monitoring frequency should be increased to monthly, even though the two outside wells are not included in the RHSF Groundwater Protection Plan.

This Page Intentionally Left Blank.

SECTION 1 – INTRODUCTION

This quarterly monitoring report presents the results of the second quarter 2013 groundwater sampling event conducted on April 24, 2013, at the outside tunnel wells of the RHSF, JBPHH, Hawaii. The RHSF is located in Halawa Heights on the Island of Oahu. The purpose of the sampling is to (1) assess the condition of groundwater beneath and in the vicinity of the RHSF with respect to chemical constituents associated with jet fuel propellant and marine diesel fuel, and (2) to ensure the Navy remains in compliance with DOH UST release response requirements as described in Hawaii Administrative Rules 11-281 Subchapter 7, Release Response Action (DOH, 2000). The DOH Facility ID number for the RHSF is 9-102271. The DOH Release ID numbers are 990051, 010011, and 020028.

The groundwater sampling was conducted as part of the long-term groundwater and soil vapor monitoring at the RHSF, under NAVFAC Contract Number N62742-12-D-1853. The sampling was conducted in accordance with the approved WP/SAP prepared by ESI (ESI, 2012).

1.1 SITE DESCRIPTION

The RHSF is located on federal government land (zoned F1- Military and Federal), located in Halawa Heights, approximately 2.5 miles northeast of Pearl Harbor (Figure 1). It is located on a low ridge on the western edge of the Koolau Mountain Range that divides Halawa Valley from Moanalua Valley. The RHSF is bordered on the north by Halawa Correctional Facility and private businesses, on the west by the United States of America [U.S.] Coast Guard reservation, on the south by residential neighborhoods, and on the east by Moanalua Valley. A quarry is located less than a quarter mile away to the northwest. The RHSF occupies 144 acres of land and the majority of the site is at an elevation of approximately 200 to 500 feet above mean sea level.

The RHSF contains 18 active and 2 inactive USTs, which are operated by Naval Supply Systems Command Fleet Logistics Center [NAVSUP FLC] Pearl Harbor (formerly Fleet and Industrial Supply Center). Each UST has a capacity of approximately 12.5 million gallons. The RHSF is located approximately 100 feet above the basal aquifer. The USTs contain Jet Fuel Propellant-5 [JP-5], Jet Fuel Propellant-8 [JP-8], and Marine Diesel Fuel [F-76]. The current status of each of the USTs is summarized in Table 1.1.

Two groundwater monitoring wells (well HDMW2253-03 and OWDFMW01) are located outside of the RHSF tunnel system (Figure 2). Well HDMW2253-03 is located at the Halawa Correctional Facility (outside the RHSF) and well OWDFMW01 is located at the Oily Waste Disposal Facility near Adit 3. Five groundwater monitoring wells (wells RHMW01, RHMW02, RHMW03, RHMW05, and RHMW2254-01) are located within the RHSF lower access tunnel. Monitoring data for the five wells located inside the tunnel are included in a separate report.

Monitoring wells RHMW01, RHMW02, RHMW03, and RHMW05 are located inside the underground tunnels. Monitoring well RHMW2254-01 is located inside the infiltration gallery of

the Department of the Navy [DON] Well 2254-01. DON Well 2254-01 is located approximately 2,400 feet downgradient of the USTs and provides approximately 24 percent [%] of the potable water to the Pearl Harbor System, which serves approximately 52,200 military customers. NAVFAC Public Works Department operates the infiltration gallery and DON Well 2254-01.

TABLE 1.1
Current Status of the USTs
Red Hill Bulk Fuel Storage Facility
April 2013 Quarterly Monitoring Report

Tank Identification	Fuel Type	Status	Capacity
F-1	None	Inactive	12.5 million gallons
F-2	JP-8	Active	12.5 million gallons
F-3	JP-8	Active	12.5 million gallons
F-4	JP-8	Active	12.5 million gallons
F-5	JP-8	Active	12.5 million gallons
F-6	JP-8	Active	12.5 million gallons
F-7	JP-5	Active	12.5 million gallons
F-8	JP-5	Active	12.5 million gallons
F-9	JP-5	Active	12.5 million gallons
F-10	JP-5	Active	12.5 million gallons
F-11	JP-5	Active	12.5 million gallons
F-12	JP-5	Active	12.5 million gallons
F-13	F-76	Active	12.5 million gallons
F-14	F-76	Active	12.5 million gallons
F-15	F-76	Active	12.5 million gallons
F-16	F-76	Active	12.5 million gallons
F-17	JP-5	Active	12.5 million gallons
F-18	JP-5	Active	12.5 million gallons
F-19	None	Inactive	12.5 million gallons
F-20	JP-5	Active	12.5 million gallons

F-76 Marine Diesel Fuel

JP-5 Jet Fuel Propellant-5

JP-8 Jet Fuel Propellant-8

1.2 PHYSICAL SETTINGS

Climatological conditions in the area of the RHSF consist of warm to moderate temperatures and low to moderate rainfall. The RHSF is leeward of the prevailing northeasterly trade winds. The average annual precipitation is approximately 40 inches, which occurs mainly between November and April (State of Hawaii Department of Land and Natural Resources [DLNR], 1986). Annual pan evaporation is approximately 75 inches (DLNR, 1985). Average temperatures range from the low 60's to high 80's (degrees Fahrenheit) (Atlas of Hawaii, 1983).

Oahu consists of the eroded remnants of two shield volcanoes, Waianae and Koolau. The RHSF is located on the southwest flank of the Koolau volcanic shield. Lavas erupted during the shield-building phase of the volcano belong to the *Koolau Volcanic Series* (Stearns and Vaksvik, 1935). Following formation of the Koolau shield, a long period of volcanic quiescence occurred, during which the shield was deeply eroded. Following this erosional period, eruptive activity resumed. Lavas and pyroclastic material erupted during this period belong to the *Honolulu Volcanic Series* (Stearns and Vaksvik, 1935).

In the immediate area of the RHSF, Koolau Volcanic Series lavas dominate, although there are consolidated and unconsolidated non-calcareous deposits in the vicinity that consist of alluvium generated during erosion of the Koolau volcanic shield. South-southwest of the Site, and in isolated exposures to the west, are pyroclastic deposits formed during eruptions from three Honolulu Volcanic Series vents, Salt Lake, Aliamanu, and Makalapa (Stearns and Vaksvik, 1935). Based on established geology and records of the drilled wells (Stearns and Vaksvik, 1938), the RHSF is underlain by Koolau Volcanic Series basalts. The area of the RHSF is classified as *Rock Land*, where 25 to 90% of the land surface is covered by exposed rock and there are only shallow soils (Foote, et al., 1972).

Groundwater in Hawaii exists in two principal types of aquifers. The first and most important type, in terms of drinking water resources, is the basal aquifer. The basal aquifer exists as a lens of fresh water floating on and displacing seawater within the pore spaces, fractures, and voids of the basalt that forms the underlying mass of each Hawaiian island. In parts of Oahu, groundwater in the basal aquifer is confined by the overlying caprock and is under pressure. Waters that flow freely to the surface from wells that tap the basal aquifer are referred to as artesian.

The second type of aquifer is the caprock aquifer, which consists of various kinds of unconfined and semi-confined groundwater. Commonly, the caprock consists of a thick sequence of nearly impermeable clays, coral, and basalt, which separates the caprock aquifer from the basal aquifer. The impermeable nature of these materials and the artesian nature of the basal aquifer severely restrict the downward migration of groundwater from the upper caprock aquifer. In the area of the RHSF, there is no discernible caprock.

Groundwater in the area of the RHSF is part of the *Waimalu Aquifer System* of the *Pearl Harbor Aquifer Sector*. The aquifer is classified as a basal, unconfined, flank-type; and is currently used as a drinking water source. The aquifer is considered fresh with less than 250 milligrams per liter of chloride and is considered an irreplaceable resource with a high vulnerability to contamination (Mink and Lau, 1990).

The nearest drinking water supply well is the DON Well 2254-01, located in the infiltration gallery within the RHSF. DON Well 2254-01 is located approximately 2,400 feet downgradient of the USTs (Figure 2).

1.3 BACKGROUND

The RHSF was constructed by the U.S. Government in the early 1940s. Twenty USTs and a series of tunnels were constructed to supply fuel to the Navy. The USTs were constructed of steel and they currently contain JP-5, JP-8, and F-76. Several tanks in the past have stored DON special fuel oil, DON distillate, aviation gasoline, and motor gasoline (Environet, 2010). The fueling system is a self-contained underground unit that was installed into native rock comprised primarily of basalt with some interbedded tuffs and breccias (Environet, 2010). Each

UST measures approximately 245 feet in height and 100 feet in diameter. The upper domes of the tanks lie at depths varying between 100 feet and 200 feet below ground surface.

In response to increasing concentrations of COPCs in the groundwater monitoring wells within the facility (specifically RHMW02) during the 2008 sampling events, quarterly groundwater monitoring was initiated in 2009 at the outside tunnel wells.

In 2009, groundwater samples were collected from wells RHMW04, OWDFMW01, and HDMW2253-03. Samples were collected in August and October 2009. None of the COPCs were detected at concentrations exceeding the gross contamination or drinking water toxicity DOH EALs.

In 2010, groundwater samples were collected from wells RHMW04, OWDFMW01, and HDMW2253-03. Samples were collected from well RHMW04 in January and April 2010. Samples were collected from well OWDFMW01 in January, April, and October 2010. Samples were collected from well HDMW2253-03 in January, April, July and October 2010. The COPCs concentrations exceeding DOH EALs are summarized below.

- HDMW2253-03 TPH-d was detected at a concentration above the gross contamination and drinking water toxicity DOH EAL in January 2010 (The Environmental Company, Inc. [TEC], 2010a).
- OWDFMW01 TPH-d was detected at a concentration above the gross contamination and drinking water toxicity DOH EALs in January and April 2010 (TEC, 2010a; TEC, 2010b).

In 2011, groundwater samples were collected from wells OWDFMW01 and HDMW2253-03. Samples were collected in January, April, July, and October 2011. None of the COPCs were detected at concentrations exceeding the gross contamination or drinking water toxicity DOH EALs.

In 2012, groundwater samples were collected from wells OWDFMW01 and HDMW2253-03. Samples were collected in January, April, July, and November 2012. TPH-d was detected at a concentration above the DOH EALs in samples collected from wells HDMW2253-03 and OWDFMW01 (Environet, 2012; ESI, 2013a). The COPCs concentrations exceeding DOH EALs are summarized below.

- HDMW2253-03 TPH-d was detected at a concentration above the DOH EALs for gross contamination and drinking water toxicity in April and November 2012.
- **OWDFMW01** TPH-d was detected at a concentration above the DOH EALs for gross contamination and drinking water toxicity in April 2012.

In January 2013, groundwater samples were collected from wells OWDFMW01 and HDMW2253-03 (ESI 2013b). TPH-d was detected at a concentration above the DOH EALs in samples collected from wells HDMW2253-03 and OWDFMW01. The COPCs concentrations exceeding DOH EALs are summarized below.

- HDMW2253-03 TPH-d was detected at a concentration above the DOH EALs for gross contamination and drinking water toxicity in January 2013.
- **OWDFMW01** TPH-d was detected at a concentration above the DOH EALs for gross contamination and drinking water toxicity in January 2013.

1.3.1 Previous Reports

The following groundwater monitoring reports were previously submitted to the DOH:

- 1. Groundwater Monitoring Report, August 2009 (submitted September 2009).
- 2. Groundwater Monitoring Report, October 2009 (submitted December 2009).
- 3. Groundwater Monitoring Report, January, 2010 (submitted April 2010).
- 4. Groundwater Monitoring Report, April 2010 (submitted May 2010).
- 5. Groundwater Monitoring Report, July 2010 (submitted August 2010).
- Groundwater Monitoring Report, October 2010 (submitted December 2010).
- 7. Groundwater Monitoring Report, January 2011 (submitted March 2011).
- 8. Groundwater Monitoring Report, April 2011 (submitted June 2011).
- 9. Groundwater Monitoring Report, July 2011 (submitted September 2011).
- 10. Groundwater Monitoring Report, October 2011 (submitted December 2011).
- 11. Groundwater Monitoring Report, January 2012 (submitted March 2012).
- 12. Groundwater Monitoring Report, April 2012 (submitted July 2012).
- 13. Groundwater Monitoring Report, July 2012 (submitted August 2012).
- 14. Groundwater Monitoring Report, November 2012 (submitted January 2013).
- 15. Groundwater Monitoring Report, January 2013 (submitted April 2013).

This Page Intentionally Left Blank.

SECTION 2 – GROUNDWATER SAMPLING

On April 24, 2013, ESI personnel collected groundwater samples from two monitoring wells (wells OWDFMW01 and HDMW2253-03). The samples were collected in accordance with DOH UST release response requirements and the RHSF Groundwater Protection Plan (TEC, 2008). Prior to purging and sampling, the depth to groundwater and the depth to the bottom of the wells were measured. Well OWDFMW01 was measured by ESI using a Geotech oil/water interface probe. Well HDMW2253-03 was measured by the DLNR using their Geotech oil/water interface probe. The measurements are included in the groundwater sampling logs. No measurable product, sheen, or petroleum hydrocarbon odor was observed in either well.

2.1 GROUNDWATER SAMPLING

Prior to collecting groundwater samples, disposable bailers were used to purge groundwater from the monitoring wells. Wells OWDFMW01 and HDMW2253-03 were purged at a rate of 0.25 and 0.29 liters per minute, respectively.

Water quality parameters were monitored on a periodic basis during well purging. The water quality parameters that were measured included hydrogen activity [pH], temperature, conductivity, dissolved oxygen, and oxidation reduction potential. The water quality parameters were evaluated to demonstrate that the natural characteristics of the aquifer formation water were present within the monitoring well before collecting the sample. At least four readings were collected during the purging process. Purging was considered complete when at least three consecutive water quality measurements stabilized within approximately 10%. The readings were recorded on groundwater monitoring logs which are included in Appendix A. The field notes are included in Appendix B.

When the water quality parameters stabilized, groundwater samples were collected from the wells. The disposable bailers were used to collect the groundwater samples from the monitoring wells. For each monitoring well, the groundwater samples were collected no more than two hours after purging was completed to prevent groundwater interaction with the monitoring well casing and atmosphere. Samples collected for dissolved lead were filtered in the field using a peristaltic pump and a 0.45 micron filter.

2.2 ANALYTICAL RESULTS

The samples were analyzed for TPH-d using U.S. Environmental Protection Agency [EPA] Method 8015M, Total Petroleum Hydrocarbons as gasoline [TPH-g] and Volatile Organic Compounds [VOCs] using EPA Method 8260B, Polycyclic Aromatic Hydrocarbons [PAHs] using EPA Method 8270C SIM, and dissolved lead using EPA Method 6020. The analytical results are summarized below and in Table 2.1. A copy of the laboratory report is included in Appendix C.

- HDMW2253-03 TPH-d (45 μg/L), naphthalene (0.16 μg/L), and lead (0.102 μg/L) were detected. None of the COPCs were detected at concentrations above the DOH EALs for drinking water toxicity or gross contamination.
- **OWDFMW01** TPH-d (1,900 μg/L), acetone (84 μg/L), naphthalene (0.063 μg/L), and benzene (0.82 μg/L) were detected. TPH-d was detected at a concentration above the DOH EALs for both drinking water toxicity and gross contamination.

2.2.1 Groundwater Contaminant Trends

Historical groundwater contaminant concentration trends of COPCs that exceed the DOH EALs are presented in Appendix D. A summary of groundwater contaminant trends are provided below.

- HDMW2253-03 TPH-d detected during this round of quarterly sampling decreased to concentrations below the DOH EALs for both drinking water toxicity and gross contamination. TPH-d concentrations last exceeded the DOH EALs for both drinking water toxicity and gross contamination in January 2013 (600 µg/L). Naphthalene and lead were also detected but remained at low concentrations below DOH EALs, consistent with historical results.
- OWDFMW01 With the exception of TPH-d, groundwater contaminant concentrations remained at low concentrations and did not change significantly, or were not detected. TPH-d concentrations detected during this round of sampling were above the DOH EALs for both drinking water toxicity and gross contamination, and remained between the concentrations detected in November 2012 and January 2013.

Historical groundwater contaminant concentrations above the DOH EALs for both drinking water toxicity and gross contamination are presented in Appendix D.

2.3 WASTE DISPOSAL

The purged groundwater and decontamination water generated during sampling of the wells was stored in a 55-gallon drum along with the purged water and decontamination water from the inside tunnel wells. The drum was stored onsite at Adit 3. On June 5, 2013, the drum of water was picked up by Pacific Commercial Services, LLC and disposed at Unitek Solvent Services, Inc. The waste disposal manifest is included in Appendix E.

Contract Task Order 0002 Contract No. N62742-12-D-1853

TABLE 2.1 Analytical Results for Groundwater Sampling (April 24, 2013) Red Hill Bulk Fuel Storage Facility **April 2013 Quarterly Monitoring Report**

