Final First Quarter 2013 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells

Red Hill Bulk Fuel Storage Facility
Joint Base Pearl Harbor-Hickam, Oahu, Hawaii

DOH Facility ID: 9-102271

DOH Release ID: 990051, 010011, and 020028

April 2013

Department of the Navy Naval Facilities Engineering Command, Hawaii 400 Marshall Road JBPHH, HI 96860-3139

Contract Number N62742-12-D-1853, CTO 0002

Final First Quarter 2013 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells

Red Hill Bulk Fuel Storage Facility
Joint Base Pearl Harbor-Hickam, Oahu, Hawaii

DOH Facility ID: 9-102271

DOH Release ID: 990051, 010011, and 020028

April 2013

Prepared for:

Department of the Navy Naval Facilities Engineering Command, Hawaii 400 Marshall Road JBPHH, HI 96860-3139

Prepared by:

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734

Prepared under:

Contract Number N62742-12-D-1853, CTO 0002

FINAL FIRST QUARTER 2013 - QUARTERLY GROUNDWATER MONITORING REPORT OUTSIDE TUNNEL WELLS RED HILL BULK FUEL STORAGE FACILITY

Long-Term Groundwater and Soil Vapor Monitoring Red Hill Bulk Fuel Storage Facility Joint-Base Pearl Harbor-Hickam, Oahu, Hawaii

Prepared for:

Department of the Navy Commanding Officer, Naval Facilities Engineering Command, Hawaii 400 Marshall Road JBPHH, HI 96860-3139

Prepared by:

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734 (808) 261-0740

Prepared under:

Contract Number: N62742-12-D-1853 Contract Task Order: 0002

Approval Signature:		
	Darren Uchima, Navy Technical Representa	tive Date
	Roberty	
Approval Signature:		4/19/2013
	Robert Chong, ESI Project Manager	Date
	Fraci Sylva	
Approval Signature:		4/19/2013
• •	Traci Sylva, ESI QA Manager	Date

Contract No. N62742-12-D-1853	Contract Task Order 0002
This Page Intentionally Left Blank.	

TABLE OF CONTENTS

<u>Section</u>	<u>Title</u>	<u>Page</u>
ES	EXECUTIVE SUMMARY	ES-1
1.0	INTRODUCTION	1-1
1.1	Site Description	1-1
1.2	Physical Settings	1-2
1.3	Background	1-3
2.0	GROUNDWATER SAMPLING	2-1
2.1	Groundwater Sampling	2-1
2.2	Analytical Results	2-1
2.3	Waste Disposal	2-2
3.0	DATA QUALITY ASSESSMENT	3-1
3.1	Data Validation and Assessment	3-1
3.2	Data Assessment and Usability Conclusions	3-3
4.0	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	4-1
5.0	FUTURE WORK	5-1
6.0	REFERENCES	6-1

LIST OF TABLES

<u>Number</u>	<u>Title</u>	<u>Page</u>
1.1	Current Status of USTs	1-2
2.1	Analytical Results for Groundwater Sampling (January 30, 2013)	2-3
3.1	Quality Control Results for Groundwater Sampling (January 30, 2013)	3-5

LIST OF FIGURES

<u>Number</u>	<u>Title</u>
1	Site Location
2	Site Layout

APPENDICES

<u>Appendix</u>	<u>Title</u>
Α	Groundwater Sampling Logs
В	Field Notes
С	Laboratory Reports
D	Historical Groundwater Exceedance Trends
E	Waste Disposal Manifest

ACRONYMS AND ABBREVIATIONS

ACRONYMS/
ABBREVIATIONS DEFINITION/MEANING

% percent

COPC Contaminant of Potential Concern

DLNR State of Hawaii Department of Land and Natural Resources

DOH State of Hawaii Department of Health

DON Department of the Navy
EAL Environmental Action Level
EPA Environmental Protection Agency
ESI Environmental Science International

F-76 Marine Diesel Fuel

ID Identification

JBPHH Joint Base Pearl Harbor-Hickam

JP-5 Jet Fuel Propellant-5
JP-8 Jet Fuel Propellant-8
LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

LOD Limit of Detection
LOQ Limit of Quantitation

µg/L micrograms per Liter

MS Matrix Spike

MSD Matrix Spike Duplicate

NAVFAC Naval Facilities Engineering Command

NAVSUP FLC Naval Supply Systems Command Fleet Logistics Center

N.D. Not Detected

PAH Polycyclic Aromatic Hydrocarbons

PARCCS Precision, Accuracy, Representativeness, Completeness, Comparability,

and Sensitivity

pH hydrogen activity QC Quality Control

RHSF Red Hill Bulk Fuel Storage Facility
RPD Relative Percent Difference
SAP Sampling and Analysis Plan
TEC The Environmental Company, Inc.
TPH-d Total Petroleum Hydrocarbons as diesel

TPH-g Total Petroleum Hydrocarbons as gasoline U.S. United States of America

U.S. United States of America
UST Underground Storage Tank
VOC Volatile Organic Compounds

WP Work Plan

Contract No. N62742-12-D-1853		Contract Task Order 0002
	This Page Intentionally Left Blank.	