		DOU	ΕΛΙ e				2441 LETTY			OWDE	MW01 (ES026	s) (Dup)		HDMW2252 02 (EC027)					
Method	Chemical	DOH EALS Drinking Water Gross		OWDFMW01 (ES025)						OWDE	V VVU (E3020) (Dup)	1	HDMW2253-03 (ES027)					
		Toxicity	Gross Contamination	Results	Q	LOQ	LOD	DL	Results	Q	LOQ	LOD	DL	Results	Q	LOQ	LOD	DL	
EPA 8015B	TPH-d	190	100	1,900	HD	50	20	15	1,600	HD	50	20	15	45	J	50	20	15	
EPA 8260B	TPH-g	100	100	N.D.	U	50	30	13	N.D.	U	50	30	13	N.D.	U	50	30	13	
	Acenaphthene Acenaphthylene	370 240	20 2,000	N.D. N.D.	U	0.2	0.051 0.051	0.021 0.018	N.D. N.D.	U	0.2	0.050 0.050	0.021 0.018	N.D. N.D.	U U	0.21	0.052 0.052	0.021 0.019	
	Anthracene	1,800	22	N.D.	U	0.2	0.051	0.035	N.D.	U	0.2	0.050	0.034	N.D.	U	0.21	0.052	0.035	
	Benzo[a]anthracene	0.092	4.7	N.D.	Ü	0.2	0.051	0.024	N.D.	Ü	0.2	0.050	0.024	N.D.	U	0.21	0.052	0.025	
	Benzo[g,h,i]perylene	1,500	0.13	N.D.	U	0.2	0.051	0.022	N.D.	U	0.2	0.050	0.022	N.D.	U	0.21	0.052	0.023	
	Benzo[a]pyrene	0.2	0.81	N.D.	U	0.2	0.051	0.037	N.D.	U	0.2	0.050	0.037	N.D.	U	0.21	0.052	0.038	
	Benzo[b]fluoranthene	0.092	0.75	N.D.	U	0.2	0.051	0.025	N.D.	U	0.2	0.050	0.025	N.D.	U	0.21	0.052	0.026	
	Benzo[k]fluoranthene	0.92	0.4	N.D.	U	0.2	0.051	0.024	N.D.	U	0.2	0.050	0.024	N.D.	U	0.21	0.052	0.024	
EPA 8270C SIM	Chrysene	9.2	1	N.D.	U	0.2	0.051	0.019	N.D.	U	0.2	0.050	0.019	N.D.	U	0.21	0.052	0.020	
	Dibenzo[a,h]anthracene Fluoranthene	0.0092 1,500	0.52 130	N.D. N.D.	U	0.2 0.2	0.051 0.051	0.027 0.028	N.D. N.D.	U	0.2 0.2	0.050 0.050	0.027 0.027	N.D. N.D.	U	0.21 0.21	0.052 0.052	0.028 0.028	
	Fluorene	240	950	N.D.	U	0.2	0.051	0.025	N.D.	U	0.2	0.050	0.027	N.D.	U	0.21	0.052	0.025	
	Indeno[1,2,3-cd]pyrene	0.092	0.095	N.D.	U	0.2	0.051	0.023	N.D.	U	0.2	0.050	0.023	N.D.	U	0.21	0.052	0.023	
	1,-Methylnaphthalene	4.7	10	N.D.	Ü	0.2	0.051	0.029	N.D.	Ü	0.2	0.050	0.029	N.D.	U	0.21	0.052	0.029	
	2,-Methylnaphthalene	24	10	N.D.	U	0.2	0.051	0.027	N.D.	U	0.2	0.050	0.027	N.D.	U	0.21	0.052	0.027	
	Naphthalene	17	21	0.063	J	0.2	0.051	0.023	0.068	J	0.2	0.050	0.023	0.16	J	0.21	0.052	0.024	
	Phenanthrene	240	410	N.D.	U	0.2	0.051	0.031	N.D.	U	0.2	0.050	0.031	N.D.	U	0.21	0.052	0.032	
	Pyrene	180	68	N.D.	U	0.2	0.051	0.025	N.D.	U	0.2	0.050	0.025	N.D.	U	0.21	0.052	0.026	
	1,1,1-Trichloroethane	200	970	N.D.	U	5.0	0.5	0.30	N.D.	U	5.0	0.5	0.30	N.D.	U	5.0	0.5	0.30	
	1,1,2-Trichloroethane 1,1-Dichloroethane	5 2.4	50,000 50,000	N.D. N.D.	U	1.0 5.0	0.5 0.5	0.38 0.28	N.D. N.D.	U	1.0 5.0	0.5 0.5	0.38 0.28	N.D. N.D.	U U	1.0 5.0	0.5 0.5	0.38 0.28	
	1,1-Dichloroethylene	7	1,500	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43	
	1,2,3-Trichloropropane	0.6	50,000	N.D.	Ü	5.0	1.0	0.64	N.D.	Ü	5.0	1.0	0.64	N.D.	Ü	5.0	1.0	0.64	
	1,2,4-Trichlorobenzene	70	3,000	N.D.	U	5.0	1.0	0.5	N.D.	U	5.0	1.0	0.5	N.D.	U	5.0	1.0	0.5	
	1,2-Dibromo-3- chloropropane	0.04	10	N.D.	U	10	2.0	1.2	N.D.	U	10	2.0	1.2	N.D.	U	10	2.0	1.2	
	1,2-Dibromoethane	0.04	50,000	N.D.	U	1.0	0.5	0.36	N.D.	U	1.0	0.5	0.36	N.D.	U	1.0	0.5	0.36	
	1,2-Dichlorobenzene	600	10	N.D.	U	1.0	0.5	0.46	N.D.	U	1.0	0.5	0.46	N.D.	U	1.0	0.5	0.46	
	1,2-Dichloroethane	0.15	7,000	N.D.	U	1.0	0.5	0.24	N.D.	U	1.0	0.5	0.24	N.D.	U	1.0	0.5	0.24	
	1,2-Dichloropropane	5	10	N.D.	U	5.0	0.5	0.42	N.D.	U	5.0	0.5	0.42	N.D.	U	5.0	0.5	0.42	
	1,3-Dichlorobenzene 1,3-Dichloropropene (total of cis/trans)	180 0.43	5 50,000	N.D. N.D.	U	1.0 2.0	0.5 1.0	0.4 0.25	N.D. N.D.	U	1.0 2.0	0.5 1.0	0.4 0.25	N.D. N.D.	U	1.0 2.0	0.5 1.0	0.4 0.25	
	1,4-Dichlorobenzene	75	50,000	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43	
	Acetone	22,000	20,000	84	ICH	20	10	6.0	86	ICH	20	10	6.0	N.D.	ICH, U	20	10	6.0	
	Benzene	5	170	0.82	J	1.0	0.5	0.14	0.67	J	1.0	0.5	0.14	N.D.	U	1.0	0.5	0.14	
	Bromodichloromethane	0.12	50,000	N.D.	U	5.0	0.5	0.21	N.D.	U	5.0	0.5	0.21	N.D.	U	5.0	0.5	0.21	
	Bromoform	80	510	N.D.	U	10	1.0	0.50	N.D.	U	10	1.0	0.50	N.D.	U	10	1.0	0.50	
	Bromomethane	8.7	50,000	N.D.	U	20	5.0	3.9	N.D.	U	20	5.0	3.9	N.D.	U	20	5.0	3.9	
	Carbon Tetrachloride	5	520	N.D.	U	1.0	0.5	0.23	N.D.	U	1.0	0.5	0.23	N.D.	U	1.0	0.5	0.23	
EPA 8260B	Chlorobenzene	100	50	N.D.	U	5.0	0.5	0.17	N.D.	U	5.0	0.5	0.17	N.D.	U	5.0	0.5	0.17	
	Chloroethane Chloroform	21,000 70	16 2,400	N.D. N.D.	U	10 5.0	5.0 0.5	2.3 0.46	N.D. N.D.	U	10 5.0	5.0 0.5	2.3 0.46	N.D. N.D.	U U	10 5.0	5.0 0.5	2.3 0.46	
	Chloromethane	1.8	50,000	N.D.	IJ, U	10	2.0	1.8	N.D.	IJ, U	10	2.0	1.8	N.D.	IJ, U	10	2.0	1.8	
	cis-1,2-Dichloroethylene	70	50,000	N.D.	U	1.0	0.5	0.48	N.D.	U	1.0	0.5	0.48	N.D.	U	1.0	0.5	0.48	
	Dibromochloromethane	0.16	50,000	N.D.	Ü	1.0	0.5	0.25	N.D.	Ü	1.0	0.5	0.25	N.D.	Ü	1.0	0.5	0.25	
	Ethylbenzene	700	30	N.D.	U	1.0	0.5	0.14	N.D.	U	1.0	0.5	0.14	N.D.	U	1.0	0.5	0.14	
	Hexachlorobutadiene	0.86	6	N.D.	U	1.0	0.5	0.32	N.D.	U	1.0	0.5	0.32	N.D.	U	1.0	0.5	0.32	
	Methyl ethyl ketone (2-Butanone)	7,100	8,400	N.D.	U	10	5.0	2.2	N.D.	U	10	5.0	2.2	N.D.	U	10	5.0	2.2	
	Methyl isobutyl ketone (4-Methyl-2-Pentanone)	2,000	1300	N.D.	U	10	5.0	4.4	N.D.	U	10	5.0	4.4	N.D.	U	10	5.0	4.4	
	Methyl tert-butyl Ether Methylene chloride	12 4.8	5 9.100	N.D. N.D.	U	1.0 5.0	0.5 1.0	0.31 0.64	N.D. N.D.	U	1.0 5.0	0.5 1.0	0.31 0.64	N.D.	U U	1.0 5.0	0.5 1.0	0.31	
	Styrene	4.8	9,100	N.D. N.D.	U	1.0	1.0 0.5	0.64	N.D. N.D.	U	1.0	0.5	0.64	N.D. N.D.	U	1.0	1.0 0.5	0.64	
	Tetrachloroethane, 1,1,1,2-	0.52	50,000	N.D.	U	1.0	0.5	0.17	N.D.	U	1.0	0.5	0.17	N.D.	U	1.0	0.5	0.17	
	Tetrachloroethane, 1,1,2,2-	0.067	500	N.D.	U	1.0	0.5	0.40	N.D.	U	1.0	0.5	0.40	N.D.	U	1.0	0.5	0.41	
	Tetrachloroethylene	5	170	N.D.	Ü	5.0	0.5	0.39	N.D.	Ü	5.0	0.5	0.39	N.D.	Ü	5.0	0.5	0.39	
	Toluene	1,000	40	N.D.	U	1.0	0.5	0.24	N.D.	U	1.0	0.5	0.24	N.D.	Ü	1.0	0.5	0.24	
	trans-1,2- Dichloroethylene	100	260	N.D.	U	1.0	0.5	0.37	N.D.	U	1.0	0.5	0.37	N.D.	U	1.0	0.5	0.37	
	Trichloroethylene	5	310	N.D.	U	1.0	0.5	0.37	N.D.	U	1.0	0.5	0.37	N.D.	U	1.0	0.5	0.37	
	Vinyl chloride	2	3,400	N.D.	U	1.0	0.5	0.30	N.D.	U	1.0	0.5	0.30	N.D.	U	1.0	0.5	0.30	
	Xylenes	10,000	20	N.D.	U	11	1.5	0.23	N.D.	U	11	1.5	0.23	N.D.	U	11	1.5	0.23	
EPA 6020	Dissolved Lead	15	50,000	N.D.	U	1.0	0.2	0.0898	N.D.	U	1	0.2	0.0898	0.102	J	1	0.2	0.0898	

The data are in micrograms per liter (µg/L). Shaded values exceeded the DOH EALs.

DOH EALs

DOH Tier 1 Environmental Action Levels for groundwater where groundwater is a current drinking water source and surface water is greater than 150 meters from the site (DOH, Fall 2011).

DEPA

EPA

Environmental Protection Agency

DL EPA HD ICH

Environmental Protection Agency
The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
Initial calibration verification recovery above method control limit for this analyte.
Calibration verification recovery above method control limit for this analyte.
Analyte was detected at a concentration below the LOQ and above the DL. Reported value is estimated.

LOD LOQ N.D. Limit of Detection Limit of Quantitation Not Detected

Q TPH-g TPH-d

Not Detected
Qualifiers
Total Petroleum Hydrocarbons as gasoline
Total Petroleum Hydrocarbons as diesel
Undetected at DL and is reported as less than the LOD.

Contract No. N62742-12-D-1853

This Page Intentionally Left Blank.

SECTION 3 – DATA QUALITY ASSESSMENT

A data quality assessment, which consists of a review of the overall groundwater sample collection and analysis process, was performed in order to determine whether the analytical data generated meet the quality objectives for the project. The field Quality Control [QC] program consisted of standardized sample collection and management procedures, and the collection of field duplicate samples, matrix spike samples, and trip blank samples. The laboratory quality assurance program consisted of the use of standard analytical methods and the preparation and analyses of Matrix Spike [MS]/Matrix Spike Duplicate [MSD] samples, surrogate spikes, blanks, Laboratory Control Samples [LCS] and Laboratory Control Sample Duplicate [LCSD].

3.1 Data Validation and Assessment

The objective of data validation is to provide data of known quality for project decisions. Data quality is judged in terms of Precision, Accuracy, Representativeness, Completeness, Comparability, and Sensitivity [PARCCS]. A number of factors may affect the quality of data, including: sample collection methods, sample analysis methods, and adherence to established procedures for sample collection, preservation, management, shipment, and analysis.

Precision

Precision is defined as the reproducibility of replicate measurements. Precision is evaluated by Relative Percentage Difference [RPD] of field duplicates and laboratory LCS/LCSD or MS/MSD results. Field duplicate and MS/MSD samples were collected at a rate of approximately 10% of project samples. Field duplicates were sent to the laboratory along with the primary samples.

For this monitoring event, the RPDs for MS/MSD and LCS/LCSD pairs were all within the acceptable range except for 1,1-dichloroethylene (22%) and acetone (31%). As neither analyte was detected at a concentration within an order of magnitude of the EAL, this is unlikely to affect data usability. The RPDs of detected analytes for the primary and field duplicate samples (ES025 and ES026) are provided in Table 3.1. A precision of less than 50% for duplicate pairs is required by the DoN Project Procedures Manual to be considered acceptable (DoN 2007). The benzene and naphthalene concentrations detected in the samples were below the respective limits of quantitation [LOQs] implying a higher uncertainty for these results than for values detected above the LOQs (i.e. estimated, J-flagged). Consequently, the assigned RPDs signified the anticipated decrease in precision below the LOQs but were not indicative of a QC issue. Therefore the data precision is considered acceptable.

Accuracy

Accuracy is defined as the degree of conformity of a measurement to a standard or true value. Accuracy is evaluated through measurement of the percent recovery of an analyte in a reference standard or spiked sample. Accuracy limits for surrogates, laboratory control spike, MS, and MSD samples are established by the individual laboratory. The acceptance criteria for accuracy are dependent on the analytical method and are based on historical laboratory data.

Results for TPH-d in samples ES025 and ES026 were flagged "HD." The laboratory indicated a mismatch between the calibration standard and the TPH-d chromatographic profile. Mismatches of this type are not uncommon. The chromatograms are not part of the standard laboratory package and were not reviewed by ESI.

All of the LCS and surrogate spike recoveries for analyzed constituents were within acceptable percent recovery limits. The MS and/or MSD recoveries were below the control limits for 1,1,2,2-tetrachloroethane and 1,1-dichloroethylene, and the associated sample results may be biased low. 1,1,2,2-Tetrachloroethane and 1,1-dichloroethylene were not detected in any of the groundwater samples. However the drinking water EAL for each contaminant is below the respective LODs. Because no HVOCs were detected in any sample, it is not likely that 1,1,2,2-tetrachloroethane or 1,1-dichloroethylene are present at concentrations above the EALs.

The MS and/or MSD recoveries were above the control limits for TPH-d, fluorene, phenanthrene, acetone, and trichloroethene. TPH-d was the only one of these contaminants detected at concentrations above the EAL. The LCS recovery for TPH-d was within control limits, so the high MS recoveries are likely due to matrix interference. The TPH-d concentrations detected in samples ES025 and ES026 exceeded the EALs by an order of magnitude, so it is unlikely that a slight high bias would be significant.

All other MS/MSD recoveries were within acceptable recovery limits; therefore, the data accuracy for this monitoring event is considered acceptable.

Representativeness

Representativeness is the degree that data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness was achieved by conducting sampling in compliance with the sample collection procedures described in the WP/SAP specifically written for this project (ESI, 2012).

Representativeness is also evaluated through the compliance with the sample holding time, sample preservation, and the analysis of blank samples, including method blank and trip blank samples. The sample holding time and sample preservation complied with the EPA criteria. For this sampling event, one trip blank was included in the cooler to assess contamination during sample transport for TPH-g and VOCs. There was no detection of TPH-g or VOCs in the method blank. Therefore, the groundwater sample data are considered representative of the groundwater quality on site.

Completeness

Completeness is defined as the overall percentage of valid analytical results (including estimated results) compared to the total number of analytical results reported by the laboratory. No data were rejected for this project, and therefore the completeness goal for this project (90%) was successfully met.

Comparability

Comparability expresses the confidence with which one data set can be compared to another data set. Comparability can be related to accuracy and precision because these quantities are measures of data reliability. Data, with acceptable precision and accuracy, are considered comparable if collection techniques, analytical procedures, methods and reporting are equivalent. For this monitoring event, the samples were collected using approaches consistent with those in the previous events, and the same analytical methods/procedures were used to measure the concentration of COPCs. Therefore, the results are considered comparable within this data set and with the data collected from previous sampling events. The field and laboratory personnel followed standard operation procedures.

All TPH-g data through July 2010 was analyzed by EPA Method 8015; beginning in October 2010, EPA Method 8260B was used. There was no event where both methods were used, and so there is no way to directly compare the results using each method and determine if one method produces biased results. However, there is no reason to believe that using either method should bias the data, and the TPH-g data for all events should be comparable.

Between August 2009 and July 2010, naphthalene was analyzed for by both EPA Methods 8260B and 8270C, and both results were reported. Beginning in October 2010, only results using EPA Method 8270C were reported. Naphthalene was not detected in any well until November 2012, so comparability with older results should not be a concern. However, the low bias associated with EPA Method 8270C must be considered when making project decisions.

Sensitivity

The LOQs are established by the laboratory based on the LODs or instrument detection limits, historical data, and EPA limits established for the methods. The LOQs for samples may require adjustment due to matrix interference or if high levels of target analytes necessitate dilution before analysis. Matrix interference and sample dilutions have the effect of increasing the LOQs. Laboratory LODs and LOQs for several analytes differed from the LODs and LOQs in the WP/SAP because the laboratory updates them quarterly. LODs and LOQs for several analytes were greater than the DOH EALs (as stated in the WP/SAP) and therefore it is not possible to determine whether the analytes are present at concentrations greater than or equal to the DOH EALs. As suggested by the DOH Technical Guidance Manual, the project action level will be the LOQ for these analytes.

3.2 Data Assessment and Usability Conclusions

The PARCCS criteria were evaluated, and with a few exceptions, all criteria were met. These exceptions include the exceedances of recovery criteria for MS/MSDs for several VOCs and PAHs. Since the surrogate recoveries and the recoveries of the VOCs and PAHs in the LCS/LCSD are all within recovery criteria, the MS/MSD exceendaces are not considered to affect the usability of the data, but may indicate some matrix heterogeneity. TPH-d concentrations exceeded DOH EALs in well OWDFMW01, and may be biased slightly high;

however, since the data are consistent with data from previous events, it appears that the effect of this QC exceedance is not substantial, and the data is usable. The data assessment concludes that all data generated during this event are usable for their intended purpose.

Contract No. N62742-12-D-1853 Contract Task Order 0002

TABLE 3.1 Quality Control Results for Groundwater Sampling (April 24, 2013) Red Hill Bulk Fuel Storage Facility **April 2013 Quarterly Monitoring Report**

		DOH	l EALs		OWDFMW01 (ES025) OWDFMW01 (ES026) (DUP) RPD					ES Trip									
Method	Chemical Constituent	Drinking Water Toxicity	Gross Contamination	Results	Q	LOQ	LOD	DL	Results	Q	LOQ	LOD	DL	Duplicate (%)	Results	Q	LOQ	LOD	DL
EPA 8015B	TPH-d	190	100	1,900	HD	50	20	15	1,600	HD	50	20	15	17.14	-	-	-	-	-
EPA 8260B	TPH-g	100	100	N.D.	U	50	30	13	N.D.	U	50	30	13	NA	N.D.	U	50	30	13
	Acenaphthene	370	20	N.D.	U	0.2	0.051	0.021	N.D.	U	0.2	0.050	0.021	NA	-	-	-	-	-
	Acenaphthylene	240	2,000	N.D.	U	0.2	0.051	0.018	N.D.	U	0.2	0.050	0.018	NA	-	-	-	-	-
	Anthracene	1,800	22	N.D.	U	0.2	0.051	0.035	N.D.	U	0.2	0.050	0.034	NA	-	-	-	-	-
	Benzo[a]anthracene	0.092	4.7	N.D.	U	0.2	0.051	0.024	N.D.	U	0.2	0.050	0.024	NA NA	-	-	-	-	-
	Benzo[g,h,i]perylene	1,500 0.2	0.13 0.81	N.D.	U	0.2	0.051 0.051	0.022 0.037	N.D.	U	0.2	0.050 0.050	0.022	NA NA	-	-	-	-	-
	Benzo[a]pyrene Benzo[b]fluoranthene	0.092	0.75	N.D.	U	0.2	0.051	0.025	N.D.	U	0.2	0.050	0.025	NA NA	-		-	-	-
	Benzo[k]fluoranthene	0.92	0.4	N.D.	Ü	0.2	0.051	0.024	N.D.	Ü	0.2	0.050	0.024	NA NA	-	-	-	-	-
EDA 00700 0114	Chrysene	9.2	1	N.D.	Ü	0.2	0.051	0.019	N.D.	Ü	0.2	0.050	0.019	NA	-	-	-	-	-
EPA 8270C SIM	Dibenzo[a,h]anthracene	0.0092	0.52	N.D.	U	0.2	0.051	0.027	N.D.	U	0.2	0.050	0.027	NA	-	-	-	-	-
	Fluoranthene	1,500	130	N.D.	U	0.2	0.051	0.028	N.D.	U	0.2	0.050	0.027	NA	-	-	-	-	-
	Fluorene	240	950	N.D.	U	0.2	0.051	0.025	N.D.	U	0.2	0.050	0.025	NA	-	-	-	-	-
	Indeno[1,2,3-cd]pyrene	0.092	0.095	N.D.	U	0.2	0.051	0.022	N.D.	U	0.2	0.050	0.022	NA	-	-	-	-	-
	1,-Methylnaphthalene	4.7	10	N.D.	U	0.2	0.051	0.029	N.D.	U	0.2	0.050	0.029	NA NA	-	-	-	-	-
	2,-Methylnaphthalene Naphthalene	24 17	10	N.D. 0.063	J	0.2	0.051 0.051	0.027 0.023	N.D. 0.068	J	0.2	0.050 0.050	0.027 0.023	7.63	-	-	-	-	-
	Phenanthrene	240	410	0.063 N.D.	U	0.2	0.051	0.023	0.066 N.D.	U	0.2	0.050	0.023	7.63 NA	-	-	-	-	-
	Pyrene	180	68	N.D.	Ü	0.2	0.051	0.025	N.D.	Ü	0.2	0.050	0.025	NA NA	-	-	-	-	-
	1,1,1-Trichloroethane	200	970	N.D.	Ü	5.0	0.5	0.30	N.D.	Ü	5.0	0.5	0.30	NA	N.D.	U	5.0	0.5	0.30
	1,1,2-Trichloroethane	5	50,000	N.D.	U	1.0	0.5	0.38	N.D.	U	1.0	0.5	0.38	NA	N.D.	U	1.0	0.5	0.38
	1,1-Dichloroethane	2.4	50,000	N.D.	U	5.0	0.5	0.28	N.D.	U	5.0	0.5	0.28	NA	N.D.	U	5.0	0.5	0.28
	1,1-Dichloroethylene	7	1,500	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43	NA	N.D.	U	1.0	0.5	0.43
	1,2,3-Trichloropropane	0.6	50,000	N.D.	U	5.0	1.0	0.64	N.D.	U	5.0	1.0	0.64	NA	N.D.	U	5.0	1.0	0.64
	1,2,4-Trichlorobenzene	70	3,000	N.D.	U	5.0	1.0	0.5	N.D.	U	5.0	1.0	0.5	NA	N.D.	U	5.0	1.0	0.5
	1,2-Dibromo-3- chloropropane 1,2-Dibromoethane	0.04 0.04	10 50,000	N.D.	U	1.0	2.0 0.5	1.2 0.36	N.D.	U	1.0	2.0 0.5	1.2 0.36	NA NA	N.D. N.D.	U	1.0	2.0 0.5	1.2 0.36
	1,2-Dibromoetriane 1,2-Dichlorobenzene	600	10	N.D.	U	1.0	0.5	0.46	N.D.	U	1.0	0.5	0.46	NA NA	N.D.	U	1.0	0.5	0.46
	1,2-Dichloroethane	0.15	7,000	N.D.	Ü	1.0	0.5	0.24	N.D.	Ü	1.0	0.5	0.24	NA NA	N.D.	Ü	1.0	0.5	0.24
	1,2-Dichloropropane	5	10	N.D.	U	5.0	0.5	0.42	N.D.	Ü	5.0	0.5	0.42	NA	N.D.	U	5.0	0.5	0.42
	1,3-Dichlorobenzene	180	5	N.D.	U	1.0	0.5	0.4	N.D.	U	1.0	0.5	0.4	NA	N.D.	U	1.0	0.5	0.4
	1,3-Dichloropropene (total of cis/trans)	0.43	50,000	N.D.	U	2.0	1.0	0.25	N.D.	U	2.0	1.0	0.25	NA	N.D.	U	2.0	1.0	0.25
	1,4-Dichlorobenzene	75	5	N.D.	U	1.0	0.5	0.43	N.D.	U	1.0	0.5	0.43	NA	N.D.	U	1.0	0.5	0.43
	Acetone	22,000	20,000	84	ICH	20	10	6.0	86	ICH	20	10	6.0	2.35	N.D.	ICH, U	20	10	6.0
	Benzene Bromodichloromethane	5 0.12	170 50,000	0.82 N.D.	U	1.0 5.0	0.5 0.5	0.14 0.21	0.67 N.D.	J U	1.0 5.0	0.5 0.5	0.14 0.21	20.13 NA	N.D. N.D.	U	1.0 5.0	0.5 0.5	0.14 0.21
	Bromoform	80	510	N.D.	U	10	1.0	0.50	N.D.	U	10	1.0	0.50	NA NA	N.D.	U	10	1.0	0.50
	Bromomethane	8.7	50,000	N.D.	Ü	20	5.0	3.9	N.D.	Ü	20	5.0	3.9	NA NA	N.D.	Ü	20	5.0	3.9
	Carbon Tetrachloride	5	520	N.D.	U	1.0	0.5	0.23	N.D.	U	1.0	0.5	0.23	NA	N.D.	U	1.0	0.5	0.23
EPA 8260B	Chlorobenzene	100	50	N.D.	U	5.0	0.5	0.17	N.D.	U	5.0	0.5	0.17	NA	N.D.	U	5.0	0.5	0.17
	Chloroethane	21,000	16	N.D.	U	10	5.0	2.3	N.D.	U	10	5.0	2.3	NA	N.D.	U	10	5.0	2.3
	Chloroform	70	2,400	N.D.	U	5.0	0.5	0.46	N.D.	U	5.0	0.5	0.46	NA	N.D.	U	5.0	0.5	0.46
	Chloromethane	1.8	50,000	N.D.	IJ, U	10	2.0	1.8	N.D.	IJ, U	10	2.0	1.8	NA	N.D.	IJ, U	10	2.0	1.8
	cis-1,2-Dichloroethylene	70 0.16	50,000 50,000	N.D.	U	1.0	0.5	0.48 0.25	N.D.	U	1.0	0.5 0.5	0.48	NA NA	N.D. N.D.	U	1.0	0.5 0.5	0.48
	Dibromochloromethane Ethylbenzene	700	30,000	N.D.	U	1.0	0.5	0.14	N.D.	U	1.0	0.5	0.25 0.14	NA NA	N.D.	U	1.0	0.5	0.25 0.14
	Hexachlorobutadiene	0.86	6	N.D.	Ü	1.0	0.5	0.32	N.D.	Ü	1.0	0.5	0.32	NA NA	N.D.	Ü	1.0	0.5	0.32
	Methyl ethyl ketone (2-Butanone)	7,100	8,400	N.D.	Ü	10	5.0	2.2	N.D.	Ü	10	5.0	2.2	NA	N.D.	Ü	10	5.0	2.2
	Methyl isobutyl ketone (4-Methyl-2-Pentanone)	2,000	1300	N.D.	U	10	5.0	4.4	N.D.	U	10	5.0	4.4	NA	N.D.	U	10	5.0	4.4
	Methyl tert-butyl Ether	12	5	N.D.	U	1.0	0.5	0.31	N.D.	U	1.0	0.5	0.31	NA	N.D.	U	1.0	0.5	0.31
ĺ	Methylene chloride	4.8	9,100	N.D.	U	5.0	1.0	0.64	N.D.	U	5.0	1.0	0.64	NA	N.D.	U	5.0	1.0	0.64
ĺ	Styrene	100	10	N.D.	U	1.0	0.5	0.17	N.D.	U	1.0	0.5	0.17	NA NA	N.D.	U	1.0	0.5	0.17
ĺ	Tetrachloroethane, 1,1,1,2- Tetrachloroethane, 1,1,2,2-	0.52 0.067	50,000	N.D.	U	1.0	0.5	0.40 0.41	N.D.	U	1.0	0.5	0.40	NA NA	N.D. N.D.	U	1.0	0.5 0.5	0.40 0.41
ĺ	Tetrachloroethylene	0.067	500 170	N.D. N.D.	U	5.0	0.5	0.41	N.D. N.D.	U	5.0	0.5 0.5	0.41	NA NA	N.D. N.D.	U	5.0	0.5	0.41
	Toluene	1,000	40	N.D.	U	1.0	0.5	0.24	N.D.	U	1.0	0.5	0.24	NA NA	N.D.	U	1.0	0.5	0.39
	trans-1,2- Dichloroethylene	100	260	N.D.	Ü	1.0	0.5	0.37	N.D.	Ü	1.0	0.5	0.37	NA NA	N.D.	Ü	1.0	0.5	0.37
	Trichloroethylene	5	310	N.D.	U	1.0	0.5	0.37	N.D.	U	1.0	0.5	0.37	NA	N.D.	U	1.0	0.5	0.37
ĺ	Vinyl chloride	2	3,400	N.D.	U	1.0	0.5	0.30	N.D.	U	1.0	0.5	0.30	NA	N.D.	U	1.0	0.5	0.30
	Xylenes	10,000	20	N.D.	U	11	1.5	0.23	N.D.	U	11	1.5	0.23	NA	N.D.	U	11	1.5	0.23
EPA 6020	Dissolved Lead	15	50,000	N.D.	U	1.0	0.2	0.0898	N.D.	U	1	0.2	0.0898	NA	-	-	-	-	-
- 1 1 .	in micrograms per liter (ug/L). Shaded values exceeded th																		

The data are in micrograms per liter (µg/L). Shaded values exceeded the DOH EALs.

DOH EALs

DOH Tier 1 Environmental Action Levels for groundwater where groundwater is a current drinking water source and surface water is greater than 150 meters from the site (DOH, Fall 2011).

DL Detection Limit or Method Detection Limit (MDL)

EPA Environmental Protection Agency

ICH Initial calibration verification recovery above method control limit for this analyte.

DL EPA ICH IJ

Calibration verification recovery above method control limit for this analyte.

Analyte was detected at a concentration below the LOQ and above the DL. Reported value is estimated.

Limit of Detection

J LOD

LOQ NA N.D. Limit of Quantitation

Both results for duplicate pair were non-detect, no RPD calculations Not Detected

Q TPH-g TPH-d

Total Petroleum Hydrocarbons as gasoline
Total Petroleum Hydrocarbons as diesel
Undetected at DL and is reported as less than the LOD.

Contract No. N62742-12-D-1853

This Page Intentionally Left Blank.

SECTION 4 - SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

This quarterly monitoring report presents the results of groundwater sampling conducted on April 24, 2013, at the RHSF, JBPHH, Hawaii. The RHSF is located in Halawa Heights on the Island of Oahu. The DOH Facility ID number for the RHSF is 9-102271. The DOH Release ID numbers are 990051, 010011, and 020028.

The groundwater sampling was conducted as part of the long-term groundwater and soil vapor monitoring at the RHSF, under NAVFAC Contract Number N62742-12-D-1853. The sampling was conducted in accordance with the approved WP/SAP prepared by ESI.

On April 24, 2013, ESI personnel collected groundwater samples from two monitoring wells (wells HDMW2253-03 and OWDFMW01). A summary of the analytical results is provided below.

- HDMW2253-03 TPH-d (45 μg/L), naphthalene (0.16 μg/L), and lead (0.102 μg/L) were detected. None of the COPCs were detected at concentrations above the DOH EALs for drinking water toxicity or gross contamination.
- OWDFMW01 TPH-d (1,900 μg/L), acetone (84 μg/L), naphthalene (0.063 μg/L), and benzene (0.82 μg/L) were detected. TPH-d was detected at a concentration above the DOH EALs for both drinking water toxicity and gross contamination.

Groundwater Contaminant Trends

Historical groundwater contaminant concentration trends of COPCs that exceed the DOH EALs are presented in Appendix D. A summary of groundwater contaminant trends are provided below.

- HDMW2253-03 Both TPH-d and naphthalene were detected. Naphthalene was last detected in July 2010. TPH-d concentrations detected during this round of quarterly sampling decreased to concentrations below the DOH EALs for both drinking water toxicity and gross contamination. TPH-d concentrations last exceeded the DOH EALs for both drinking water toxicity and gross contamination in January 2013 (600 μg/L).
- OWDFMW01 With the exception of TPH-d, groundwater contaminant concentrations remained at low concentrations and did not change significantly, or were not detected. TPH-d concentrations detected during this round of sampling remained above the DOH EALs for both drinking water toxicity and gross contamination, and increased from the previous sampling event in January 2013 (1,000 µg/L).

Conclusions and Recommendations

Since the wells were last sampled (January 2013), with the exception of TPH-d, groundwater contaminant concentrations remained at low concentrations and did not change significantly, or were not detected. TPH-d concentrations decreased in well HDMW2253-03 and increased in well OWDFMW01. TPH-d detected in HDMW2253-03 decreased to a concentration below the DOH EAL for both drinking water toxicity and gross contamination. The TPH-d concentration decreased from 600 μ g/L during the last round of sampling. TPH-d concentrations in well OWDFMW01 increased from 1,000 μ g/L during the last round of sampling to 1,900 μ g/L.

Based on the results of the assessment, continued groundwater monitoring at the RHSF is recommended. If the TPH-d concentrations significantly increase, the monitoring frequency should be increased to monthly, even though the two outside wells are not included in the RHSF Groundwater Protection Plan.

SECTION 5 – FUTURE WORK

GROUNDWATER SAMPLING

Future work includes the third quarter 2013 groundwater monitoring which is scheduled for July 2013. It is anticipated that the quarterly groundwater monitoring status report will be submitted in August 2013.

This Page Intentionally Left Blank.

SECTION 6 – REFERENCES

Atlas of Hawaii, 1983, Department of Geography, University of Hawaii Press.

DLNR, 1985, Pan Evaporation: State of Hawai'i 1894-1983: Report R74, Division of Water and Land Development, August 1995.

DLNR, 1986, Rainfall Atlas of Hawaii: Report R76, Division of Water and Land Development, June 1986.

DOH, 2000, Hawaii Department of Health, Technical Guidance Manual for Underground Storage Tank Closure and Release Response, March 2000.

DOH, 2011, Screening for Environmental Hazards at Sites with Contaminated Soil and Groundwater, Hawai'i Department of Health, Hazard Evaluation and Emergency Response, December 2011.

DON, 2007, Project Procedures Manual, U.S. Navy Installation Restoration Program, NAVFAC Pacific, Prepared for Pacific Division, Naval Facilities Engineering Command (NAVFAC Pacific), February 2007.

Environet, 2010, Work Plan, Long-Term Monitoring, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, September 2010.

Environet, 2012, Quarterly Groundwater Monitoring Report-Outside (Non-Tunnel Wells), Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, July 2012.

ESI, 2012, Work Plan/Sampling and Analysis Plan, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, October 2012.

ESI, 2013a, Fourth Quarter 2012 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, January 2013.

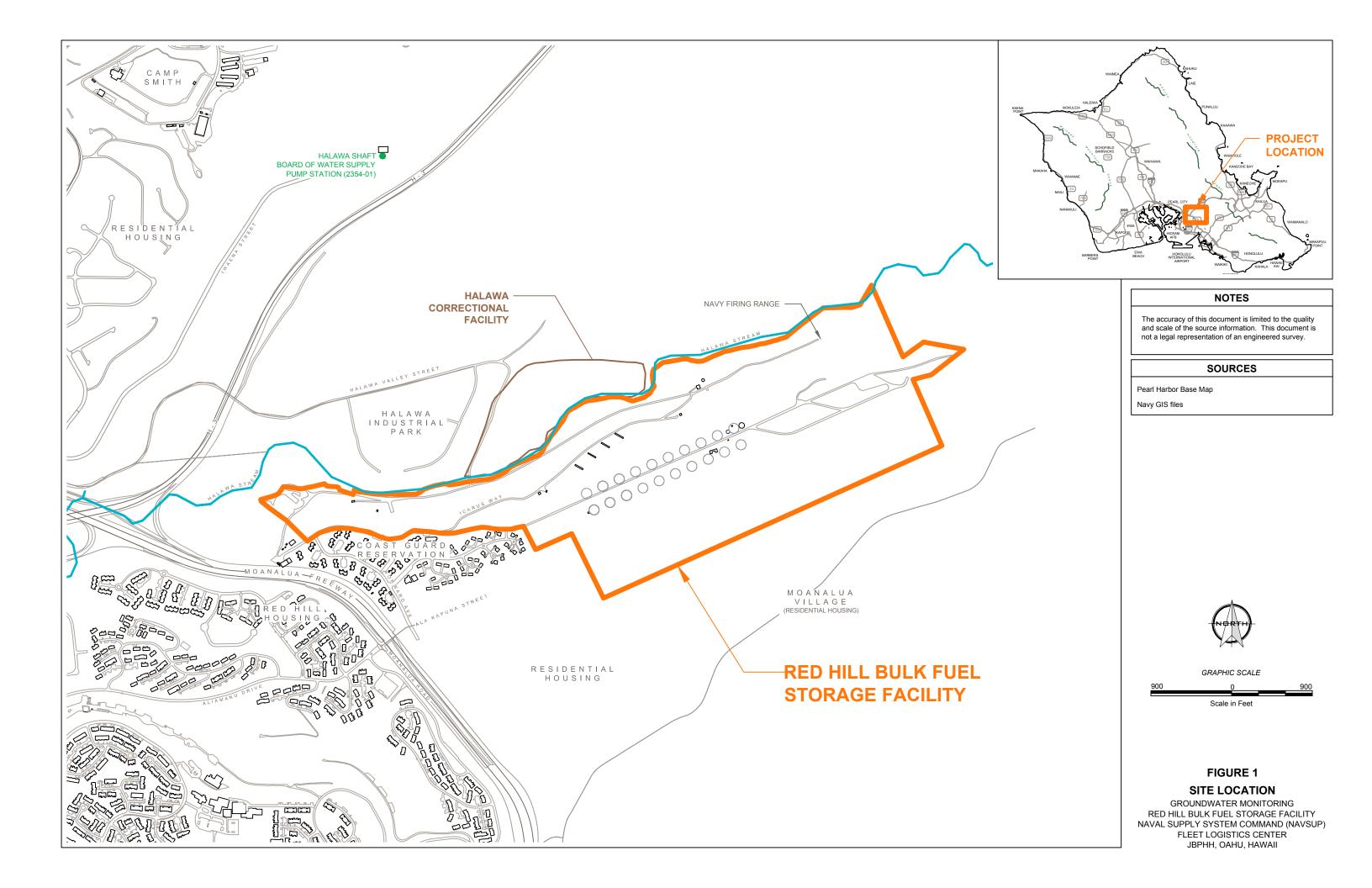
ESI, 2013b, First Quarter 2013 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, April 2013.

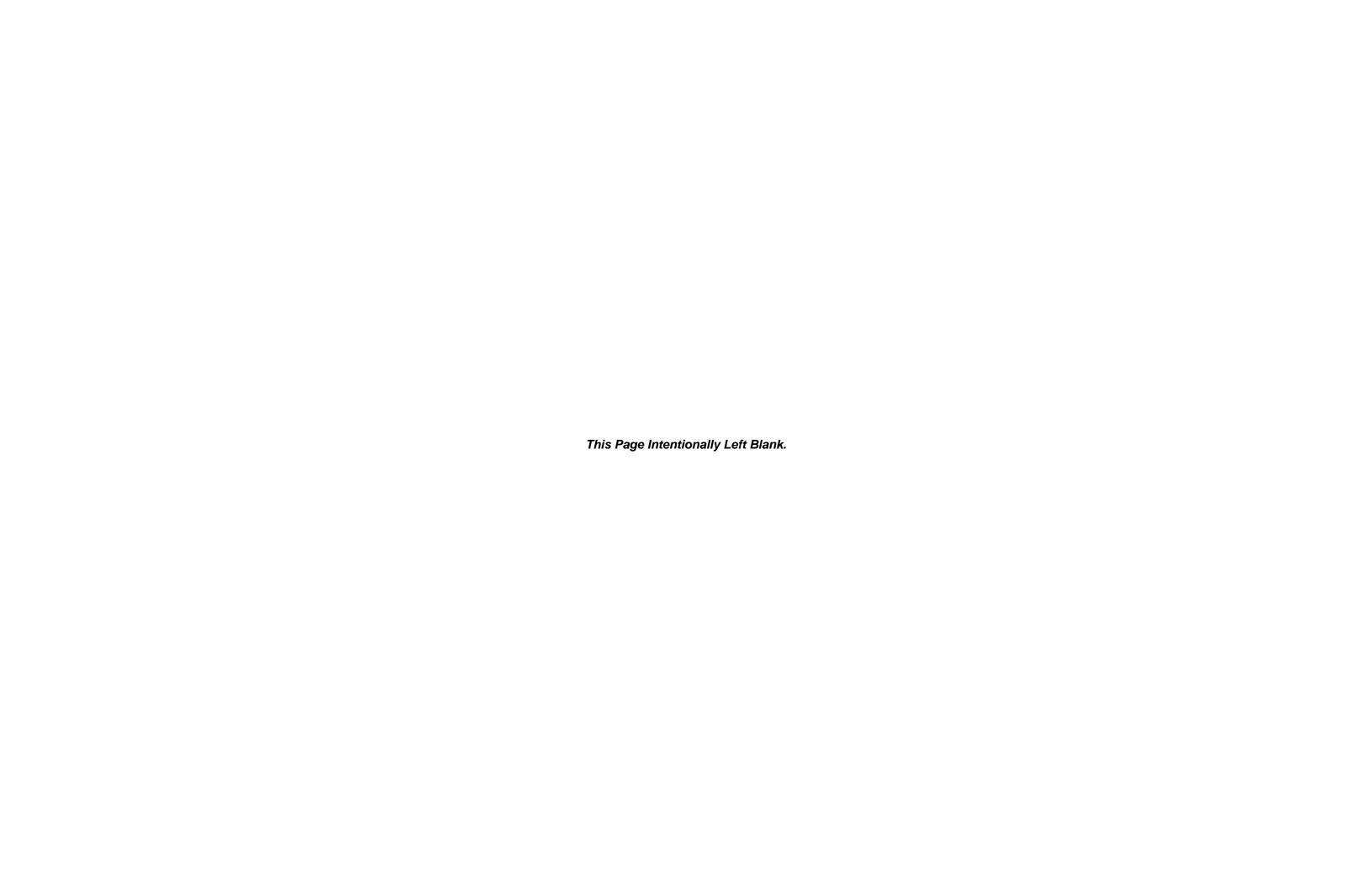
Foote et al., 1972, Soil Survey of the Islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii.