EXECUTIVE SUMMARY

This quarterly monitoring report presents the results of the first quarter 2013 groundwater sampling event conducted on January 30, 2013, at the outside tunnel wells of the Red Hill Bulk Fuel Storage Facility [RHSF], Joint Base Pearl Harbor-Hickam [JBPHH], Hawaii. The RHSF is located in Halawa Heights on the Island of Oahu. There are 18 active and 2 inactive underground storage tanks [USTs] located at the RHSF. The State of Hawaii Department of Health [DOH] Facility Identification [ID] number is 9-102271. The DOH Release ID numbers are 990051, 010011, and 020028.

The groundwater sampling was conducted as part of the long-term groundwater and soil vapor monitoring at the RHSF, under Naval Facilities Engineering Command [NAVFAC] Contract Number N62742-12-D-1853. The sampling was conducted in accordance with the approved Work Plan [WP]/Sampling and Analysis Plan [SAP] prepared by Environmental Science International [ESI].

On January 30, 2013, ESI personnel collected groundwater samples from two outside tunnel monitoring wells (wells HDMW2253-03 and OWDFMW01). A summary of the analytical results is provided below.

- HDMW2253-03 Total Petroleum Hydrocarbons as diesel [TPH-d] (600 micrograms per Liter [µg/L]) and naphthalene (0.37 µg/L) were detected. TPH-d was detected at a concentration above the DOH Environmental Action Levels [EALs] for both drinking water toxicity and gross contamination.
- OWDFMW01 TPH-d (1,000 μg/L), acetone (17 μg/L), naphthalene (0.032-0.039 μg/L), and benzene (0.39 μg/L) were detected. TPH-d was detected at a concentration above the DOH EALs for both drinking water toxicity and gross contamination.

Since the wells were last sampled (November 2012), with the exception of TPH-d, groundwater contaminant concentrations remained at low concentrations and did not change significantly, or were not detected. TPH-d concentrations increased in well HDMW2253-03 and decreased in well OWDFMW01. The TPH-d concentration detected in HDMW2253-03 was the highest concentration detected since quarterly groundwater monitoring was initiated in 2009. TPH-d concentrations increased from 25 μ g/L during the last round of sampling. TPH-d concentrations in well OWDFMW01 decreased from 2,500 μ g/L during the last round of sampling to 1,000 μ g/L during this round of sampling.

Based on the results of the assessment, we recommend continuing the groundwater monitoring program at the RHSF. If the TPH-d concentrations continue to systemically increase, we recommend increasing monitoring frequency to monthly even though the two outside wells are not included in the RHSF Groundwater Protection Plan.

This Page Intentionally Left Blank.

SECTION 1 – INTRODUCTION

This quarterly monitoring report presents the results of the first quarter 2013 groundwater sampling event conducted on January 30, 2013, at the outside tunnel wells of the RHSF, JBPHH, Hawaii. The RHSF is located in Halawa Heights on the Island of Oahu. The purpose of the sampling is to (1) assess the condition of groundwater beneath and in the vicinity of the RHSF with respect to chemical constituents associated with jet fuel propellant and marine diesel fuel, and (2) to ensure the Navy remains in compliance with DOH UST release response requirements as described in Hawaii Administrative Rules 11-281 Subchapter 7, Release Response Action (DOH, 2000). The DOH Facility ID number for the RHSF is 9-102271. The DOH Release ID numbers are 990051, 010011, and 020028.

The groundwater sampling was conducted as part of the long-term groundwater and soil vapor monitoring at the RHSF, under NAVFAC Contract Number N62742-12-D-1853. The sampling was conducted in accordance with the approved WP/SAP prepared by ESI (ESI, 2012a).

1.1 SITE DESCRIPTION

The RHSF is located on federal government land (zoned F1- Military and Federal), located in Halawa Heights, approximately 2.5 miles northeast of Pearl Harbor (Figure 1). It is located on a low ridge on the western edge of the Koolau Mountain Range that divides Halawa Valley from Moanalua Valley. The RHSF is bordered on the north by Halawa Correctional Facility and private businesses, on the west by the United States of America [U.S.] Coast Guard reservation, on the south by residential neighborhoods, and on the east by Moanalua Valley. A quarry is located less than a quarter mile away to the northwest. The RHSF occupies 144 acres of land and the majority of the site is at an elevation of approximately 200 to 500 feet above mean sea level.

The RHSF contains 18 active and 2 inactive USTs, which are operated by Naval Supply Systems Command Fleet Logistics Center [NAVSUP FLC] Pearl Harbor (formerly Fleet and Industrial Supply Center). Each UST has a capacity of approximately 12.5 million gallons. The RHSF is located approximately 100 feet above the basal aquifer. The USTs contain Jet Fuel Propellant-5 [JP-5], Jet Fuel Propellant-8 [JP-8], and Marine Diesel Fuel [F-76]. The current status of each of the USTs is summarized in Table 1.1.

Two groundwater monitoring wells (well HDMW2253-03 and OWDFMW01) are located outside of the RHSF tunnel system (Figure 2). Well HDMW2253-03 is located at the Halawa Correctional Facility (outside the RHSF) and well OWDFMW01 is located at the Oily Waste Disposal Facility near Adit 3. Five groundwater monitoring wells (wells RHMW01, RHMW02, RHMW03, RHMW05, and RHMW2254-01) are located within the RHSF lower access tunnel. (Monitoring data for the five wells located inside the tunnel are included in a separate report.)

Monitoring wells RHMW01, RHMW02, RHMW03, and RHMW05 are located inside the underground tunnels. Monitoring well RHMW2254-01 is located inside the infiltration gallery of the Department of the Navy [DON] Well 2254-01. DON Well 2254-01 is located approximately 2,400 feet downgradient of the USTs and provides approximately 24 percent [%] of the potable water to the Pearl Harbor System, which serves approximately 52,200 military customers. NAVFAC Public Works Department operates the infiltration gallery and DON Well 2254-01.

TABLE 1.1
Current Status of the USTs
Red Hill Bulk Fuel Storage Facility
January 2013 Quarterly Monitoring Report

Tank Identification	Fuel Type	Status	Capacity
F-1	None	Inactive	12.5 million gallons
F-2	JP-8	Active	12.5 million gallons
F-3	JP-8	Active	12.5 million gallons
F-4	JP-8	Active	12.5 million gallons
F-5	JP-8	Active	12.5 million gallons
F-6	JP-8	Active	12.5 million gallons
F-7	JP-5	Active	12.5 million gallons
F-8	JP-5	Active	12.5 million gallons
F-9	JP-5	Active	12.5 million gallons
F-10	JP-5	Active	12.5 million gallons
F-11	JP-5	Active	12.5 million gallons
F-12	JP-5	Active	12.5 million gallons
F-13	F-76	Active	12.5 million gallons
F-14	F-76	Active	12.5 million gallons
F-15	F-76	Active	12.5 million gallons
F-16	F-76	Active	12.5 million gallons
F-17	JP-5	Active	12.5 million gallons
F-18	JP-5	Active	12.5 million gallons
F-19	None	Inactive	12.5 million gallons
F-20	JP-5	Active	12.5 million gallons

F-76 Marine Diesel Fuel

JP-5 Jet Fuel Propellant-5 JP-8 Jet Fuel Propellant-8

1.2 PHYSICAL SETTINGS

Climatological conditions in the area of the RHSF consist of warm to moderate temperatures and low to moderate rainfall. The RHSF is leeward of the prevailing northeasterly trade winds. The average annual precipitation is approximately 40 inches, which occurs mainly between November and April (State of Hawaii Department of Land and Natural Resources [DLNR], 1986). Annual pan evaporation is approximately 75 inches (DLNR, 1985). Average temperatures range from the low 60's to high 80's (degrees Fahrenheit) (Atlas of Hawaii, 1983).

Oahu consists of the eroded remnants of two shield volcanoes, Waianae and Koolau. The RHSF is located on the southwest flank of the Koolau volcanic shield. Lavas erupted during the shield-building phase of the volcano belong to the *Koolau Volcanic Series* (Stearns and Vaksvik, 1935). Following formation of the Koolau shield, a long period of volcanic quiescence occurred,

during which the shield was deeply eroded. Following this erosional period, eruptive activity resumed. Lavas and pyroclastic material erupted during this period belong to the *Honolulu Volcanic Series* (Stearns and Vaksvik, 1935).

In the immediate area of the RHSF, Koolau Volcanic Series lavas dominate, although there are consolidated and unconsolidated non-calcareous deposits in the vicinity that consist of alluvium generated during erosion of the Koolau volcanic shield. South-southwest of the Site, and in isolated exposures to the west, are pyroclastic deposits formed during eruptions from three Honolulu Volcanic Series vents, Salt Lake, Aliamanu, and Makalapa (Stearns and Vaksvik, 1935). Based on established geology and records of the drilled wells (Stearns and Vaksvik, 1938), the RHSF is underlain by Koolau Volcanic Series basalts. The area of the RHSF is classified as *Rock Land*, where 25 to 90% of the land surface is covered by exposed rock and there are only shallow soils (Foote, et al., 1972).

Groundwater in Hawaii exists in two principal types of aquifers. The first and most important type, in terms of drinking water resources, is the basal aquifer. The basal aquifer exists as a lens of fresh water floating on and displacing seawater within the pore spaces, fractures, and voids of the basalt that forms the underlying mass of each Hawaiian island. In parts of Oahu, groundwater in the basal aquifer is confined by the overlying caprock and is under pressure. Waters that flow freely to the surface from wells that tap the basal aquifer are referred to as artesian.

The second type of aquifer is the caprock aquifer, which consists of various kinds of unconfined and semi-confined groundwater. Commonly, the caprock consists of a thick sequence of nearly impermeable clays, coral, and basalt, which separates the caprock aquifer from the basal aquifer. The impermeable nature of these materials and the artesian nature of the basal aquifer severely restrict the downward migration of groundwater from the upper caprock aquifer. In the area of the RHSF, there is no discernible caprock.

Groundwater in the area of the RHSF is part of the *Waimalu Aquifer System* of the *Pearl Harbor Aquifer Sector*. The aquifer is classified as a basal, unconfined, flank-type; and is currently used as a drinking water source. The aquifer is considered fresh with less than 250 milligrams per liter of chloride and is considered an irreplaceable resource with a high vulnerability to contamination (Mink and Lau, 1990).

The nearest drinking water supply well is the DON Well 2254-01, located in the infiltration gallery within the RHSF. DON Well 2254-01 is located approximately 2,400 feet downgradient of the USTs (Figure 2).