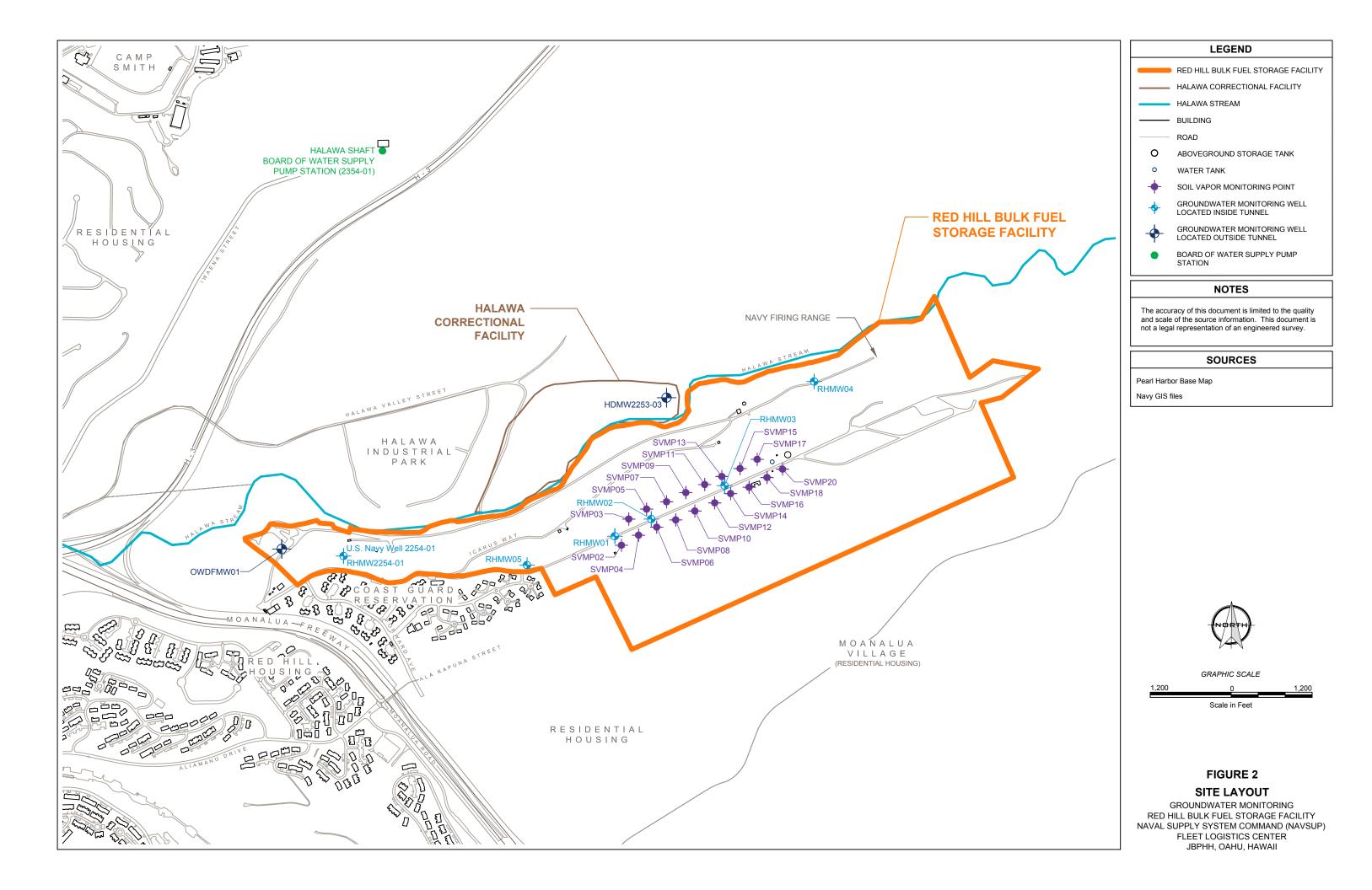
Mink, J. F. and Lau, L. S., 1990, Aquifer Identification and Classification for Oahu: Groundwater Protection Strategy for Hawaii: Water Resources Research Center Technical Report No. 179, February 1990.

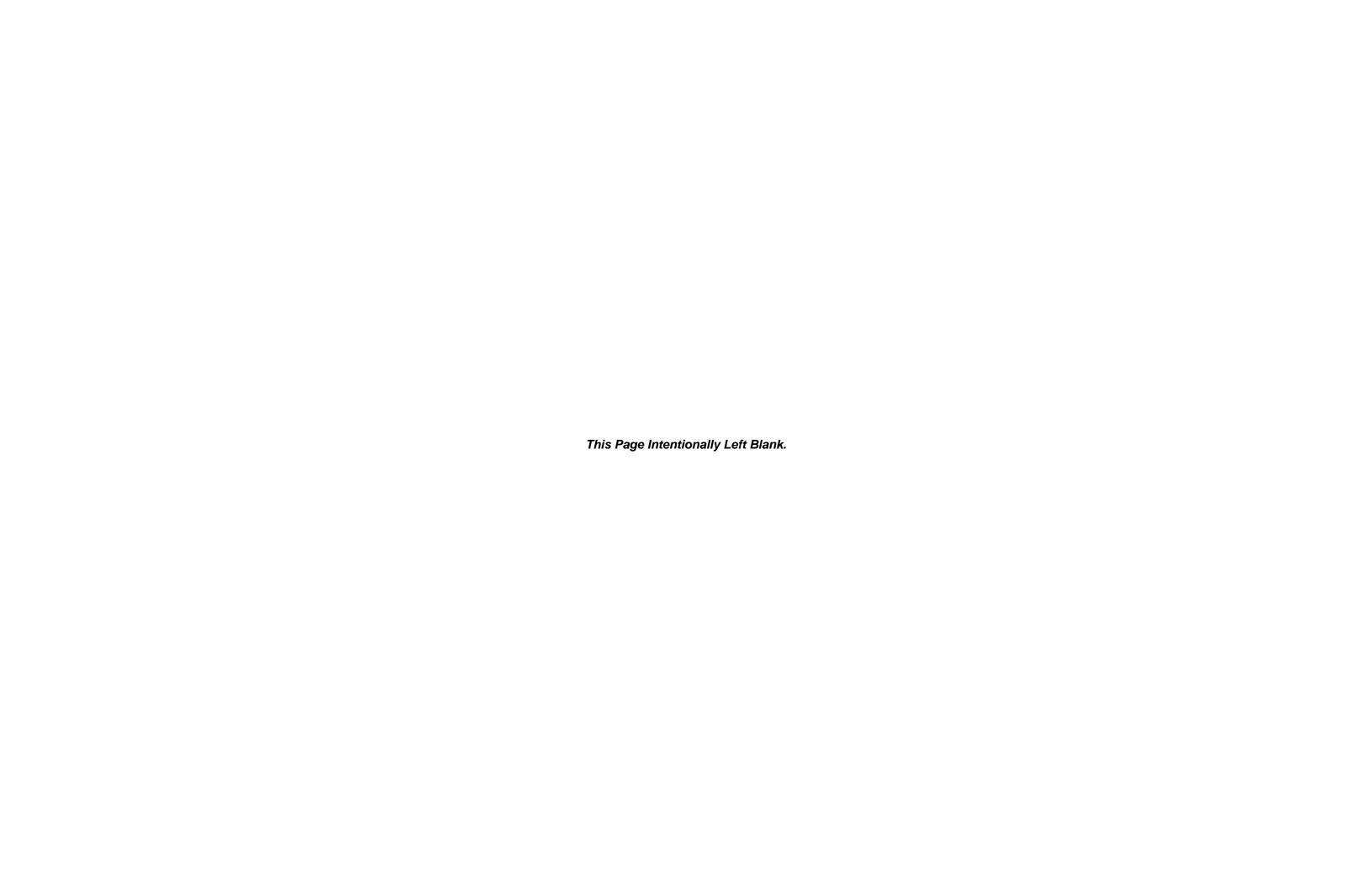
Stearns, H. T. and Vaksvik, K. N., 1935, Geology and Groundwater Resources of the Island of Oahu, Hawaii: Hawaii Div. Hydrogr. Bull.

Stearns, H. T. and Vaksvik, K. N., 1938, Records of the Drilled Wells on the Island of Oahu, Hawaii: Hawaii Div. Hydrogr. Bull. 4, 213 p.


TEC, 2008, Final Groundwater Protection Plan, Red Hill Fuel Storage Facility, Prepared for Navy Region Hawaii, Pearl Harbor, Hawaii, January 2008.


TEC, 2010a, Quarterly Groundwater Monitoring Report – Outside (Non-Tunnel) Wells, Prepared for Navy Region Hawaii, Pearl Harbor, Hawaii, April 2010.


TEC, 2010b, Quarterly Groundwater Monitoring Report – Outside (Non-Tunnel) Wells, Prepared for Navy Region Hawaii, Pearl Harbor, Hawaii, May 2010.


FIGURES

APPENDIX A Groundwater Sampling Logs

Well ID:	OWDFMW0 ²	<u>1</u>	Locatio	n: Red Hill	Bulk Fuel Stora	age Facility I	Project No.:	112066
Initial Wa	iter Level:	120.1	5 ft	Date:	4/24/2013		Гіте: 730	
Total Dep	oth of Well:		145.10 ft	Personi	nel Involved:	Justin Lar	n, Branden Ibara	a
Length of	f Saturated Z	Zone:		Weathe	er Conditions:	Cloudy	, Light Showers	
Volume o	of Water to b	e Rem	oved: <u>5.</u> 0	DL Method	of Removal:	Disposa	ble Hand Bailer	
Water Le	vel After Pu	rging:	120.15	ft Pumpin	g Rate:	0.29	9 L/min	
Well Pur	ge Data:							
Time	Volum Remov		рН	Conductivity (mS/cm)	DO (mg/l)	Temperature	Salinity	Redox (ORP) (mV)
735	0.0 L		9.82	3.120	3.19	23.00	1.70	-288.9
737	1.0 L		9.90	3.167	2.84	23.25	1.71	-289.5
740	2.0 L		9.99	3.021	1.80	23.32	1.63	-289.2
744	3.0 L		10.01	3.026	1.75	23.32	1.64	-289.9
750	4.0 L		10.10	3.045	1.75	23.37	1.73	-279.2
752	5.0 L		10.15	3.052	1.76	23.40	1.73	-282.9
								· -
Sample V	— — Withdrawal N	/lethod	· D	isposable Hand				-
•	nce of Samp		·	iopodabio i iaric	Ballot			
, ippoului	Color:			Clear				
	Turbidity	, 		Low				
	Sedime			None				
	Other:	_		None				
Laborato	ry Analysis F	arame	ters and Pr	eservatives:	TPH-d - 8015;	TPH-g, VOCs - 8	260; PAHs - 82°	70c sim;
					lead - 6020			
Number a	and Types o	f Samp	le Containe	ers: 16 - 40ml \	VOAs, 6 - 1L am	nber jar, 4 - 500ml	amber jar, 4 - 5	600ml HDPE
Sample I	dentification	Numbe	ers: ES0	025 [0800], ESC)25 MS/MSD [08	300]; ES026 [0900)]	
Decontar	nination Pro	cedure	s: Triple F	Rinsed	-			
Notes: 1	None		-					
Sampled	by: Justin	n Lam,	Branden Ib	ara				
•	Delivered to):	Calscienc	e Environmenta	al Lab	Transporters: Fed	IEx	
Date: 4	4/24/2013					Time: 1200		
			(Capacity of Cas	sing (Gallons/Lir	near Feet)		

Well ID: H	HDMW2253	3-03	Location:	Red Hill	Bulk Fuel Stora	age Facility	Project No.:	112066
Initial Wa	ter Level: _	208.0	3 ft	Date:	4/24/2013		Time: 915	<u>; </u>
Total Dep	oth of Well:		1575 ft	Personr	nel Involved:	Justin La	am, Branden Ibar	a
Length of	Saturated	Zone:		Weathe	er Conditions:		Sunny	
Volume o	of Water to I	oe Rem	oved:	Method	of Removal:	Dispos	able Hand Bailer	
Water Le	vel After Pu	ırging:		Pumpin	g Rate:	0.	25 L/min	
Well Purg	ge Data:							
Time	Volun Remov) PH	Conductivity (mS/cm)	DO (mg/l)	Temperature	e Salinity	Redox (ORP) (mV)
927	0.0 I		7.36	0.582	3.14	22.53	0.30	-130.5
931	1.0		7.20	0.487	2.50	22.45	0.25	-244.5
935	2.0 1		7.19	0.484	2.80	22.44	0.25	-168.5
939	3.0 1		7.17	0.474	2.67	22.38	0.24	-266.1
943	4.0 1		7.17	0.469	2.71	22.34	0.24	-259.3
Sample V	Vithdrawal I	Method:	Die	posable Hand	l Railer			
	nce of Samp		DIS	posable Hallo	Dallel			
Аррсаган	Color:	JIC.		Clear				
	Turbidit	v. —		Low				
	Sedime	<i></i>		None				
	Other:			None				
Laborator	ry Analysis	Parame	ters and Pres	servatives:		TPH-g, VOCs -	8260; PAHs - 82	270c sim;
Ni. walaa a a	and Tumas a	. f Cama	la Cantainar	o. C. 40mal.\//	lead - 6020	1 F00	Lombonion 4 O	FORMUDDE
		-		•	OAS, 2 - 1L ami	ber jar, 1 - 500m	l amber jar, 1 - 2	DUMI HDPE
•	dentification			7 [0930]				
	nination Pro	Jeduie	s: Triple Rir	1960				
Notes: No		in I am	Branden Ibai	ra				
•	Delivered to			Environmenta	al Lab	Transporters: Fe	edEx	
•	1/24/2013		2 3 3 3 31.100			Time: 1200	<u></u>	
_			Ca	apacity of Cas	sing (Gallons/Lir			

APPENDIX B Field Notes

Date 4/24/18 69 Project / Client NAVFAC 112066 Location RHR FSF

945: FSJ When (ESOUT) at 40m 2253-03.

1010: ESI finish of House 17 Duw 22 53 - 25, Elean . p.

1030- 40 to calit 3 to dispose

APPENDIX C Laboratory Reports

CALSCIENCE

WORK ORDER NUMBER: 13-04-1894

The difference is service

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For

Client: Environmental Science International, Inc.

Client Project Name: Red Hill LTM 112066

Attention: Robert Chong

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Richard Vellas

Approved for release on 05/2/2013 by: Richard Villafania

Project Manager

e nelac

ResultLink >

Email your PM >

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Red Hill LTM 112066 Work Order Number: 13-04-1894

1	Work Order Narrative	3
2	Client Sample Data	4 4 5 6
3	Quality Control Sample Data	20 20 26
4	Sample Analysis Summary	31
5	Glossary of Terms and Qualifiers	32
6	Chain of Custody/Sample Receipt Form	33

Work Order Narrative

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 04/26/2013. They were assigned to Work Order 13-04-1894.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with an immediate holding time (HT </= 15 minutes --40CFR-136.3 Table II footnote 4), is considered a "field" test and reported samples results are not flagged unless the analysis is performed beyond 24 hours of the time of collection.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontract Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 13-04-1894

Project Name:

Red Hill LTM 112066

Received:

04/26/13 10:30

ANALYTICAL REPORT

13-04-1894-2 Clien	t ID: ES 02	25			Matrix: A	queous U	nits: ug/L	Sampled: 04/24/13 08:00		
EPA 6020 ICP/MS Metals	Extraction	: EPA 30	20A Total							
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
Lead	<0.200	U	0.0898	0.200	1.00	1	04/29/13 00:00	04/29/13 21:47	130429L05D	

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

13-04-1894-3 Clier	nt ID: ES 0	26			Matrix: A	queous U	nits: ug/L	Sampled: 04	/24/13 09:00
EPA 6020 ICP/MS Metals	Extraction	n: EPA 30	020A Total						
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Lead	<0.200	U	0.0898	0.200	1.00	1	04/29/13 00:00	04/29/13 21:50	130429L05D

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

	13-04-1894-4 Client	ID: ES 02	27			Matrix: Aq	ueous Ur	nits: ug/L	Sampled: 04	/24/13 09:30	
	EPA 6020 ICP/MS Metals	Extraction	: EPA 3020	A Total							
,	Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
Ī	Lead	0.102	J	0.0898	0.200	1.00	1	04/29/13 00:00	04/29/13 21:53	130429L05D	

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

099-14-497-27 Clien	t ID: Meth	od Blank			Matrix: A	queous U	nits: ug/L	Sampled: 04	/30/13 17:05
EPA 6020 ICP/MS Metals	Extraction	n: EPA 30	20A Total						
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Lead	<0.200	U	0.0898	0.200	1.00	1	04/29/13 00:00	04/29/13 21:17	130429L05D

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 13-04-1894

Project Name:

Red Hill LTM 112066

Received:

04/26/13 10:30

13-04-1894-2 Clien	Matrix: A	Aqueous U	nits: ug/L	Sampled: 04/24/13 08:00					
EPA 8015B (M) TPH Diese	3510C								
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
TPH as Diesel	1900	HD	15	20	50	1	04/29/13 00:00	04/30/13 12:42	130429B08
Surr: n-Octacosane (51-141%)	134	%					04/29/13 00:00	04/30/13 12:42	130429B08

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

⁻TPH as Diesel is quantified in the carbon range C10-C28.

13-04-1894-3 Client I	D: ES 0	26			Matrix: A	queous U	nits: ug/L	Sampled: 04	4/24/13 09:00)
EPA 8015B (M) TPH Diesel	Extracti	on: EPA 3	510C							
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
TPH as Diesel	1600	HD	15	20	50	1	04/29/13 00:00	04/30/13 12:58	130429B08	
Surr: n-Octacosane (51-141%)	1309	%					04/29/13 00:00	04/30/13 12:58	130429B08	

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

⁻TPH as Diesel is quantified in the carbon range C10-C28.

13-04-1894-4 Client	ID: ES 0	27			Matrix: A	queous U	nits: ug/L	Sampled: 04	4/24/13 09:30
EPA 8015B (M) TPH Diesel	Extracti	on: EPA 3	510C						
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
TPH as Diesel	45	J	15	20	50	1	04/29/13 00:00	04/30/13 14:20	130429B08
Surr: n-Octacosane (51-141%)	140	%					04/29/13 00:00	04/30/13 14:20	130429B08

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

⁻TPH as Diesel is quantified in the carbon range C10-C28.