1.3 BACKGROUND

The RHSF was constructed by the U.S. Government in the early 1940s. Twenty USTs and a series of tunnels were constructed to supply fuel to the Navy. The USTs were constructed of steel and they currently contain JP-5, JP-8, and F-76. Several tanks in the past have stored DON special fuel oil, DON distillate, aviation gasoline, and motor gasoline (Environet, 2010). The fueling system is a self-contained underground unit that was installed into native rock comprised primarily of basalt with some interbedded tuffs and breccias (Environet, 2010). Each UST measures approximately 245 feet in height and 100 feet in diameter. The upper domes of the tanks lie at depths varying between 100 feet and 200 feet below ground surface.

In response to increasing concentrations of Contaminants of Potential Concern [COPCs] in the groundwater monitoring wells within the facility (specifically RHMW02) during the 2008 sampling events, quarterly groundwater monitoring was initiated in 2009 at the outside tunnel wells.

In 2009, groundwater samples were collected from wells RHMW04, OWDFMW01, and HDMW2253-03. Samples were collected in August and October 2009. None of the COPCs were detected at concentrations exceeding the gross contamination or drinking water toxicity DOH EALs.

In 2010, groundwater samples were collected from wells RHMW04, OWDFMW01, and HDMW2253-03. Samples were collected from well RHMW04 in January and April 2010. Samples were collected from well OWDFMW01 in January, April, and October 2010. Samples were collected from well HDMW2253-03 in January, April, July and October 2010. The COPCs concentrations exceeding DOH EALs are summarized below.

- HDMW2253-03 TPH-d was detected at a concentration above the gross contamination and drinking water toxicity DOH EAL in January 2010 (The Environmental Company, Inc. [TEC], 2010a).
- OWDFMW01 TPH-d was detected at a concentration above the gross contamination and drinking water toxicity DOH EALs in January and April 2010 (TEC, 2010a; TEC, 2010b).

In 2011, groundwater samples were collected from wells OWDFMW01 and HDMW2253-03. Samples were collected in January, April, July, and October 2011. None of the COPCs were detected at concentrations exceeding the gross contamination or drinking water toxicity DOH EALs.

In 2012, groundwater samples were collected from wells OWDFMW01 and HDMW2253-03. Samples were collected in January, April, July, and November 2012. TPH-d was detected at a concentration above the DOH EALs in samples collected from wells HDMW2253-03 and OWDFMW01 (Environet, 2012; ESI, 2012b). The COPCs concentrations exceeding DOH EALs are summarized below.

- **HDMW2253-03** TPH-d was detected at a concentration above the DOH EALs for gross contamination and drinking water toxicity in April and November 2012.
- **OWDFMW01** TPH-d was detected at a concentration above the DOH EALs for gross contamination and drinking water toxicity in April 2012.

1.3.1 Previous Reports

The following groundwater monitoring reports were previously submitted to the DOH:

- 1. Groundwater Monitoring Report, August 2009 (submitted September 2009).
- 2. Groundwater Monitoring Report, October 2009 (submitted December 2009).
- 3. Groundwater Monitoring Report, January, 2010 (submitted April 2010).
- 4. Groundwater Monitoring Report, April 2010 (submitted May 2010).
- 5. Groundwater Monitoring Report, July 2010 (submitted August 2010).
- Groundwater Monitoring Report, October 2010 (submitted December 2010).
- 7. Groundwater Monitoring Report, January 2011 (submitted March 2011).
- 8. Groundwater Monitoring Report, April 2011 (submitted June 2011).
- 9. Groundwater Monitoring Report, July 2011 (submitted September 2011).
- 10. Groundwater Monitoring Report, October 2011 (submitted December 2011).
- 11. Groundwater Monitoring Report, January 2012 (submitted March 2012).
- 12. Groundwater Monitoring Report, April 2012 (submitted July 2012).
- 13. Groundwater Monitoring Report, July 2012 (submitted August 2012).
- 14. Groundwater Monitoring Report, November 2012 (submitted January 2013)

This Page Intentionally Left Blank.

SECTION 2 – GROUNDWATER SAMPLING

On January 30, 2013, ESI personnel collected groundwater samples from two monitoring wells (wells OWDFMW01 and HDMW2253-03). The samples were collected in accordance with DOH UST release response requirements and the RHSF Groundwater Protection Plan (TEC, 2008). Prior to purging and sampling, the depth to groundwater and the depth to the bottom of the wells were measured. Well OWDFMW01 was measured using a Geotech oil/water interface probe. Well HDMW2253-03 was measured by the DLNR using their Geotech oil/water interface probe. The measurements are included in the groundwater sampling logs. No measurable product, sheen, or petroleum hydrocarbon odor was observed in either well.

2.1 GROUNDWATER SAMPLING

Prior to collecting groundwater samples, disposable bailers were used to purge groundwater from the monitoring wells. The wells were purged at a rate of 0.21 and 0.42 liters per minute.

Water quality parameters were monitored on a periodic basis during well purging. The water quality parameters that were measured included hydrogen activity [pH], temperature, conductivity, dissolved oxygen, and oxidation reduction potential. The water quality parameters were evaluated to demonstrate that the natural characteristics of the aquifer formation water were present within the monitoring well before collecting the sample. At least four readings were collected during the purging process. Purging was considered complete when at least three consecutive water quality measurements stabilized within approximately 10%. The readings were recorded on groundwater monitoring logs which are included in Appendix A. The field notes are included in Appendix B.

When the water quality parameters stabilized, groundwater samples were collected from the wells. The disposable bailers were used to collect the groundwater samples from the monitoring wells. For each monitoring well, the groundwater samples were collected no more than two hours after purging was completed to prevent groundwater interaction with the monitoring well casing and atmosphere. Samples collected for dissolved lead were filtered in the field using a peristaltic pump and a 0.45 micron filter.

2.2 ANALYTICAL RESULTS

The samples were analyzed for TPH-d using U.S. Environmental Protection Agency [EPA] Method 8015M, total petroleum hydrocarbons as gasoline [TPH-g] and Volatile Organic Compounds [VOCs] using EPA Method 8260B, Polycyclic Aromatic Hydrocarbons [PAHs] using EPA Method 8270C SIM, and dissolved lead using EPA Method 6020. The analytical results are summarized below and in Table 2.1. A copy of the laboratory report is included in Appendix C.

- HDMW2253-03 TPH-d (600 μg/L) and naphthalene (0.037 μg/L) were detected. TPH-d was detected at a concentration above the DOH EALs for both drinking water toxicity and gross contamination.
- **OWDFMW01** TPH-d (1,000 μg/L), acetone (17 μg/L), naphthalene (0.032-0.039 μg/L), and benzene (0.39 μg/L) were detected. TPH-d was detected at a concentration above the DOH EALs for both drinking water toxicity and gross contamination.

2.2.1 Groundwater Contaminant Trends

Historical groundwater contaminant concentration trends of COPCs that exceed the DOH EALs are presented in Appendix D. A summary of groundwater contaminant trends are provided below.

- HDMW2253-03 Both TPH-d and naphthalene were detected; however, TPH-g which was detected during the previous sampling event in November 2012 (15 μg/L) was not detected this round of quarterly sampling. Naphthalene was last detected in July 2010. TPH-d concentrations detected during this round of quarterly sampling increased to concentrations above the DOH EALs for both drinking water toxicity and gross contamination. TPH-d concentrations last exceeded the DOH EALs for both drinking water toxicity and gross contamination in April 2012 (160 μg/L).
- **OWDFMW01** With the exception of TPH-d, groundwater contaminant concentrations remained at low concentrations and did not change significantly, or were not detected. TPH-d concentrations detected during this round of sampling remained above the DOH EALs for both drinking water toxicity and gross contamination, but decreased from the previous sampling event in November 2012 (2,500 µg/L).

Historical groundwater contaminants concentrations above the DOH EALs for both drinking water toxicity and gross contamination are presented in Appendix D.

2.3 WASTE DISPOSAL

The purged groundwater and decontamination water generated during sampling of the wells was stored in a 55-gallon drum along with the purged water and decontamination water from the inside tunnel wells. The drum was stored onsite at Adit 3. On February 26, 2013, the drum of water was picked up by Pacific Commercial Services, LLC and disposed at Unitek Solvent Services, Inc. The waste disposal manifest is included in Appendix E.

Contract Task Order 0002 Contract No. N62742-12-D-1853

TABLE 2.1 Analytical Results for Groundwater Sampling (January 30, 2013) Red Hill Bulk Fuel Storage Facility **January 2013 Quarterly Monitoring Report**