099-15-516-41 Client I	D: Meth	od Blank			Matrix: A	queous U	nits: ug/L	Sampled: 0	5/01/13 17:52
EPA 8015B (M) TPH Diesel	Extracti	on: EPA 3	510C						
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
TPH as Diesel	<20	U	15	20	50	1	04/29/13 00:00	04/30/13 11:21	130429B08
Surr: n-Octacosane (51-141%)	131	%					04/29/13 00:00	04/30/13 11:21	130429B08

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 13-04-1894

Project Name:

Red Hill LTM 112066

Received: 04

04/26/13 10:30

13-04-1894-2 Clie	ent ID: ES 0	25			Matrix: A	Aqueous	Units: ug/L	Sampled: 0	4/24/13 08:00
EPA 8270C SIM PAHs	Extraction: E	EPA 3510C							
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Naphthalene	0.063	J	0.023	0.051	0.20	1.02	04/29/13 00:00	04/30/13 17:20	130429L19
2-Methylnaphthalene	< 0.051	U	0.027	0.051	0.20	1.02	04/29/13 00:00	04/30/13 17:20	130429L19
1-Methylnaphthalene	< 0.051	U	0.029	0.051	0.20	1.02	04/29/13 00:00	04/30/13 17:20	130429L19
Acenaphthylene	< 0.051	U	0.018	0.051	0.20	1.02	04/29/13 00:00	04/30/13 17:20	130429L19
Acenaphthene	< 0.051	U	0.021	0.051	0.20	1.02	04/29/13 00:00	04/30/13 17:20	130429L19
Fluorene	< 0.051	U	0.025	0.051	0.20	1.02	04/29/13 00:00	04/30/13 17:20	130429L19
Phenanthrene	< 0.051	U	0.031	0.051	0.20	1.02	04/29/13 00:00	04/30/13 17:20	130429L19
Anthracene	< 0.051	U	0.035	0.051	0.20	1.02	04/29/13 00:00	04/30/13 17:20	130429L19
Fluoranthene	< 0.051	U	0.028	0.051	0.20	1.02	04/29/13 00:00	04/30/13 17:20	130429L19
Pyrene	< 0.051	U	0.025	0.051	0.20	1.02	04/29/13 00:00	04/30/13 17:20	130429L19
Benzo (a) Anthracene	< 0.051	U	0.024	0.051	0.20	1.02	04/29/13 00:00	04/30/13 17:20	130429L19
Chrysene	< 0.051	U	0.019	0.051	0.20	1.02	04/29/13 00:00	04/30/13 17:20	130429L19
Benzo (k) Fluoranthene	< 0.051	U	0.024	0.051	0.20	1.02	04/29/13 00:00	04/30/13 17:20	130429L19
Benzo (b) Fluoranthene	< 0.051	U	0.025	0.051	0.20	1.02	04/29/13 00:00	04/30/13 17:20	130429L19
Benzo (a) Pyrene	< 0.051	U	0.037	0.051	0.20	1.02	04/29/13 00:00	04/30/13 17:20	130429L19
Indeno (1,2,3-c,d) Pyrene	< 0.051	U	0.022	0.051	0.20	1.02	04/29/13 00:00	04/30/13 17:20	130429L19
Dibenz (a,h) Anthracene	< 0.051	U	0.027	0.051	0.20	1.02	04/29/13 00:00	04/30/13 17:20	130429L19
Benzo (g,h,i) Perylene	<0.051	U	0.022	0.051	0.20	1.02	04/29/13 00:00	04/30/13 17:20	130429L19
Surr: Nitrobenzene-d5 (28-139%	6) 94	1%					04/29/13 00:00	04/30/13 17:20	130429L19
Surr: 2-Fluorobiphenyl (33-144%	6) 95	5%					04/29/13 00:00	04/30/13 17:20	130429L19
Surr: p-Terphenyl-d14 (23-160%	6) 10	00%					04/29/13 00:00	04/30/13 17:20	130429L19

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 13-04-1894

Project Name:

Red Hill LTM 112066

Received: 04/26/13 10:30

ANALYTICAL REPORT

13-04-1894-3 Clie	ent ID: ES 0	26			Matrix: A	Aqueous (Jnits: ug/L	Sampled: 04	4/24/13 09:00
EPA 8270C SIM PAHs	Extraction: E	EPA 3510C							
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Naphthalene	0.068	J	0.023	0.050	0.20	1.01	04/29/13 00:00	04/30/13 17:47	130429L19
2-Methylnaphthalene	< 0.050	U	0.027	0.050	0.20	1.01	04/29/13 00:00	04/30/13 17:47	130429L19
1-Methylnaphthalene	< 0.050	U	0.029	0.050	0.20	1.01	04/29/13 00:00	04/30/13 17:47	130429L19
Acenaphthylene	< 0.050	U	0.018	0.050	0.20	1.01	04/29/13 00:00	04/30/13 17:47	130429L19
Acenaphthene	< 0.050	U	0.021	0.050	0.20	1.01	04/29/13 00:00	04/30/13 17:47	130429L19
Fluorene	< 0.050	U	0.025	0.050	0.20	1.01	04/29/13 00:00	04/30/13 17:47	130429L19
Phenanthrene	< 0.050	U	0.031	0.050	0.20	1.01	04/29/13 00:00	04/30/13 17:47	130429L19
Anthracene	< 0.050	U	0.034	0.050	0.20	1.01	04/29/13 00:00	04/30/13 17:47	130429L19
Fluoranthene	< 0.050	U	0.027	0.050	0.20	1.01	04/29/13 00:00	04/30/13 17:47	130429L19
Pyrene	< 0.050	U	0.025	0.050	0.20	1.01	04/29/13 00:00	04/30/13 17:47	130429L19
Benzo (a) Anthracene	< 0.050	U	0.024	0.050	0.20	1.01	04/29/13 00:00	04/30/13 17:47	130429L19
Chrysene	< 0.050	U	0.019	0.050	0.20	1.01	04/29/13 00:00	04/30/13 17:47	130429L19
Benzo (k) Fluoranthene	< 0.050	U	0.024	0.050	0.20	1.01	04/29/13 00:00	04/30/13 17:47	130429L19
Benzo (b) Fluoranthene	< 0.050	U	0.025	0.050	0.20	1.01	04/29/13 00:00	04/30/13 17:47	130429L19
Benzo (a) Pyrene	< 0.050	U	0.037	0.050	0.20	1.01	04/29/13 00:00	04/30/13 17:47	130429L19
Indeno (1,2,3-c,d) Pyrene	< 0.050	U	0.022	0.050	0.20	1.01	04/29/13 00:00	04/30/13 17:47	130429L19
Dibenz (a,h) Anthracene	< 0.050	U	0.027	0.050	0.20	1.01	04/29/13 00:00	04/30/13 17:47	130429L19
Benzo (g,h,i) Perylene	<0.050	U	0.022	0.050	0.20	1.01	04/29/13 00:00	04/30/13 17:47	130429L19
Surr: Nitrobenzene-d5 (28-139%	<i>6)</i> 98	3%					04/29/13 00:00	04/30/13 17:47	130429L19
Surr: 2-Fluorobiphenyl (33-144%	6) 10	01%					04/29/13 00:00	04/30/13 17:47	130429L19
Surr: p-Terphenyl-d14 (23-160%	6) 10	08%					04/29/13 00:00	04/30/13 17:47	130429L19

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500 Robert Chong

Attn:

Work Order: 13-04-1894

Project Name:

Red Hill LTM 112066

Received: 04/26/13 10:30

ANALYTICAL REPORT

13-04-1894-4 Client ID: ES 027					Matrix: A	Aqueous	Units: ug/L	Sampled: 04/24/13 09:30		
EPA 8270C SIM PAHs	Extraction: I	EPA 3510C	;							
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
Naphthalene	0.16	J	0.024	0.052	0.21	1.035	04/29/13 00:00	04/30/13 18:14	130429L19	
2-Methylnaphthalene	< 0.052	U	0.027	0.052	0.21	1.035	04/29/13 00:00	04/30/13 18:14	130429L19	
1-Methylnaphthalene	< 0.052	U	0.029	0.052	0.21	1.035	04/29/13 00:00	04/30/13 18:14	130429L19	
Acenaphthylene	< 0.052	U	0.019	0.052	0.21	1.035	04/29/13 00:00	04/30/13 18:14	130429L19	
Acenaphthene	< 0.052	U	0.021	0.052	0.21	1.035	04/29/13 00:00	04/30/13 18:14	130429L19	
Fluorene	< 0.052	U	0.025	0.052	0.21	1.035	04/29/13 00:00	04/30/13 18:14	130429L19	
Phenanthrene	< 0.052	U	0.032	0.052	0.21	1.035	04/29/13 00:00	04/30/13 18:14	130429L19	
Anthracene	< 0.052	U	0.035	0.052	0.21	1.035	04/29/13 00:00	04/30/13 18:14	130429L19	
Fluoranthene	< 0.052	U	0.028	0.052	0.21	1.035	04/29/13 00:00	04/30/13 18:14	130429L19	
Pyrene	< 0.052	U	0.026	0.052	0.21	1.035	04/29/13 00:00	04/30/13 18:14	130429L19	
Benzo (a) Anthracene	< 0.052	U	0.025	0.052	0.21	1.035	04/29/13 00:00	04/30/13 18:14	130429L19	
Chrysene	< 0.052	U	0.020	0.052	0.21	1.035	04/29/13 00:00	04/30/13 18:14	130429L19	
Benzo (k) Fluoranthene	< 0.052	U	0.024	0.052	0.21	1.035	04/29/13 00:00	04/30/13 18:14	130429L19	
Benzo (b) Fluoranthene	< 0.052	U	0.026	0.052	0.21	1.035	04/29/13 00:00	04/30/13 18:14	130429L19	
Benzo (a) Pyrene	< 0.052	U	0.038	0.052	0.21	1.035	04/29/13 00:00	04/30/13 18:14	130429L19	
Indeno (1,2,3-c,d) Pyrene	< 0.052	U	0.023	0.052	0.21	1.035	04/29/13 00:00	04/30/13 18:14	130429L19	
Dibenz (a,h) Anthracene	< 0.052	U	0.028	0.052	0.21	1.035	04/29/13 00:00	04/30/13 18:14	130429L19	
Benzo (g,h,i) Perylene	<0.052	U	0.023	0.052	0.21	1.035	04/29/13 00:00	04/30/13 18:14	130429L19	
Surr: Nitrobenzene-d5 (28-139)	%) 10	00%					04/29/13 00:00	04/30/13 18:14	130429L19	
Surr: 2-Fluorobiphenyl (33-144)	%) 10	04%					04/29/13 00:00	04/30/13 18:14	130429L19	
Surr: p-Terphenyl-d14 (23-1609	%) 1	15%					04/29/13 00:00	04/30/13 18:14	130429L19	

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 099-15-148

Project Name:

Red Hill LTM 112066

Received: 04/26/13 10:30

099-15-148-13 Clie	ent ID: Meth	od Blank			Matrix:	Aqueous	Units: ug/L	Sampled:0	4/30/13 17:15
EPA 8270C SIM PAHs	Extraction: E	PA 3510C							
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Naphthalene	<0.050	U	0.023	0.050	0.20	1	04/29/13 00:00	04/30/13 16:27	130429L19
2-Methylnaphthalene	< 0.050	U	0.026	0.050	0.20	1	04/29/13 00:00	04/30/13 16:27	130429L19
1-Methylnaphthalene	< 0.050	U	0.028	0.050	0.20	1	04/29/13 00:00	04/30/13 16:27	130429L19
Acenaphthylene	< 0.050	U	0.018	0.050	0.20	1	04/29/13 00:00	04/30/13 16:27	130429L19
Acenaphthene	< 0.050	U	0.021	0.050	0.20	1	04/29/13 00:00	04/30/13 16:27	130429L19
Fluorene	< 0.050	U	0.024	0.050	0.20	1	04/29/13 00:00	04/30/13 16:27	130429L19
Phenanthrene	< 0.050	U	0.031	0.050	0.20	1	04/29/13 00:00	04/30/13 16:27	130429L19
Anthracene	< 0.050	U	0.034	0.050	0.20	1	04/29/13 00:00	04/30/13 16:27	130429L19
Fluoranthene	< 0.050	U	0.027	0.050	0.20	1	04/29/13 00:00	04/30/13 16:27	130429L19
Pyrene	< 0.050	U	0.025	0.050	0.20	1	04/29/13 00:00	04/30/13 16:27	130429L19
Benzo (a) Anthracene	< 0.050	U	0.024	0.050	0.20	1	04/29/13 00:00	04/30/13 16:27	130429L19
Chrysene	< 0.050	U	0.019	0.050	0.20	1	04/29/13 00:00	04/30/13 16:27	130429L19
Benzo (k) Fluoranthene	< 0.050	U	0.023	0.050	0.20	1	04/29/13 00:00	04/30/13 16:27	130429L19
Benzo (b) Fluoranthene	< 0.050	U	0.025	0.050	0.20	1	04/29/13 00:00	04/30/13 16:27	130429L19
Benzo (a) Pyrene	< 0.050	U	0.036	0.050	0.20	1	04/29/13 00:00	04/30/13 16:27	130429L19
Indeno (1,2,3-c,d) Pyrene	< 0.050	U	0.022	0.050	0.20	1	04/29/13 00:00	04/30/13 16:27	130429L19
Dibenz (a,h) Anthracene	< 0.050	U	0.027	0.050	0.20	1	04/29/13 00:00	04/30/13 16:27	130429L19
Benzo (g,h,i) Perylene	<0.050	U	0.022	0.050	0.20	1	04/29/13 00:00	04/30/13 16:27	130429L19
Surr: Nitrobenzene-d5 (28-139%	<i>6)</i> 96	5%					04/29/13 00:00	04/30/13 16:27	130429L19
Surr: 2-Fluorobiphenyl (33-144%	6) 10	3%					04/29/13 00:00	04/30/13 16:27	130429L19
Surr: p-Terphenyl-d14 (23-160%	6) 10	04%					04/29/13 00:00	04/30/13 16:27	130429L19

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 13-04-1894

Project Name:

Red Hill LTM 112066

Received: 04/26/13 10:30

13-04-1894-1 Clier	13-04-1894-1 Client ID: ES Trip						Units: ug/L	Sampled: 04	1/24/13 07:00
GC/MS GRO/EPA 8260B	Volatile Org	anics	Extraction: EPA	A 5030C					
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Acetone	<10	ICH,U	6.0	10	20	1	04/29/13 00:00	04/29/13 14:46	130429L01
Benzene	< 0.50	U	0.14	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
Bromodichloromethane	< 0.50	U	0.21	0.50	5.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
Bromoform	<1.0	U	0.50	1.0	10	1	04/29/13 00:00	04/29/13 14:46	130429L01
Bromomethane	<5.0	U	3.9	5.0	20	1	04/29/13 00:00	04/29/13 14:46	130429L01
2-Butanone	<5.0	U	2.2	5.0	10	1	04/29/13 00:00	04/29/13 14:46	130429L01
Carbon Tetrachloride	< 0.50	U	0.23	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
Chlorobenzene	< 0.50	U	0.17	0.50	5.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
Chloroethane	<5.0	U	2.3	5.0	10	1	04/29/13 00:00	04/29/13 14:46	130429L01
Chloroform	< 0.50	U	0.46	0.50	5.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
Chloromethane	<2.0	IJ,U	1.8	2.0	10	1	04/29/13 00:00	04/29/13 14:46	130429L01
Dibromochloromethane	< 0.50	U	0.25	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
1,2-Dibromo-3-Chloropropane	<2.0	U	1.2	2.0	10	1	04/29/13 00:00	04/29/13 14:46	130429L01
1,2-Dibromoethane	< 0.50	U	0.36	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
1,2-Dichlorobenzene	< 0.50	U	0.46	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
1,3-Dichlorobenzene	< 0.50	U	0.40	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
1,4-Dichlorobenzene	< 0.50	U	0.43	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
1,1-Dichloroethane	< 0.50	U	0.28	0.50	5.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
1,2-Dichloroethane	< 0.50	U	0.24	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
1,1-Dichloroethene	< 0.50	U	0.43	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
c-1,2-Dichloroethene	< 0.50	U	0.48	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
t-1,2-Dichloroethene	< 0.50	U	0.37	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
1,2-Dichloropropane	< 0.50	U	0.42	0.50	5.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
c-1,3-Dichloropropene	< 0.50	U	0.25	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
t-1,3-Dichloropropene	< 0.50	U	0.25	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
Ethylbenzene	< 0.50	U	0.14	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
Methylene Chloride	<1.0	U	0.64	1.0	5.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
4-Methyl-2-Pentanone	<5.0	U	4.4	5.0	10	1	04/29/13 00:00	04/29/13 14:46	130429L01
Styrene	< 0.50	U	0.17	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
1,1,1,2-Tetrachloroethane	< 0.50	U	0.40	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
1,1,2,2-Tetrachloroethane	< 0.50	U	0.41	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
Tetrachloroethene	< 0.50	U	0.39	0.50	5.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
Toluene	< 0.50	U	0.24	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
1,2,4-Trichlorobenzene	<1.0	U	0.50	1.0	5.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
1,1,1-Trichloroethane	< 0.50	U	0.30	0.50	5.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
Hexachloro-1,3-Butadiene	< 0.50	U	0.32	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
1,1,2-Trichloroethane	< 0.50	U	0.38	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
Trichloroethene	< 0.50	U	0.37	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: Project Name: 13-04-1894

Red Hill LTM 112066

Received: 04/26/13 10:30

13-04-1894-1	Client ID: ES	6 Trip			Matrix: A	Aqueous I	Units: ug/L	Sampled: 04	4/24/13 07:00
GC/MS GRO/EPA 826	60B Volatile C	rganics	Extraction:	EPA 5030C					
Analyte	Resul	t Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
1,2,3-Trichloropropane	<1.0	U	0.64	1.0	5.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
Vinyl Chloride	<0.50	U	0.30	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
p/m-Xylene	<1.0	U	0.30	1.0	10	1	04/29/13 00:00	04/29/13 14:46	130429L01
o-Xylene	<0.50	U	0.23	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
Methyl-t-Butyl Ether (MTBE)	< 0.50	U	0.31	0.50	1.0	1	04/29/13 00:00	04/29/13 14:46	130429L01
Gasoline Range Organics	<30	U	13	30	50	1	04/29/13 00:00	04/29/13 14:46	130429L01
Surr: Dibromofluoromethane	e (80-126%)	97%					04/29/13 00:00	04/29/13 14:46	130429L01
Surr: 1,2-Dichloroethane-d4	(80-134%)	97%					04/29/13 00:00	04/29/13 14:46	130429L01
Surr: Toluene-d8 (80-120%))	98%					04/29/13 00:00	04/29/13 14:46	130429L01
Surr: Toluene-d8-TPPH (88	3-112%)	97%					04/29/13 00:00	04/29/13 14:46	130429L01
Surr: 1,4-Bromofluorobenze	ene (80-120%)	100%					04/29/13 00:00	04/29/13 14:46	130429L01

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 13-04-1894

Project Name:

Red Hill LTM 112066

Received: 04/26/13 10:30

GC/MS GRO/EPA 8260B Volatile Organics Extraction: EPA 5030C Analyte Result Qual. DL LOD LOQ Dilution Factor Preparation Date/Time Analysis Date/Time Batch Acetone 84 ICH 6.0 10 20 1 04/29/13 00:0 04/29/13 15:13 130429L01 Benzene 0.82 J 0.14 0.50 1.0 1 04/29/13 00:0 04/29/13 15:13 130429L01 Bromodichloromethane <0.50 U 0.21 0.50 5.0 1 04/29/13 00:0 04/29/13 15:13 130429L01 Bromoform <1.0 U 0.50 1.0 10 1 04/29/13 00:0 04/29/13 15:13 130429L01 Bromoform <1.0 U 0.50 1.0 1 04/29/13 00:0 04/29/13 15:13 130429L01 Bromoform <5.0 U 0.50 1.0 1 04/29/13 00:
Analyte Result Qual. DL LOB LOQ Factor Date/Time Batch Acetone 84 ICH 6.0 10 20 1 04/29/13 00:00 04/29/13 15:13 130429L01 Benzene 0.82 J 0.14 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Bromodichloromethane <0.50 U 0.21 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Bromoform <1.0 U 0.50 1.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 Bromomethane <5.0 U 3.9 5.0 20 1 04/29/13 00:00 04/29/13 15:13 130429L01 2-Butanone <5.0 U 2.2 5.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 Carbon Tetrachloride
Benzene 0.82 J 0.14 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Bromodichloromethane <0.50 U 0.21 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Bromoform <1.0 U 0.50 1.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 Bromomethane <5.0 U 3.9 5.0 20 1 04/29/13 00:00 04/29/13 15:13 130429L01 2-Butanone <5.0 U 2.2 5.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 Carbon Tetrachloride <0.50 U 0.23 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chlorobenzene <0.50 U 0.17 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chloroform <5.0 U 0.46 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chloromethane <0.50 U 0.46 0.50 5.0 1 04/29/13 00:00 04/
Bromodichloromethane <0.50 U 0.21 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Bromoform <1.0
Bromoform <1.0 U 0.50 1.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 Bromomethane <5.0
Bromomethane <5.0 U 3.9 5.0 20 1 04/29/13 00:00 04/29/13 15:13 130429L01 2-Butanone <5.0 U 2.2 5.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 Carbon Tetrachloride <0.50 U 0.23 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chlorobenzene <0.50 U 0.17 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chloroform <5.0 U 0.46 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chloromethane <2.0 IJ,U 1.8 2.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 Dibromochloromethane <0.50 U 0.25 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 1,2-Dibromo-3-Chloropropane <2.0 U 1.2 2.0 10 1 04/29/13 00:00 04/29/13 15:13 15:13 130429L01 1,2-Dibromoethane <0.50 U 0.36 0.50 1.0 1
2-Butanone <5.0 U 2.2 5.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 Carbon Tetrachloride <0.50 U 0.23 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chlorobenzene <0.50 U 0.17 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chloroethane <5.0 U 2.3 5.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chloroform <0.50 U 0.46 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chloromethane <2.0 IJ,U 1.8 2.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 Dibromochloromethane <0.50 U 0.25 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 1,2-Dibromo-3-Chloropropane <2.0 U 1.2 2.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 1,2-Dibromoethane <0.50 U 0.36 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 1,2-Dibromoethane <0.50 U 0.36 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
Carbon Tetrachloride <0.50 U 0.23 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chlorobenzene <0.50 U 0.17 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chloroethane <5.0 U 2.3 5.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chloroform <0.50 U 0.46 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chloromethane <2.0 IJ,U 1.8 2.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 Dibromochloromethane <0.50 U 0.25 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 1,2-Dibromo-3-Chloropropane <2.0 U 0.36 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 1,2-Dibromoethane <0.50 U 0.36 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 1,2-Dibromoethane <0.50 U 0.36 0.50 1.0
Chlorobenzene <0.50 U 0.17 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chloroethane <5.0 U 2.3 5.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chloroform <0.50 U 0.46 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chloromethane <2.0 IJ,U 1.8 2.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 Dibromochloromethane <0.50 U 0.25 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 1,2-Dibromoethane <0.50 U 0.36 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 1,2-Dibromoethane <0.50 U 0.36 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
Chloroethane <5.0 U 2.3 5.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chloroform <0.50 U 0.46 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chloromethane <2.0 IJ,U 1.8 2.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 Dibromochloromethane <0.50 U 0.25 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 1,2-Dibromo-3-Chloropropane <2.0 U 1.2 2.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 1,2-Dibromoethane <0.50 U 0.36 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
Chloroform <0.50 U 0.46 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 Chloromethane <2.0 IJ,U 1.8 2.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 Dibromochloromethane <0.50 U 0.25 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 1,2-Dibromo-3-Chloropropane <2.0 U 1.2 2.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 1,2-Dibromoethane <0.50 U 0.36 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
Chloromethane <2.0 IJ,U 1.8 2.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01 Dibromochloromethane <0.50
Dibromochloromethane <0.50 U 0.25 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01 1,2-Dibromo-3-Chloropropane <2.0
1,2-Dibromo-3-Chloropropane <2.0
1,2-Dibromoethane <0.50 U 0.36 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
1,2-Dichlorobenzene <0.50 U 0.46 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
1,3-Dichlorobenzene <0.50 U 0.40 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
1,4-Dichlorobenzene <0.50 U 0.43 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
1,1-Dichloroethane <0.50 U 0.28 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
1,2-Dichloroethane <0.50 U 0.24 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
1,1-Dichloroethene <0.50 U 0.43 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
c-1,2-Dichloroethene <0.50 U 0.48 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
t-1,2-Dichloroethene <0.50 U 0.37 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
1,2-Dichloropropane <0.50 U 0.42 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
c-1,3-Dichloropropene <0.50 U 0.25 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
t-1,3-Dichloropropene <0.50 U 0.25 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
Ethylbenzene <0.50 U 0.14 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
Methylene Chloride <1.0 U 0.64 1.0 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
4-Methyl-2-Pentanone <5.0 U 4.4 5.0 10 1 04/29/13 00:00 04/29/13 15:13 130429L01
Styrene <0.50 U 0.17 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
1,1,1,2-Tetrachloroethane <0.50 U 0.40 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
1,1,2,2-Tetrachloroethane <0.50 U 0.41 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
Tetrachloroethene <0.50 U 0.39 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
Toluene <0.50 U 0.24 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
1,2,4-Trichlorobenzene <1.0 U 0.50 1.0 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
1,1,1-Trichloroethane <0.50 U 0.30 0.50 5.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
Hexachloro-1,3-Butadiene <0.50 U 0.32 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
1,1,2-Trichloroethane <0.50 U 0.38 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01
Trichloroethene <0.50 U 0.37 0.50 1.0 1 04/29/13 00:00 04/29/13 15:13 130429L01