	Chemical	DOH	EALs		OW	DFMW01 (ES	016)			OWDF	MW01 (ES017	7) (Dup)		HDMW2253-03 (ES018)					
Method		Drinking Water Toxicity	Gross Contamination	Results	Q	LOQ	LOD	DL	Results	Q	LOQ	LOD	DL	Results	Q	LOQ	LOD	DL	
PA 8015B	TPH-d	190	100	1,000	.,	50	20	15	1,000		50	20	15	600		50	20	15	
PA 8260B	TPH-g Acenaphthene	100 370	100 20	N.D. N.D.	U	50 0.2	30 0.05	13 0.018	N.D. N.D.	U	50 0.2	30 0.05	13 0.018	N.D. N.D.	U	50 0.2	30 0.05	13 0.018	
	Acenaphthylene	240	2,000	N.D.	U	0.2	0.05	0.018	N.D.	U	0.2	0.05	0.018	N.D.	U	0.2	0.05	0.016	
	Anthracene	1,800	22	N.D.	Ü	0.2	0.05	0.034	N.D.	Ü	0.2	0.05	0.034	N.D.	U	0.2	0.05	0.034	
	Benzo[a]anthracene	0.092	4.7	N.D.	U	0.2	0.05	0.024	N.D.	U	0.2	0.05	0.024	N.D.	U	0.2	0.05	0.024	
	Benzo[g,h,i]perylene	1,500	0.13	N.D.	U	0.2	0.05	0.022	N.D.	U	0.2	0.05	0.022	N.D.	U	0.2	0.05	0.022	
	Benzo[a]pyrene	0.2	0.81	N.D.	U	0.2	0.05	0.036	N.D.	U	0.2	0.05	0.036	N.D.	U	0.2	0.05	0.036	
	Benzo[b]fluoranthene Benzo[k]fluoranthene	0.092 0.92	0.75 0.4	N.D. N.D.	U	0.2	0.05 0.05	0.025 0.023	N.D. N.D.	U	0.2	0.05 0.05	0.025 0.023	N.D.	U	0.2	0.05 0.05	0.025 0.023	
	Chrysene	9.2	1	N.D.	U	0.2	0.05	0.023	N.D.	U	0.2	0.05	0.023	N.D.	U	0.2	0.05	0.023	
PA 8270C SIM	Dibenzo[a,h]anthracene	0.0092	0.52	N.D.	U	0.2	0.05	0.027	N.D.	Ü	0.2	0.05	0.027	N.D.	U	0.2	0.05	0.027	
	Fluoranthene	1,500	130	N.D.	U	0.2	0.05	0.027	N.D.	U	0.2	0.05	0.027	N.D.	U	0.2	0.05	0.027	
	Fluorene	240	950	N.D.	U	0.2	0.05	0.024	N.D.	U	0.2	0.05	0.024	N.D.	U	0.2	0.05	0.024	
	Indeno[1,2,3-cd]pyrene	0.092	0.095	N.D.	U	0.2	0.05	0.022	N.D.	U	0.2	0.05	0.022	N.D.	U	0.2	0.05	0.022	
	1,-Methylnaphthalene	4.7	10	N.D. N.D.	U	0.2	0.05	0.028	N.D.	U	0.2	0.05	0.028	N.D.	U	0.2	0.05	0.028	
	2,-Methylnaphthalene Naphthalene	24 17	10 21	0.032	J	0.2 0.2	0.05 0.05	0.026 0.023	N.D. 0.039	J	0.2	0.05 0.05	0.026 0.023	N.D. 0.037	J	0.2	0.05 0.05	0.026 0.023	
	Phenanthrene	240	410	N.D.	U	0.2	0.05	0.023	N.D.	U	0.2	0.05	0.023	N.D.	U	0.2	0.05	0.023	
	Pyrene	180	68	N.D.	Ü	0.2	0.05	0.025	N.D.	Ü	0.2	0.05	0.025	N.D.	Ü	0.2	0.05	0.025	
	1,1,1-Trichloroethane	200	970	N.D.	U	5	0.5	0.3	N.D.	U	5	0.5	0.3	N.D.	U	5	0.5	0.3	
	1,1,2-Trichloroethane	5	50,000	N.D.	U	1	0.5	0.38	N.D.	U	1	0.5	0.38	N.D.	U	1	0.5	0.38	
	1,1-Dichloroethane	2.4	50,000	N.D.	U	5	0.5	0.28	N.D.	U	5	0.5	0.28	N.D.	U	5	0.5	0.28	
	1,1-Dichloroethylene 1,2,3-Trichloropropane	0.6	1,500 50,000	N.D. N.D.	U	1 5	0.5 2	0.43 0.64	N.D.	U	5	0.5 2	0.43 0.64	N.D. N.D.	U	1 5	0.5 2	0.43 0.64	
	1,2,3-Trichloropane 1,2.4-Trichlorobenzene	70	3,000	N.D.	U	5	1	0.64	N.D.	U	5	1	0.5	N.D.	U	5	1	0.64	
	1,2-Dibromo-3- chloropropane	0.04	10	N.D.	U	10	2	1.2	N.D.	Ü	10	2	1.2	N.D.	U	10	2	1.2	
	1,2-Dibromoethane	0.04	50,000	N.D.	U	1	0.5	0.36	N.D.	U	1	0.5	0.36	N.D.	U	1	0.5	0.36	
	1,2-Dichlorobenzene	600	10	N.D.	U	1	0.5	0.46	N.D.	U	1	0.5	0.46	N.D.	U	1	0.5	0.46	
	1,2-Dichloroethane	0.15	7,000	N.D.	U	1	0.5	0.24	N.D.	U	1	0.5	0.24	N.D.	U	1	0.5	0.24	
	1,2-Dichloropropane	5	10	N.D.	U	5	0.5	0.42	N.D.	U	5	0.5	0.42	N.D.	U	5	0.5	0.42	
	1,3-Dichlorobenzene 1,3-Dichloropropene (total of cis/trans)	180 0.43	5 50,000	N.D.	U	1	0.5 0.5	0.4 0.25	N.D.	U	1	0.5 0.5	0.4 0.25	N.D. N.D.	U	1	0.5 0.5	0.4 0.25	
	1,4-Dichlorobenzene	75	50,000	N.D.	U	1	0.5	0.43	N.D.	U	1	0.5	0.43	N.D.	U	1	0.5	0.23	
	Acetone	22,000	20,000	17	ICH, J	20	10	10	N.D.	ICH, U	20	10	10	N.D.	ICH, U	20	10	10	
	Benzene	5	170	0.39	J	1	0.5	0.14	0.17	J	1	0.5	0.14	N.D.	U	1	0.5	0.14	
	Bromodichloromethane	0.12	50,000	N.D.	U	5	0.5	0.21	N.D.	U	5	0.5	0.21	N.D.	U	5	0.5	0.21	
	Bromoform	80	510	N.D.	IJ, U	10	2	0.5	N.D.	IJ, U	10	2	0.5	N.D.	IJ, U	10	2	0.5	
	Bromomethane Carbon Tetrachloride	8.7 5	50,000 520	N.D.	U	20	5 0.5	3.9 0.23	N.D.	U	20	5 0.5	3.9 0.23	N.D.	U	20 1	5 0.5	3.9 0.23	
PA 8260B	Chlorobenzene	100	520	N.D.	U	5	0.5	0.23	N.D.	U	5	0.5	0.23	N.D.	U	5	0.5	0.23	
17102000	Chloroethane	21,000	16	N.D.	U	10	5	2.3	N.D.	Ü	10	5	2.3	N.D.	U	10	5	2.3	
	Chloroform	70	2,400	N.D.	U	5	0.5	0.46	N.D.	U	5	0.5	0.46	N.D.	U	5	0.5	0.46	
	Chloromethane	1.8	50,000	N.D.	U	10	2	1.8	N.D.	U	10	2	1.8	N.D.	U	10	2	1.8	
	cis-1,2-Dichloroethylene	70	50,000	N.D.	U	1	0.5	0.48	N.D.	U	1	0.5	0.48	N.D.	U	1	0.5	0.48	
	Dibromochloromethane	0.16	50,000	N.D.	U	1	0.5	0.25	N.D.	U	1	0.5	0.25	N.D.	U	1	0.5	0.25	
	Ethylbenzene Hexachlorobutadiene	700 0.86	30 6	N.D. N.D.	U	1	0.5 0.5	0.14 0.32	N.D.	U	1	0.5	0.14 0.32	N.D.	U	1	0.5 0.5	0.14 0.32	
	Methyl ethyl ketone (2-Butanone)	7,100	8,400	N.D.	U	10	5.0	2.21	N.D.	U	10	5.0	2.21	N.D.	U	10	5.0	2.21	
	Methyl isobutyl ketone (4-Methyl-2-Pentanone)	2,000	1300	N.D.	U	10	5.0	4.4	N.D.	U	10	5.0	4.4	N.D.	U	10	5.0	4.4	
	Methyl tert-butyl Ether	12	5	N.D.	U	1	0.5	0.31	N.D.	U	1	0.5	0.31	N.D.	U	1	0.5	0.31	
	Methylene chloride	4.8	9,100	N.D.	U	5	2.0	0.64	N.D.	U	5	2.0	0.64	N.D.	U	5	2.0	0.64	
	Styrene	100	10	N.D.	U	1	0.5	0.17	N.D.	U	1	0.5	0.17	N.D.	U	1	0.5	0.17	
	Tetrachloroethane, 1,1,1,2- Tetrachloroethane, 1,1,2,2-	0.52 0.067	50,000	N.D. N.D.	U	1	0.5 0.5	0.4	N.D.	U	1	0.5	0.4	N.D.	U	1	0.5	0.4	
	Tetrachloroethylene	0.067	500 170	N.D. N.D.	U	1 5	0.5	0.41	N.D. N.D.	U	5	0.5	0.41	N.D.	U	1 5	0.5 0.5	0.41	
	Toluene	1,000	40	N.D.	U	1	0.5	0.39	N.D.	U	1	0.5	0.39	N.D.	U	1	0.5	0.39	
	trans-1,2- Dichloroethylene	100	260	N.D.	Ü	1	0.5	0.37	N.D.	Ü	1	0.5	0.37	N.D.	Ü	1	0.5	0.37	
	Trichloroethylene	5	310	N.D.	U	1	0.5	0.37	N.D.	U	1	0.5	0.37	N.D.	U	1	0.5	0.37	
	Vinyl chloride	2	3,400	N.D.	U	1	0.5	0.3	N.D.	U	1	0.5	0.3	N.D.	U	1	0.5	0.3	
A 0000	Xylenes	10,000	20	N.D.	U	10	1	0.23	N.D.	U	10	1	0.23	N.D.	U	10	1	0.23	
PA 6020	Dissolved Lead	15	50,000	N.D.	U	1	0.2	0.0898	N.D.	U	1	0.2	0.0898	N.D.	U	1	0.2	0.0898	
DOH EALS D DL D EPA E ICH Ir	icrograms per liter (µg/L). Shaded values exceeded the DiDH Tier 1 Environmental Action Levels for groundwater whetection Limit or Method Detection Limit (MDL) invironmental Protection Agency tital calibration verification recovery above method control limit for alibration verification recovery above method control limit for allyte was detected at a concentration below the LOQ and	nere groundwater is a current of the state of this analyte. For this analyte.	-	urface water is gre	eater than 150 mete	ers from the site (D	OOH, Fall 2011).	N.D. Q TPH-g TPH-d	Limit of Quantitatio Not Detected Qualifiers Total Petroleum Hy Total Petroleum Hy Undetected at DL	ydrocarbons as ga ydrocarbons as die	esel								

Initial calibration verification recovery above method control limit for this analyte.

Calibration verification recovery above method control limit for this analyte.

Analyte was detected at a concentration below the LOQ and above the DL. Reported value is estimated.

Limit of Detection

J LOD

Contract No. N62742-12-D-1853

This Page Intentionally Left Blank.

SECTION 3 – DATA QUALITY ASSESSMENT

A data quality assessment, which consists of a review of the overall groundwater sample collection and analysis process, was performed in order to determine whether the analytical data generated meet the quality objectives for the project. The field Quality Control [QC] program consisted of standardized sample collection and management procedures, and the collection of field duplicate samples, matrix spike samples, and trip blank samples. The laboratory quality assurance program consisted of the use of standard analytical methods and the preparation and analyses of Matrix Spike [MS]/Matrix Spike Duplicate [MSD] samples, surrogate spikes, method blanks, Laboratory Control Samples [LCS] and Laboratory Control Sample Duplicate [LCSD].

3.1 Data Validation and Assessment

The objective of data validation is to provide data of known quality for project decisions. Data quality is judged in terms of its Precision, Accuracy, Representativeness, Completeness, Comparability, and Sensitivity [PARCCS]. A number of factors may affect the quality of data, including: sample collection methods, sample analysis methods, and adherence to established procedures for sample collection, preservation, management, shipment, and analysis.