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

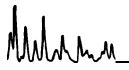
Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: Project Name: 13-04-1894

Red Hill LTM 112066


Received:

04/26/13 10:30

13-04-1894-2	Client ID: E	S 025			Matrix: A	Aqueous (Units: ug/L	Sampled: 04	4/24/13 08:00
GC/MS GRO/EPA 82	60B Volatile C	Organics	Extraction:	xtraction: EPA 5030C					
Analyte	Resu	lt Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
1,2,3-Trichloropropane	<1.0	U	0.64	1.0	5.0	1	04/29/13 00:00	04/29/13 15:13	130429L01
Vinyl Chloride	<0.50	U	0.30	0.50	1.0	1	04/29/13 00:00	04/29/13 15:13	130429L01
p/m-Xylene	<1.0	U	0.30	1.0	10	1	04/29/13 00:00	04/29/13 15:13	130429L01
o-Xylene	<0.50	U	0.23	0.50	1.0	1	04/29/13 00:00	04/29/13 15:13	130429L01
Methyl-t-Butyl Ether (MTBE) <0.50	U	0.31	0.50	1.0	1	04/29/13 00:00	04/29/13 15:13	130429L01
Gasoline Range Organics	<30	U	13	30	50	1	04/29/13 00:00	04/29/13 15:13	130429L01
Surr: Dibromofluoromethan	e (80-126%)	95%					04/29/13 00:00	04/29/13 15:13	130429L01
Surr: 1,2-Dichloroethane-d4	4 (80-134%)	95%					04/29/13 00:00	04/29/13 15:13	130429L01
Surr: Toluene-d8 (80-120%)	5)	100%					04/29/13 00:00	04/29/13 15:13	130429L01
Surr: Toluene-d8-TPPH (88	3-112%)	99%					04/29/13 00:00	04/29/13 15:13	130429L01
Surr: 1,4-Bromofluorobenze	ene (80-120%)	99%					04/29/13 00:00	04/29/13 15:13	130429L01

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 13-04-1894

Project Name:

Red Hill LTM 112066

Received: 04/26/13 10:30

GC/MS GRO/EPA 8260B Volatile Organics Extraction: EPA 5030C Analyte Result Qual. DL LOD LOQ Dilution Factor Factor Date/Time Preparation Date/Time Analysis Date/Time Batch Acetone 86 ICH 6.0 10 20 1 04/29/13 00:00 04/29/13 16:59 130429L01 Benzene 0.67 J 0.14 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01 Bromodichloromethane <0.50 U 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01 Bromomethane <5.0 U 3.9 5.0 20 1 04/29/13 00:00 04/29/13 16:59 130429L01
Analyte Result Qual. DL LOD LOQ Factor Date/Time Date/Time Batch Acetone 86 ICH 6.0 10 20 1 04/29/13 00:00 04/29/13 16:59 130429L01 Benzene 0.67 J 0.14 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01 Bromodichloromethane <0.50 U 0.50 5.0 1 04/29/13 00:00 04/29/13 16:59 130429L01 Bromoform <1.0 U 0.50 1.0 10 1 04/29/13 00:00 04/29/13 16:59 130429L01
Benzene 0.67 J 0.14 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01 Bromodichloromethane <0.50 U 0.21 0.50 5.0 1 04/29/13 00:00 04/29/13 16:59 130429L01 Bromoform <1.0 U 0.50 1.0 10 1 04/29/13 00:00 04/29/13 16:59 130429L01
Bromodichloromethane <0.50 U 0.21 0.50 5.0 1 04/29/13 00:00 04/29/13 16:59 130429L01 Bromoform <1.0
Bromoform <1.0 U 0.50 1.0 10 1 04/29/13 00:00 04/29/13 16:59 130429L01
Bromomethane <5.0 II 3.9 5.0 20 1 04/29/13 00:00 04/29/13 16:59 130429101
2.01 0 0.0 0 0.0 20 1 0+20/10 00.00 0+20/10 10.00 100+20/201
2-Butanone <5.0 U 2.2 5.0 10 1 04/29/13 00:00 04/29/13 16:59 130429L01
Carbon Tetrachloride <0.50 U 0.23 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
Chlorobenzene <0.50 U 0.17 0.50 5.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
Chloroethane <5.0 U 2.3 5.0 10 1 04/29/13 00:00 04/29/13 16:59 130429L01
Chloroform <0.50 U 0.46 0.50 5.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
Chloromethane <2.0 IJ,U 1.8 2.0 10 1 04/29/13 00:00 04/29/13 16:59 130429L01
Dibromochloromethane <0.50 U 0.25 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
1,2-Dibromo-3-Chloropropane <2.0 U 1.2 2.0 10 1 04/29/13 00:00 04/29/13 16:59 130429L01
1,2-Dibromoethane <0.50 U 0.36 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
1,2-Dichlorobenzene <0.50 U 0.46 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
1,3-Dichlorobenzene <0.50 U 0.40 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
1,4-Dichlorobenzene <0.50 U 0.43 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
1,1-Dichloroethane <0.50 U 0.28 0.50 5.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
1,2-Dichloroethane <0.50 U 0.24 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
1,1-Dichloroethene <0.50 U 0.43 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
c-1,2-Dichloroethene <0.50 U 0.48 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
t-1,2-Dichloroethene <0.50 U 0.37 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
1,2-Dichloropropane <0.50 U 0.42 0.50 5.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
c-1,3-Dichloropropene <0.50 U 0.25 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
t-1,3-Dichloropropene <0.50 U 0.25 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
Ethylbenzene <0.50 U 0.14 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
Methylene Chloride <1.0 U 0.64 1.0 5.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
4-Methyl-2-Pentanone <5.0 U 4.4 5.0 10 1 04/29/13 00:00 04/29/13 16:59 130429L01
Styrene <0.50 U 0.17 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
1,1,1,2-Tetrachloroethane <0.50 U 0.40 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
1,1,2,2-Tetrachloroethane <0.50 U 0.41 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
Tetrachloroethene <0.50 U 0.39 0.50 5.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
Toluene <0.50 U 0.24 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
1,2,4-Trichlorobenzene <1.0 U 0.50 1.0 5.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
1,1,1-Trichloroethane <0.50 U 0.30 0.50 5.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
Hexachloro-1,3-Butadiene <0.50 U 0.32 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
1,1,2-Trichloroethane <0.50 U 0.38 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01
Trichloroethene <0.50 U 0.37 0.50 1.0 1 04/29/13 00:00 04/29/13 16:59 130429L01

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

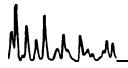
Robert Chong

Attn:

13-04-1894 Work Order:

Project Name:

Red Hill LTM 112066


Received:

04/26/13 10:30

13-04-1894-3	Client ID: E	S 026			Matrix: A	Aqueous I	Units: ug/L	Sampled: 04	4/24/13 09:00
GC/MS GRO/EPA 82	260B Volatile (Organics	Extraction:	EPA 5030C					
Analyte	Resu	lt Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
1,2,3-Trichloropropane	<1.0	U	0.64	1.0	5.0	1	04/29/13 00:00	04/29/13 16:59	130429L01
Vinyl Chloride	< 0.50	U	0.30	0.50	1.0	1	04/29/13 00:00	04/29/13 16:59	130429L01
p/m-Xylene	<1.0	U	0.30	1.0	10	1	04/29/13 00:00	04/29/13 16:59	130429L01
o-Xylene	<0.50	U	0.23	0.50	1.0	1	04/29/13 00:00	04/29/13 16:59	130429L01
Methyl-t-Butyl Ether (MTBI	≡) <0.50	U	0.31	0.50	1.0	1	04/29/13 00:00	04/29/13 16:59	130429L01
Gasoline Range Organics	<30	U	13	30	50	1	04/29/13 00:00	04/29/13 16:59	130429L01
Surr: Dibromofluoromethal	ne (80-126%)	93%					04/29/13 00:00	04/29/13 16:59	130429L01
Surr: 1,2-Dichloroethane-c	14 (80-134%)	97%					04/29/13 00:00	04/29/13 16:59	130429L01
Surr: Toluene-d8 (80-120%	%)	99%					04/29/13 00:00	04/29/13 16:59	130429L01
Surr: Toluene-d8-TPPH (88-112%) 98%						04/29/13 00:00	04/29/13 16:59	130429L01	
Surr: 1,4-Bromofluorobenz	zene (80-120%)	99%					04/29/13 00:00	04/29/13 16:59	130429L01

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 13-04-1894

Project Name:

Red Hill LTM 112066

Received: 04/26/13 10:30

13-04-1894-4 Clien	nt ID: ES 0	27			Matrix: /	Aqueous	Units: ug/L	Sampled: 04	4/24/13 09:3
GC/MS GRO/EPA 8260B V	/olatile Org	anics E	xtraction: E	PA 5030C					
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Acetone	<10	ICH,U	6.0	10	20	1	04/29/13 00:00	04/29/13 17:26	130429L01
Benzene	< 0.50	U	0.14	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
Bromodichloromethane	< 0.50	U	0.21	0.50	5.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
Bromoform	<1.0	U	0.50	1.0	10	1	04/29/13 00:00	04/29/13 17:26	130429L01
Bromomethane	<5.0	U	3.9	5.0	20	1	04/29/13 00:00	04/29/13 17:26	130429L01
2-Butanone	<5.0	U	2.2	5.0	10	1	04/29/13 00:00	04/29/13 17:26	130429L01
Carbon Tetrachloride	< 0.50	U	0.23	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
Chlorobenzene	< 0.50	U	0.17	0.50	5.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
Chloroethane	<5.0	U	2.3	5.0	10	1	04/29/13 00:00	04/29/13 17:26	130429L01
Chloroform	< 0.50	U	0.46	0.50	5.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
Chloromethane	<2.0	IJ,U	1.8	2.0	10	1	04/29/13 00:00	04/29/13 17:26	130429L01
Dibromochloromethane	< 0.50	U	0.25	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
1,2-Dibromo-3-Chloropropane	<2.0	U	1.2	2.0	10	1	04/29/13 00:00	04/29/13 17:26	130429L01
1,2-Dibromoethane	< 0.50	U	0.36	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
1,2-Dichlorobenzene	< 0.50	U	0.46	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
1,3-Dichlorobenzene	< 0.50	U	0.40	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
1,4-Dichlorobenzene	< 0.50	U	0.43	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
1,1-Dichloroethane	< 0.50	U	0.28	0.50	5.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
1,2-Dichloroethane	< 0.50	U	0.24	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
1,1-Dichloroethene	< 0.50	U	0.43	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
c-1,2-Dichloroethene	< 0.50	U	0.48	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
t-1,2-Dichloroethene	< 0.50	U	0.37	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
1,2-Dichloropropane	< 0.50	U	0.42	0.50	5.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
c-1,3-Dichloropropene	< 0.50	U	0.25	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
t-1,3-Dichloropropene	< 0.50	U	0.25	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
Ethylbenzene	< 0.50	U	0.14	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
Methylene Chloride	<1.0	U	0.64	1.0	5.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
4-Methyl-2-Pentanone	<5.0	U	4.4	5.0	10	1	04/29/13 00:00	04/29/13 17:26	130429L01
Styrene	< 0.50	U	0.17	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
1,1,1,2-Tetrachloroethane	< 0.50	U	0.40	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
1,1,2,2-Tetrachloroethane	< 0.50	U	0.41	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
Tetrachloroethene	< 0.50	U	0.39	0.50	5.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
Toluene	< 0.50	U	0.24	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
1,2,4-Trichlorobenzene	<1.0	U	0.50	1.0	5.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
1,1,1-Trichloroethane	< 0.50	U	0.30	0.50	5.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
Hexachloro-1,3-Butadiene	<0.50	U	0.32	0.50	1.0	1		04/29/13 17:26	
1,1,2-Trichloroethane	<0.50	U	0.38	0.50	1.0	1		04/29/13 17:26	
Trichloroethene	<0.50	U	0.37	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

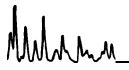
Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: Project Name: 13-04-1894

Red Hill LTM 112066


Received:

04/26/13 10:30

13-04-1894-4	Client ID: E	S 027			Matrix: A	Aqueous	Units: ug/L	Sampled: 04	4/24/13 09:30
GC/MS GRO/EPA 82	60B Volatile C	Organics	Extraction:	raction: EPA 5030C					
Analyte	Resu	lt Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
1,2,3-Trichloropropane	<1.0	U	0.64	1.0	5.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
Vinyl Chloride	<0.50	U	0.30	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
p/m-Xylene	<1.0	U	0.30	1.0	10	1	04/29/13 00:00	04/29/13 17:26	130429L01
o-Xylene	<0.50	U	0.23	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
Methyl-t-Butyl Ether (MTBE	(0.50	U	0.31	0.50	1.0	1	04/29/13 00:00	04/29/13 17:26	130429L01
Gasoline Range Organics	<30	U	13	30	50	1	04/29/13 00:00	04/29/13 17:26	130429L01
Surr: Dibromofluoromethan	e (80-126%)	98%					04/29/13 00:00	04/29/13 17:26	130429L01
Surr: 1,2-Dichloroethane-d4	4 (80-134%)	97%					04/29/13 00:00	04/29/13 17:26	130429L01
Surr: Toluene-d8 (80-120%))	101%					04/29/13 00:00	04/29/13 17:26	130429L01
Surr: Toluene-d8-TPPH (88	3-112%)	100%					04/29/13 00:00	04/29/13 17:26	130429L01
Surr: 1,4-Bromofluorobenze	ene (80-120%)	100%					04/29/13 00:00	04/29/13 17:26	130429L01

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 099-13-057

Project Name:

Red Hill LTM 112066

Received:

04/26/13 10:30

ANALYTICAL REPORT

099-13-057-25 Clie	nt ID: Meth	od Bla	nk	Matrix:	Aqueous	Units: ug/L	Sampled:04	4/30/13 10:13
GC/MS GRO/EPA 8260B	Volatile Org	anics	Extraction: EPA 503	30C				
Analyte	Result	Qual.	DL LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Acetone	<10	U	6.0 10	20	1	04/29/13 00:00	04/29/13 14:20	130429L01
Benzene	<0.50	U	0.14 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
Bromodichloromethane	<0.50	U	0.21 0.50	5.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
Bromoform	<1.0	U	0.50 1.0	10	1	04/29/13 00:00	04/29/13 14:20	130429L01
Bromomethane	<5.0	U	3.9 5.0	20	1	04/29/13 00:00	04/29/13 14:20	130429L01
2-Butanone	<5.0	U	2.2 5.0	10	1	04/29/13 00:00	04/29/13 14:20	130429L01
Carbon Tetrachloride	<0.50	U	0.23 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
Chlorobenzene	<0.50	U	0.17 0.50	5.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
Chloroethane	<5.0	U	2.3 5.0	10	1	04/29/13 00:00	04/29/13 14:20	130429L01
Chloroform	<0.50	U	0.46 0.50	5.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
Chloromethane	<2.0	U	1.8 2.0	10	1	04/29/13 00:00	04/29/13 14:20	130429L01
Dibromochloromethane	<0.50	U	0.25 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
1,2-Dibromo-3-Chloropropane	<2.0	U	1.2 2.0	10	1	04/29/13 00:00	04/29/13 14:20	130429L01
1,2-Dibromoethane	<0.50	U	0.36 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
1,2-Dichlorobenzene	<0.50	U	0.46 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
1,3-Dichlorobenzene	<0.50	U	0.40 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
1,4-Dichlorobenzene	<0.50	U	0.43 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
1,1-Dichloroethane	<0.50	U	0.28 0.50	5.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
1,2-Dichloroethane	<0.50	U	0.24 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
1,1-Dichloroethene	<0.50	U	0.43 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
c-1,2-Dichloroethene	<0.50	U	0.48 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
t-1,2-Dichloroethene	<0.50	U	0.37 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
1,2-Dichloropropane	<0.50	U	0.42 0.50	5.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
c-1,3-Dichloropropene	<0.50	U	0.25 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
t-1,3-Dichloropropene	<0.50	U	0.25 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
Ethylbenzene	<0.50	U	0.14 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
Methylene Chloride	<1.0	U	0.64 1.0	5.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
4-Methyl-2-Pentanone	<5.0	U	4.4 5.0	10	1	04/29/13 00:00	04/29/13 14:20	130429L01
Styrene	<0.50	U	0.17 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
1,1,1,2-Tetrachloroethane	<0.50	U	0.40 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
1,1,2,2-Tetrachloroethane	<0.50	U	0.41 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
Tetrachloroethene	<0.50	U	0.39 0.50	5.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
Toluene	<0.50	U	0.24 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
1,2,4-Trichlorobenzene	<1.0	U	0.50 1.0	5.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
1,1,1-Trichloroethane	< 0.50	U	0.30 0.50	5.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
Hexachloro-1,3-Butadiene	< 0.50	U	0.32 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
1,1,2-Trichloroethane	< 0.50	U	0.38 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
Trichloroethene	<0.50	U	0.37 0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01

Contents

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: Project Name: 099-13-057

Red Hill LTM 112066

Received:

04/26/13 10:30

099-13-057-25 Client ID: Method Blank				Matrix: Aqueous		Units: ug/L	Sampled: 04/30/13 10:13		
GC/MS GRO/EPA 8260B Volatile Organics Extraction: EPA 5030C									
Analyte	Resul	t Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
1,2,3-Trichloropropane	<1.0	U	0.64	1.0	5.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
Vinyl Chloride	<0.50	U	0.30	0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
p/m-Xylene	<1.0	U	0.30	1.0	10	1	04/29/13 00:00	04/29/13 14:20	130429L01
o-Xylene	<0.50	U	0.23	0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
Methyl-t-Butyl Ether (MTBE)	<0.50	U	0.31	0.50	1.0	1	04/29/13 00:00	04/29/13 14:20	130429L01
Gasoline Range Organics	<30	U	13	30	50	1	04/29/13 00:00	04/29/13 14:20	130429L01
Surr: Dibromofluoromethane (80-126%) 96%							04/29/13 00:00	04/29/13 14:20	130429L01
Surr: 1,2-Dichloroethane-d4 (80-134%)		98%					04/29/13 00:00	04/29/13 14:20	130429L01
Surr: Toluene-d8 (80-120%)		100%					04/29/13 00:00	04/29/13 14:20	130429L01
Surr: Toluene-d8-TPPH (88-112%)		99%					04/29/13 00:00	04/29/13 14:20	130429L01
Surr: 1,4-Bromofluorobenze	99%					04/29/13 00:00	04/29/13 14:20	130429L01	

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Quality Control - Spike/Spike Duplicate

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method:

04/26/13 13-04-1894 EPA 3020A Total EPA 6020

Project Red Hill LTM 112066

Quality Control Sample ID			Matrix		nstrument	Date Prepared		Date Analyzed		MS/MSD Batch Number	
ES 025			Aqueous		CP/MS 03	04/29/13		04/29/13 1		429\$05	
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers	
Lead	ND	100.0	104.8	105	107.6	108	80-120	3	0-20		

alscience nvironmental aboratories, Inc.

Quality Control - PDS / PDSD

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received Work Order No: Preparation: Method:

EPA 3020A Total EPA 6020

Project Red Hill LTM 112066

Quality Control Sample ID	Matrix	s Instrum	nent I	Date [Prepared	Date Analyzed F	PDS/PDSD Batch Number	
ES 025	Aqueous		S 03 0	4/29/13	04/29/13	130429S05	
<u>Parameter</u>	SAMPLE_CONC	SPIKE_ADDED	PDS_CONC	PDS %REC	%REC CL	Qualifiers	
Lead	ND	100.0	105.3	105	75-125		

Quality Control - Spike/Spike Duplicate

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method:

04/26/13 13-04-1894 **EPA 3510C** EPA 8015B (M)

Project Red Hill LTM 112066

Quality Control Sample ID			Matrix		nstrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
ES 025			Aqueous GC 46		C 46	04/29/13		04/30/13	3 130429S08	
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Diesel	1852	4000	7715	147	7537	142	55-133	2	0-30	3

Quality Control - Spike/Spike Duplicate

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method: 04/26/13 13-04-1894 EPA 3510C

EPA 8270C SIM PAHs

Project Red Hill LTM 112066

Quality Control Sample ID			Matrix		Instrument		Date epared	Date Analyzed		MS/MSD Batch Number	
ES 025			Aqueou	ıs	GC/MS AAA	04/	29/13	04/30/13	130429S19		
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers	
Naphthalene	ND	2.000	2.262	113	2.403	120	21-133	6	0-25		
2-Methylnaphthalene	ND	2.000	1.965	98	2.107	105	21-140	7	0-25		
1-Methylnaphthalene	ND	2.000	2.064	103	2.193	110	20-140	6	0-25		
Acenaphthylene	ND	2.000	2.211	111	2.349	117	33-145	6	0-25		
Acenaphthene	ND	2.000	2.273	114	2.404	120	49-121	6	0-25		
Fluorene	ND	2.000	2.300	115	2.434	122	59-121	6	0-25	3	
Phenanthrene	ND	2.000	2.517	126	2.631	132	54-120	4	0-25	3	
Anthracene	ND	2.000	2.013	101	2.202	110	27-133	9	0-25		
Fluoranthene	ND	2.000	2.409	120	2.576	129	26-137	7	0-25		
Pyrene	ND	2.000	2.408	120	2.515	126	18-168	4	0-25		
Benzo (a) Anthracene	ND	2.000	2.668	133	2.843	142	33-143	6	0-25		
Chrysene	ND	2.000	2.320	116	2.471	124	17-168	6	0-25		
Benzo (k) Fluoranthene	ND	2.000	2.504	125	2.661	133	24-159	6	0-25		
Benzo (b) Fluoranthene	ND	2.000	2.484	124	2.598	130	24-159	4	0-25		
Benzo (a) Pyrene	ND	2.000	2.384	119	2.530	127	17-163	6	0-25		
Indeno (1,2,3-c,d) Pyrene	ND	2.000	2.629	131	2.824	141	10-171	7	0-25		
Dibenz (a,h) Anthracene	ND	2.000	2.245	112	2.382	119	10-219	6	0-25		
Benzo (g,h,i) Perylene	ND	2.000	2.116	106	2.231	112	10-227	5	0-25		

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method:

13-04-1894 EPA 5030C

04/26/13

GC/MS / EPA 8260B

Project Red Hill LTM 112066

Quality Control Sample ID	Quality Control Sample ID		Matrix		Instrument		Date epared	Date Analyzed	MS/MSD Batch Number	
ES 025			Aqueous		GC/MS OO	04/29/13		04/29/13	130	429S01
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Acetone	84.03	50.00	126.4	85	172.6	177	40-140	31	0-20	3,4
Benzene	ND	50.00	46.76	94	52.28	105	80-120	11	0-20	
Bromodichloromethane	ND	50.00	45.41	91	52.48	105	75-120	14	0-20	
Bromoform	ND	50.00	49.00	98	54.95	110	70-130	11	0-20	
Bromomethane	ND	50.00	47.92	96	48.13	96	30-145	0	0-20	
2-Butanone	ND	50.00	53.60	107	56.72	113	30-150	6	0-20	
Carbon Tetrachloride	ND	50.00	46.86	94	50.96	102	65-140	8	0-20	
Chlorobenzene	ND	50.00	48.57	97	54.81	110	80-120	12	0-20	
Chloroethane	ND	50.00	47.94	96	51.43	103	60-135	7	0-20	
Chloroform	ND	50.00	47.46	95	52.64	105	65-135	10	0-20	
Chloromethane	ND	50.00	32.20	64	37.41	75	40-125	15	0-20	
Dibromochloromethane	ND	50.00	46.03	92	52.32	105	60-135	13	0-20	
1,2-Dibromo-3-Chloropropane	ND	50.00	43.05	86	46.53	93	50-130	8	0-20	
1,2-Dibromoethane	ND	50.00	47.22	94	53.21	106	80-120	12	0-20	
1,2-Dichlorobenzene	ND	50.00	47.91	96	54.34	109	70-120	13	0-20	
1,3-Dichlorobenzene	ND	50.00	48.59	97	54.78	110	75-125	12	0-20	
1,4-Dichlorobenzene	ND	50.00	45.64	91	51.63	103	75-125	12	0-20	
1,1-Dichloroethane	ND	50.00	44.90	90	49.63	99	70-135	10	0-20	
1,2-Dichloroethane	ND	50.00	46.45	93	52.02	104	70-130	11	0-20	
1,1-Dichloroethene	ND	50.00	33.44	67	41.75	84	70-130	22	0-20	3,4
c-1,2-Dichloroethene	ND	50.00	47.47	95	52.95	106	70-125	11	0-20	
t-1,2-Dichloroethene	ND	50.00	49.18	98	53.88	108	60-140	9	0-20	
1,2-Dichloropropane	ND	50.00	47.13	94	53.51	107	75-125	13	0-20	
c-1,3-Dichloropropene	ND	50.00	48.01	96	53.34	107	70-130	11	0-20	
t-1,3-Dichloropropene	ND	50.00	43.31	87	48.56	97	55-140	11	0-20	
Ethylbenzene	ND	50.00	48.07	96	53.56	107	75-125	11	0-20	
Methylene Chloride	ND	50.00	47.86	96	52.68	105	55-140	10	0-20	
4-Methyl-2-Pentanone	ND	50.00	46.00	92	53.30	107	60-135	15	0-20	
Styrene	ND	50.00	48.15	96	54.32	109	65-135	12	0-20	
1,1,1,2-Tetrachloroethane	ND	50.00	47.33	95	53.30	107	80-130	12	0-20	
1,1,2,2-Tetrachloroethane	ND	50.00	28.79	58	28.35	57	65-130	2	0-20	3

RPD - Relative Percent Difference,

CL - Control Limit

13-04-1894

alscience nvironmental aboratories, Inc.

Quality Control - Spike/Spike Duplicate

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method:

EPA 5030C

GC/MS / EPA 8260B

Project Red Hill LTM 112066

Quality Control Sample ID ES 025		Matrix		Instrument		Date Prepared		MS/MSD Batch Number 130429S01		
			Aqueous		GC/MS OO	04/29/13				04/29/13
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Tetrachloroethene	ND	50.00	67.27	135	74.63	149	45-150	10	0-20	
Toluene	ND	50.00	47.53	95	53.47	107	75-120	12	0-20	
1,2,4-Trichlorobenzene	ND	50.00	46.36	93	52.70	105	65-135	13	0-20	
1,1,1-Trichloroethane	ND	50.00	47.26	95	53.04	106	65-130	12	0-20	
Hexachloro-1,3-Butadiene	ND	50.00	46.97	94	51.59	103	50-140	9	0-20	
1,1,2-Trichloroethane	ND	50.00	46.64	93	52.02	104	75-125	11	0-20	
Trichloroethene	ND	50.00	60.74	121	72.09	144	70-125	17	0-20	3
1,2,3-Trichloropropane	ND	50.00	47.50	95	54.35	109	75-125	13	0-20	
Vinyl Chloride	ND	50.00	41.62	83	45.02	90	50-145	8	0-20	
p/m-Xylene	ND	100.0	92.75	93	103.6	104	75-130	11	0-20	
o-Xylene	ND	50.00	48.22	96	54.52	109	80-120	12	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	45.66	91	51.39	103	65-125	12	0-20	

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method:

13-04-1894 EPA 3020A Total EPA 6020

N/A

Project: Red Hill LTM 112066

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File	e ID	LCS Batch Number
099-14-497-27	Aqueous	ICP/MS 03	04/29/13	130429-L-05_	_163.icp	130429L05D
<u>Parameter</u>		Conc Added	Conc Recovered	LCS %Rec	%Rec Cl	<u>Qualifiers</u>
Lead		100.0	97.92	98	80-120	

Quality Control - LCS/LCS Duplicate

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method: N/A 13-04-1894 EPA 3510C EPA 8015B (M)

Project: Red Hill LTM 112066

Quality Control Sample ID	Matrix		Instrument		ate pared	Date Analyzed	t	LCS/LCSD Batch Number	
099-15-516-41	Aqueous		GC 46	04/	29/13	04/30/13		130429B08	
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Diesel	4000	4373	109	4226	106	60-132	3	0-11	

N/A

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

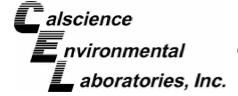
Date Received: Work Order No: Preparation: Method:

13-04-1894 EPA 3510C EPA 8270C SIM PAHs

Project: Red Hill LTM 112066

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab F	File ID	LCS Batch Number
099-15-148-13	Aqueous	GC/MS AAA	04/30/13	30APR	015.rr	130429L19
<u>Parameter</u>	Conc Added	Conc Recovered	LCS %Rec	%Rec CL	ME CL	Qualifiers
Naphthalene	2.000	2.307	115	21-133	2-152	
2-Methylnaphthalene	2.000	2.195	110	21-140	1-160	
1-Methylnaphthalene	2.000	2.314	116	20-140	0-160	
Acenaphthylene	2.000	2.235	112	33-145	14-164	
Acenaphthene	2.000	2.335	117	55-121	44-132	
Fluorene	2.000	2.322	116	59-121	49-131	
Phenanthrene	2.000	2.323	116	54-120	43-131	
Anthracene	2.000	2.332	117	27-133	9-151	
Fluoranthene	2.000	2.375	119	26-137	8-156	
Pyrene	2.000	2.431	122	45-129	31-143	
Benzo (a) Anthracene	2.000	2.521	126	33-143	15-161	
Chrysene	2.000	2.355	118	17-168	0-193	
Benzo (k) Fluoranthene	2.000	2.436	122	24-159	2-182	
Benzo (b) Fluoranthene	2.000	2.412	121	24-159	2-182	
Benzo (a) Pyrene	2.000	2.235	112	17-163	0-187	
Indeno (1,2,3-c,d) Pyrene	2.000	2.471	124	25-175	0-200	
Dibenz (a,h) Anthracene	2.000	2.042	102	25-175	0-200	
Benzo (g,h,i) Perylene	2.000	1.973	99	25-157	3-179	

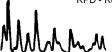
Total number of LCS compounds: 18


Total number of ME compounds: 0

Total number of ME compounds allowed: 1

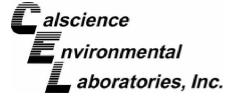
LCS ME CL validation result: Pass

Quality Control - LCS/LCS Duplicate



Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method: N/A 13-04-1894 EPA 5030C GC/MS / EPA 8260B


Project: Red Hill LTM 112066

Quality Control Sample ID	Ma	ıtrix	Instrumen	t	Date Prepared		ate Ilyzed	LCS	/LCSD Batch Number	
099-13-057-25	Aque		GC/MS OC		04/29/13	04/29	9/13	1	30429L01	
<u>Parameter</u>	<u>SPIKE</u> <u>ADDED</u>	LCS CONC	<u>LCS</u> <u>%REC</u>	LCSD CONC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Acetone	50.00	63.27	127	57.80	116	40-140	23-157	9	0-20	
Benzene	50.00	51.79	104	49.87	100	80-120	73-127	4	0-20	
Bromodichloromethane	50.00	53.59	107	52.03	104	75-120	68-128	3	0-20	
Bromoform	50.00	57.99	116	56.74	113	70-130	60-140	2	0-20	
Bromomethane	50.00	50.23	100	42.26	85	30-145	11-164	17	0-20	
2-Butanone	50.00	55.79	112	60.24	120	30-150	10-170	8	0-20	
Carbon Tetrachloride	50.00	54.44	109	51.48	103	65-140	52-152	6	0-20	
Chlorobenzene	50.00	55.85	112	52.49	105	80-120	73-127	6	0-20	
Chloroethane	50.00	56.31	113	46.85	94	60-135	48-148	18	0-20	
Chloroform	50.00	54.98	110	51.34	103	65-135	53-147	7	0-20	
Chloromethane	50.00	39.82	80	37.13	74	40-125	26-139	7	0-20	
Dibromochloromethane	50.00	56.52	113	52.23	104	60-135	48-148	8	0-20	
1,2-Dibromo-3-Chloropropane	50.00	55.49	111	55.19	110	50-130	37-143	1	0-20	
1,2-Dibromoethane	50.00	56.16	112	53.50	107	80-120	73-127	5	0-20	
1,2-Dichlorobenzene	50.00	56.24	112	53.12	106	70-120	62-128	6	0-20	
1,3-Dichlorobenzene	50.00	55.14	110	52.47	105	75-125	67-133	5	0-20	
1,4-Dichlorobenzene	50.00	52.89	106	49.82	100	75-125	67-133	6	0-20	
1,1-Dichloroethane	50.00	52.77	106	49.65	99	70-135	59-146	6	0-20	
1,2-Dichloroethane	50.00	53.59	107	51.76	104	70-130	60-140	3	0-20	
1,1-Dichloroethene	50.00	48.95	98	44.00	88	70-130	60-140	11	0-20	
c-1,2-Dichloroethene	50.00	53.05	106	51.34	103	70-125	61-134	3	0-20	
t-1,2-Dichloroethene	50.00	55.19	110	51.89	104	60-140	47-153	6	0-20	
1,2-Dichloropropane	50.00	54.64	109	51.84	104	75-125	67-133	5	0-20	
c-1,3-Dichloropropene	50.00	56.56	113	53.61	107	70-130	60-140	5	0-20	
t-1,3-Dichloropropene	50.00	51.58	103	49.19	98	55-140	41-154	5	0-20	
Ethylbenzene	50.00	53.63	107	51.19	102	75-125	67-133	5	0-20	
Methylene Chloride	50.00	54.84	110	50.93	102	55-140	41-154	7	0-20	
4-Methyl-2-Pentanone	50.00	54.88	110	55.74	111	60-135	48-148	2	0-20	
Styrene	50.00	55.75	111	52.16	104	65-135	53-147	7	0-20	
1,1,1,2-Tetrachloroethane	50.00	55.56	111	53.06	106	80-130	72-138	5	0-20	
1,1,2,2-Tetrachloroethane	50.00	52.71	105	52.42	105	65-130	54-141	1	0-20	
Tetrachloroethene	50.00	50.86	102	46.43	93	45-150	28-168	9	0-20	

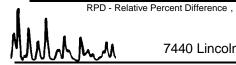
RPD - Relative Percent Difference , CL - Control Limit

Quality Control - LCS/LCS Duplicate

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method:

N/A 13-04-1894 **EPA 5030C** GC/MS / EPA 8260B


Project: Red Hill LTM 112066


Quality Control Sample ID	Ma	Matrix Instrum		Date ment Prepared			Date Analyzed		LCS/LCSD Batch Number	
099-13-057-25	Aque	ous	GC/MS OC	GC/MS OO		04/29	04/29/13		130429L01	
<u>Parameter</u>	SPIKE ADDED	LCS CONC	<u>LCS</u> <u>%REC</u>	LCSD CONC	LCSD %REC	%REC CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Toluene	50.00	53.94	108	51.11	102	75-120	68-128	5	0-20	
1,2,4-Trichlorobenzene	50.00	57.24	114	53.94	108	65-135	53-147	6	0-20	
1,1,1-Trichloroethane	50.00	55.84	112	52.73	105	65-130	54-141	6	0-20	
Hexachloro-1,3-Butadiene	50.00	55.02	110	51.10	102	50-140	35-155	7	0-20	
1,1,2-Trichloroethane	50.00	53.99	108	52.64	105	75-125	67-133	3	0-20	
Trichloroethene	50.00	52.88	106	50.12	100	70-125	61-134	5	0-20	
1,2,3-Trichloropropane	50.00	54.53	109	55.98	112	75-125	67-133	3	0-20	
Vinyl Chloride	50.00	46.64	93	42.58	85	50-145	34-161	9	0-20	
p/m-Xylene	100.0	105.2	105	99.10	99	75-130	66-139	6	0-20	
o-Xylene	50.00	55.39	111	52.29	105	80-120	73-127	6	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	53.17	106	51.92	104	65-125	55-135	2	0-20	
Gasoline Range Organics	1000	996.5	100	825.8	83	80-120	73-127	19	0-20	

Total number of LCS compounds: 44 Total number of ME compounds: 0 Total number of ME compounds allowed: LCS ME CL validation result: Pass

FAX: (714) 894-7501

Sample Analysis Summary Report

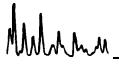
WORK ORDER #: <u>13-04-1894</u>

Lab Sample Number	Client Sample ID	Method	Extraction	Date/Time Analyzed	Chemist ID	Instrument	Analytical Location
1-A	ES Trip	GC/MS / EPA 8260	EPA 5030C	04/29/2013 14:46	486	GC/MS OO	2
2-G	ES 025	EPA 6020	EPA 3020A T	04/29/2013 21:47	598	ICP/MS 03	1
2-1	ES 025	EPA 8270C SIM PA	EPA 3510C	04/30/2013 17:20	449	GC/MS AA	1
2-H	ES 025	EPA 8015B (M)	EPA 3510C	04/30/2013 12:42	847	GC 46	1
2-A	ES 025	GC/MS / EPA 8260	EPA 5030C	04/29/2013 15:13	486	GC/MS OO	2
3-G	ES 026	EPA 6020	EPA 3020A T	04/29/2013 21:50	598	ICP/MS 03	1
3-I	ES 026	EPA 8270C SIM PA	EPA 3510C	04/30/2013 17:47	449	GC/MS AA	1
3-H	ES 026	EPA 8015B (M)	EPA 3510C	04/30/2013 12:58	847	GC 46	1
3-A	ES 026	GC/MS / EPA 8260	EPA 5030C	04/29/2013 16:59	486	GC/MS OO	2
4-G	ES 027	EPA 6020	EPA 3020A T	04/29/2013 21:53	598	ICP/MS 03	1
4-1	ES 027	EPA 8270C SIM PA	EPA 3510C	04/30/2013 18:14	449	GC/MS AA	1
4-H	ES 027	EPA 8015B (M)	EPA 3510C	04/30/2013 14:20	847	GC 46	1
4-A	ES 027	GC/MS / EPA 8260	EPA 5030C	04/29/2013 17:26	486	GC/MS OO	2

Location	Description
1	7440 Lincoln Way, Garden Grove, CA 92841
2	7445 Lampson Avenue, Garden Grove, CA 92841

05/02/13 1

Glossary of Terms and Qualifiers



Work Order Number: 13-04-1894

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
DL	The Detection Limit (DL) is the smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
ICH	Initial calibration verification recovery is above the control limit for this analyte.
ICJ	Initial calibration verification recovery is below the control limit for this analyte.
IH	Calibration verification recovery is above the control limit for this analyte.
IJ	Calibration verification recovery is below the control limit for this analyte.
J	Analyte was detected at a concentration below the LOQ and above the DL. Reported value is estimated.
LOD	The Limit of Detection (LOD) is the smallest amount or concentration of a substance that must be present in a sample in order to be detected at 99% confidence level.
LOQ	The Limit of Quantitation (LOQ) is the lowest concentration of a substance that produces a quantitative result within specified limits of precision and bias.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
U	Undetected at Detection Limit (DL) and is reported as less than the Limit of Detection (LOD).
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

For any analysis identified as a "field" test with a holding time (HT) </= 15 minutes where the sample is received outside of HT, Calscience will adhere to its internal HT of 24 hours. In cases where sample analysis does not meet Calscience's internal HT, results will be appropriately qualified.

E.
#

Calscience Environmental Laboratories, Inc.

7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494

Other CA office locations: Concord and San Luis Obispo For courier service / sample drop off information, contact <u>sales@calscience.com</u> or call us. WO#/LAB USE ONLY

13-04-1894

CH	IAI	V O	FC	;U	ST	O	DY	RE	CO	RI	3

Date 4/24/13

LABORATORY CLIENT:	CLIENT PROJECT NAME / NUMBER: P.O. NO.:				
Environmental Science Internation	Red Hill LTM 112066				
ADDRESS: 354 Uluniu St. #304	PROJECT CONTACT: SAMPLER(S): (PRINT)				
Cii Kailua Iti SIAIE 967	Robert Ch	lener	BI/JL		
TEL: 1906-261-0740 ROHONG DECCHENCET.COM, DECHENCET.COM, DECHENCET) RECUTCAVELA	ian	REQUESTED AN	NALYSES	
	Carsengen				
SAME DAY 24 HR 48 HR 72 HR STANDARD		(44)			
COELT EDF GLOBAL ID	LOG CODE		35)		
SPECIAL INSTRUCTIONS:			Oxygenates (8260) En Core / Terra Core Prep (5035) SVOCs (8270) Pesticides (8081) PCBs (8082)	PWAs (8310) er (8270) PAIH T22 Metals (6010B/747X) Cr(VI) [7196 or 7199 or 218.6] [Call COZO	
			Prej		
		or ((50) (Core	(827)	
	m	GRC GRC	270) (808)	(60) et	
	serv	g) or d) or // MT) re / 7 ore / 808	MAS (634 (71) [716 (71) [716 (71) [716 (71) [716 (71) [716 (71) [716 (71) [716 (71) [716 (71) [716 (71) [716 (71) [71] [716 (71) [71] [716 (71) [71] [716 (71) [71] [716 (71) [71] [716 (71) [71] [716 (71) [71] [716 (71) [71] [716 (71) [71] [716 (71) [71] [716 (71) [71] [716 (71) [71] [716 (71) [71] [716 (71) [71] [71] [716 (71) [71] [716 (71) [71] [716 (71) [71] [71] [716 (71) [716 (71) [71] [71] [716 (71) [71] [71] [716 (71) [71] [71] [716 (71) [71] [71] [71] [716 (71) [71] [71] [716 (71) [71] [71] [71] [716 (71) [71] [71] [71] [716 (71) [71] [71] [71] [716 (71) [71] [71] [71] [71] [716 (71) [71] [71] [71] [71] [716 (71) [71] [71] [71] [71] [71] [71] [71] [71]	
USE SAMPLE ID MATRIX	Unpreserved Preserved Preserved Field Filtered	TPH (g) or GRO 52 TPH (d) or DRO or (C6C56) TPH (Oxygenates (8260) En Core / Terra Coi SVOCs (8270) Pesticides (8081) PCBs (8082)	PNAS (6310) et (8270) (722 Metals (6010B/747X) Cr(VI) [7196 or 7199 or 21]	
UNE.				4 7 0	
	3 X				
2 ES 025 4/24/13000 mer		XXXX		XX	
2 ES 025 4/24/130800 wher 7 ES 025 MS/MSD 4/24/13 0800 wher	OXXX	\times		\times	
4 ES 026 4/24/13/0900 motor	OXXX	$\times \times \times \times $		\times \times \times \times	
2 ES 025 4/24/13000 mber 7 ES 025 MB/MBD 4/24/13 0800 mber 4 ES 026 4/24/130900 mber 8 ES 027 4/24/130930 mber	OXXX	$\times \times$ >	<	XXX	
		1			
[[]	I Danei sed by (C)	t		I Date:	
Relinguished by: (Signature) Banden Iban ESI	Received by: (Signa	ture/Amiliation)	A 1	Date: Time: 1200	
Relinquished by: (Signature)	Received by: (Signar	ture/Affiliation)	11/11	Date: / Time:	
			ING ANT	<i>円</i> <u>26/13 1030</u> Date: Time:	
Relinquished by: (Signature)	Received by: (Signa	ture/Affiliation)	1/19	Date: Time:	

SHIP DATE: 24APR13 ACTWGT: 51.9 LB CAD: /PDS1400 DIMS: 24x14x13 IN

BILL SENDER

IGIN ID:HNLA (714) 895-5494 LSCIENCE ENVIRONMENTAL LAB

AMPLE CONTROL **ALSCIENCE LABS 140 LINCOLN WAY**

ARDEN GROVE CA 92841

FedEx Express

assago dazsa matarixkaniyagan kusa

2 of 2 7957 7574 5457

0200

26 APR AA

SHIP DATE: 24APR13 ACTWGT: 79.8 LB CAD: /POS1400 DIMS: 29x18x15 IN

BILL SENDER

92841 SNA :

ORÍGIN ID:HNLA (714) 895-5494 CALSCIENCE ENVIRONMENTAL LAB

7440 LINCOLN WAY

GARDEN GROVE, CA 928411427 UNITED STATES US

¹⁰ SAMPLE CONTROL CALSCIENCE LABS 7440 LINCOLN WAY

1 of 2

TRK# 0200 8531 6209 1620

VZ APVA


GARDEN GROVE CA 92841 (714) 895 – 5494 INVI

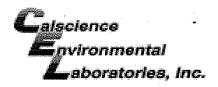
FedEX

BENT # 196591 VISTIM CONTRACTOR DOLL # 1124

26 APR AA

92841 ca-us SNA

Feder Fough Here


WORK ORDER #: **13-04-** ☑ ② ② ②

SAMPLE RECEIPT FORM

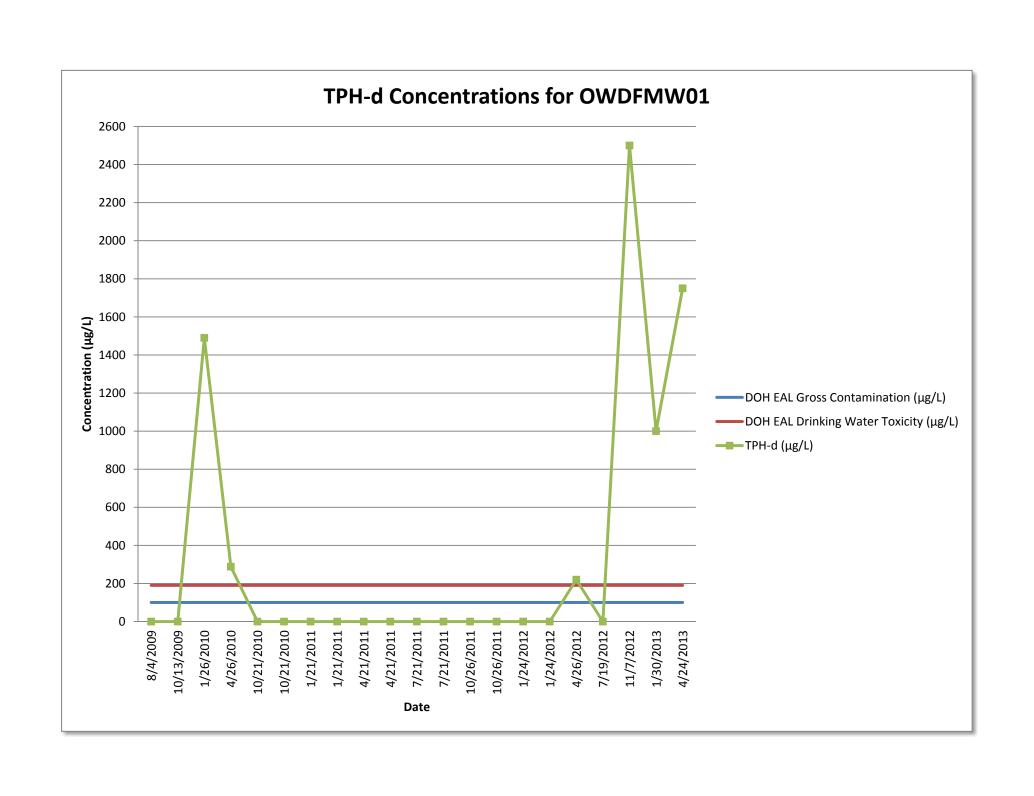
Cooler $\frac{1}{2}$ of $\frac{2}{2}$

CLIENT: ESI	DATE:	04/26	/13
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozen	/	liment/tissue	-
Temperature $\frac{3}{2} \cdot \frac{1}{2} ^{\circ}C \cdot 0.2 ^{\circ}C \text{ (CF)} = \frac{2}{2} \cdot \frac{9}{2} ^{\circ}C$	Blank	☐ Sample	
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).			
\square Sample(s) outside temperature criteria but received on ice/chilled on same day	of samplin	ng.	
☐ Received at ambient temperature, placed on ice for transport by Cou	rier.		
Ambient Temperature: Air Filter		Initial:	SP
CUSTODY SEALS INTACT:			
☑ Cooler □ □ No (Not Intact) □ Not Present	□ N/A	Initial:	20
Sample □ No (Not Intact) □ Not Present		Initial:	SH
SAMPLE CONDITION:	es	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	d		
COC document(s) received complete	\angle		
\square Collection date/time, matrix, and/or # of containers logged in based on sample labels.			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			
Sampler's name indicated on COC	4		
Sample container label(s) consistent with COC	7		
Sample container(s) intact and good condition	7		
Proper containers and sufficient volume for analyses requested			
Analyses received within holding time	7		
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours [
Proper preservation noted on COC or sample container			
☑ Unpreserved vials received for Volatiles analysis	,		
Volatile analysis container(s) free of headspace			
Tedlar bag(s) free of condensation CONTAINER TYPE:	<u> </u>		
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores®	[°] □Terra0	Cores [®] □	
Water: ZVOA ZVOAh □VOAna₂ □125AGB □125AGBh □125AGBp Z	11AGB]1AGB na₂ □	1AGB s
□500AGB 1500AGJ □500AGJs □250AGB □250CGB □250CGBs		,	
□250PB ☑250PBnu□125PB □125PB znna □100PJ □100PJ na ₂ □	🗆		
Air: □Tedlar [®] □Canister Other: □ Trip Blank Lot#:			214
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envel	ope R	eviewed by: _	12

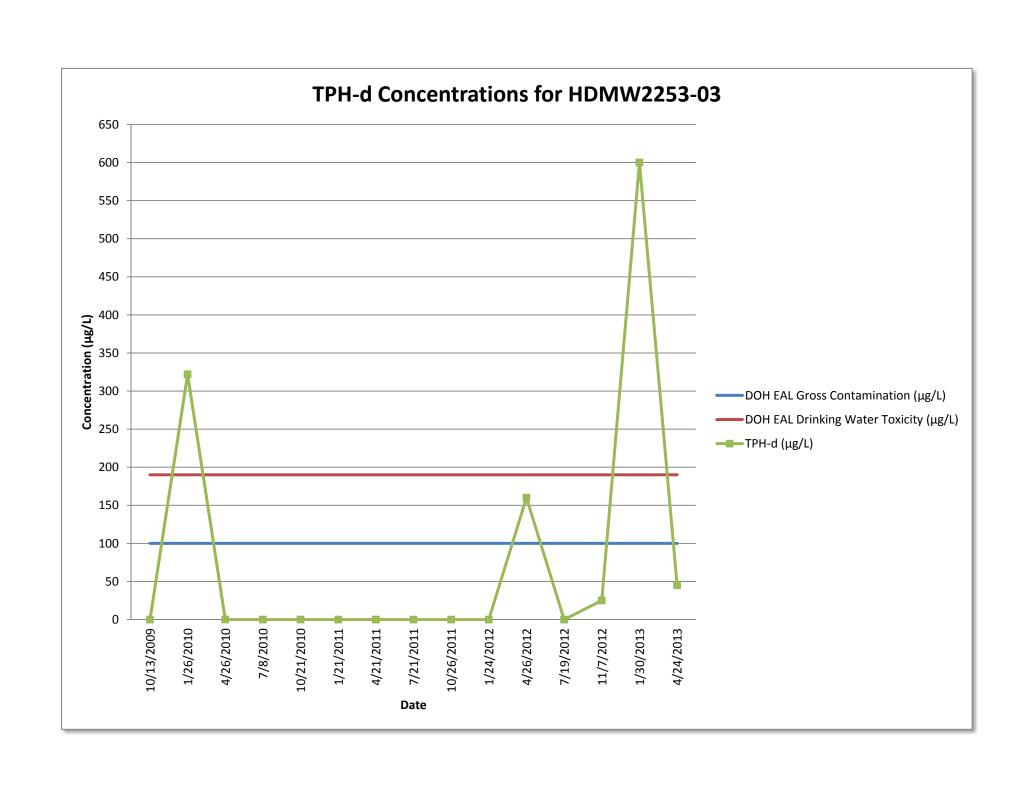
Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂SO₄ u: Ultra-pure znna: ZnAc₂+NaOH f: Filtered Scanned by:

WORK ORDER #: 13-04- □ 3 9 9

SAMPLE RECEIPT FORM


Cooler $\frac{2}{2}$ of $\frac{2}{2}$

CLIENT: ES/ DATE:	04/26/13
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C − 6.0 °C, not frozen except second remperature 2 • 6 °C − 0.2 °C (CF) = 2 • 4 °C Blank □ Sample(s) outside temperature criteria (PM/APM contacted by:). □ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling Received at ambient temperature, placed on ice for transport by Courier.	□ Sample
Ambient Temperature: ☐ Air ☐ Filter	Initial:
CUSTODY SEALS INTACT: Cooler	Initial:
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples. COC document(s) received complete.	No N/A
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels. ☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.	
Sampler's name indicated on COC	
Sample container(s) intact and good condition	
Analyses received within holding time	
Proper preservation noted on COC or sample container	
Volatile analysis container(s) free of headspace Tedlar bag(s) free of condensation	
CONTAINER TYPE: Solid: \$\text{Solid:} \text{\$\exitity}\$\$\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{	
Water: ☑VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp ☑1AGB □	∃1AGB na₂ □1AGB s
□500AGB ☑500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □ □250PB ☑250PBnų□125PB □125PBznna □100PJ □100PJna₂ □ □ □	
Air: □Tedlar [®] □Canister Other: □ Trip Blank Lot#: Labeled/0	≤ 1


Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂SO₄ u: Ultra-pure znna: ZnAc₂+NaOH f: Filtered Scanned by:

APPENDIX D Historical Groundwater Exceedance Trends

APPENDIX E Waste Disposal Manifest

NON-HAZARDOUS 1. Generator ID Number			2. Page 1 of 3. Emergency Response P			4. Waste Tr	cking Number			
7	WASTE MANIFEST	HIR 000 05		1	808-206-	9989			00	0019554
	5 Generator's Name and Mailir COMNAVREG HAW 400 MARSHALL JBPHH, HI 968	ng Address AII, C/O NAVFAC HA ROAD, ATTN: ESTREL 60-3139	WAII, CODI	E PRJ4.	RED	•	JLK FUEL			C8553-03
Ш	Generator's Phone:	808-471-4216		- 1		,				
	6. Transporter 1 Company Nam						U.S. EPA ID 1	Number		
	PACIFIC COMME	RCIAL SERVICES, LL	C.	80	8-545-4599		H I	R 0	0 0 0 9	7 8 2 4
	7. Transporter 2 Company Nam					<u>.</u>	U.S. EPA ID I			
	UNITEK SOLVEN	T SERVICES, INCO	AHU	80	8-682-8284		HIL	9 8	2 4 4 3	7 1 5
	8. Designated Facility Name an	nd Site Address					U.S. EPA ID 1			
	91-125 KAOMI	T SERVICES, INC. LOOP 96707 808-682-8284			•		H I	D 9 i	8244	3 7 1 5
			**	10. Containers						
Ш	9. Waste Shipping Name	e and Description			No.	Туре	Quantity	Wt./Vol.		
GENERATOR -	1200	L NOT REGULATED BY E AND DECONTAMINAT)	001	DΜ	00020	G		NON-RCRA
	2.									
5										
	300	ppm HQ PI Supply TE	+=6							
	⁴ Pcs	SUPPLY TE	丁、							
	13. Special Handling Instruction	ns and Additional Information			<u> </u>					300 PPN
П	9b1: NR	no and readily morning			2008	9b1:		TOTAL	HALOGEN:	inc to the
	SHIPPING NAME (WHERE A BY HIGHWAY ACCORDING T	TION: I HEREBY DECLARE THAT THAT THAT THE PROPERTY OF THE PROP	PACKED, MARKED	, AND LAB	ELED AND ARE IN A THAT IF THIS IS	LL RESPECTS USED OIL IT	IN PROPER CO	ONDITION O REGUL	FOR TRANSPO ATION UNDER	4Đ
		DOES NOT CONTAIN PCBS GREATER	ZAZADOONIS MASERT	ATO AND COR	HAZADDONG MAGMEG					
Ш	14. GENERATOR'S/OFFEROF	R'S CERTIFICATION: I hereby declare the ded, and are in all respects in proper cond	at the contents of this	consignment a	re fully and accurately d	lescribed above	by the proper shi	pping nam	ie, and are classi	ied, packaged,
	marked and labeled/placard Generator's/Offeror's Printed/Ty		mon for transport acco		nature	anonal governi	1 / -		Month	Day Year
\forall	Estrelita	·			Estre	lita	Nie	7	DL	10513
اد	15. International Shipments	monorito U.S.		Export from	U.S. Port of	entry/exit:		/		
I.L	Transporter Signature (for expo			,		aving U.S.:				<u>.</u>
	16. Transporter Acknowledgme	ent of Receipt of Materials								
TRANSPORTER	Transporter 1 Printed/Typed Na	ame		Sig	nature	11			Month	* .
SPC	Grader	(-)		1	yee/E X				6 Manth	5 13
Ä	Transporter 2 Printed/Typed Na	ame		'Sig	nature	4	\supset		Month	Day Year
뜨	MOB AU					-			Q	1615
A	17. Discrepancy				·					
	17a. Discrepancy Indication Sp	pace Quantity	Пуре		Residue		Partial Rej	ection		Full Rejection
		• •								
1					Manifest Reference	e Number:	U.S. EPA ID	Mumber		
≧	17b. Alternate Facility (or Gene	erator)					U.O. EMA ID I	variabet		
딍							1			
Ā	Facility's Phone:								Month	Day Year
빌	17c. Signature of Alternate Fac	cility (or Generator)		1						Day rear
ANS.		en jaro en en en 1981, en er en	Dagen wegitani di disebuah			4. + 134 14. + 1				1
DESIGNATED FACILITY	SEE	CHLOUDE	走り	K/X	MATE	ブント	16/	72		
) 2		<u> </u>	<u> Prikulini karaja</u>			
		or Operator: Certification of receipt of mat	erials covered by the r			(X)			Month	Day, Year
\bigvee	Printed/Typed Name	· JUHANBI	Y	Sig	gnature	X	•		wonth L	1200

DESIGNATED FACILITY TO GENERATOR