Precision

Precision is defined as the reproducibility of replicate measurements. Precision is evaluated by Relative Percentage Difference [RPD] of field duplicates and laboratory LCS/LCSD or MS/MSD results. Field duplicate and MS/MSD samples were collected at a rate of approximately 10% of project samples. Field duplicates were sent to the laboratory along with the primary samples.

For this monitoring event, the RPDs for MS/MSD and LCS/LCSD pairs were all within the acceptable range except for 1,1,2,2-tetrachloroethane (40%), which is discussed in the next section. The RPDs of detected analytes for the primary and field duplicate samples (ES016 and ES017) are provided in Table 3.1. The benzene and naphthalene concentrations detected in the samples were below the respective limits of quantitation [LOQs] implying a higher uncertainty for these results than for values detected above the LOQs (i.e. estimated, J-flagged). Consequently, the assigned RPDs signified the anticipated decrease in precision below the LOQs but were not indicative of a QC issue. TPH-d was detected above the DOH EAL, and with excellent precision (RPD = 0%). Therefore the data precision is considered acceptable.

Accuracy

Accuracy is defined as the degree of conformity of a measurement to a standard or true value. Accuracy is evaluated through measurement of the percent recovery of an analyte in a reference standard or spiked sample. Accuracy limits for surrogates, laboratory control spike, MS, and MSD samples are established by the individual laboratory. The acceptance criteria for accuracy are dependent on the analytical method and are based on historical laboratory data.

All of the LCS and surrogate spike recoveries for analyzed constituents were within acceptable percent recovery limits. The MS/MSD recoveries for tetrachloroethylene and trichloroethylene were high, and the MS/MSD recovery for 1,1,2,2-tetrachloroethane was low. The MS/MSD recoveries for the three analytes were outside of the control limits. However, the analyte concentrations detected in the samples were below the respective LOQs, implying a higher uncertainty for these results than for values detected above the LOQs. Consequently, the assigned RPDs signified the anticipated decrease in precision below the LOQs but were not indicative of a QC issue. All other MS/MSD recoveries were within acceptable recovery limits; therefore, the data accuracy for this monitoring event is considered acceptable.

Representativeness

Representativeness is the degree that data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness was achieved by conducting sampling in compliance with the sample collection procedures described in the WP/SAP specifically written for this project (ESI, 2012a).

Representativeness is also evaluated through the compliance with the sample holding time, sample preservation, and the analysis of blank samples, including method blank and trip blank samples. The sample holding time and sample preservation complied with the EPA criteria. For this sampling event, one trip blank was included in the cooler to assess cross contamination during sample transport for TPH-g and VOCs. There was no detection of VOCs in the method blank. TPH-g was detected in the trip blank below the LOD, and was qualified (J), and implied a high uncertainty for the result and was not indicative of a QC issue. Therefore, the groundwater sample data are considered representative of the groundwater quality on site.

Completeness

Completeness is defined as the overall percentage of valid analytical results (including estimated results) compared to the total number of analytical results reported by the laboratory. No data were rejected for this project, and therefore the completeness goal for this project (90%) was successfully met. Successful completion of data acquisition can only be accomplished if both the field and laboratory portions of the project are performed according to the procedures described in the WP/SAP (ESI, 2012a).

Comparability

Comparability expresses the confidence with which one data set can be compared to another data set. Comparability can be related to accuracy and precision because these quantities are measures of data reliability. Data, with acceptable precision and accuracy, are considered comparable if collection techniques, analytical procedures, methods and reporting are equivalent. For this monitoring event, the samples were collected using approaches consistent with those in the previous events, and the same analytical methods/procedures were used to measure the concentration of COPCs. Therefore, the results are considered comparable within this data set and with the data collected from previous sampling events.

Sensitivity

The LOQs are established by the laboratory based on the LODs or instrument detection limits, historical data, and EPA limits established for the methods. The LOQs for samples may require adjustment due to matrix interference or if high levels of target analytes necessitate dilution before analysis. Matrix interference and sample dilutions have the effect of increasing the LOQs. Laboratory LODs and LOQs for several analytes differed from the LODs and LOQs in the WP/SAP because the laboratory updates them quarterly. LODs and LOQs for several analytes were greater than the DOH EALs (as stated in the WP/SAP) and therefore it is not possible to determine whether the analytes are present at concentrations greater than or equal to the DOH EALs. As suggested by the DOH Technical Guidance Manual, the project action level will be the LOD for these analytes.

3.2 Data Assessment and Usability Conclusions

The PARCCS criteria were evaluated, and with a few exceptions, all criteria were met. These exceptions include the exceedances of recovery criteria for MS/MSDs for several VOCs. Since the surrogate recoveries and the recoveries of the VOCs in the LCS/LCSD are all within recovery criteria, the MS/MSD exceendaces are not considered to affect the usability of the data, but may indicate some matrix heterogeneity. Since the data are consistent with data from previous events, it appears that the effect of this QC exceedance is not substantial, and the data is usable. The data assessment concludes that all data generated during this event are usable for their intended use.

This Page Intentionally Left Blank.

Contract No. N62742-12-D-1853 Contract Task Order 0002

TABLE 3.1 Quality Control Results for Groundwater Sampling (January 30, 2013) Red Hill Bulk Fuel Storage Facility January 2013 Quarterly Monitoring Report

		DOH EALs		OWDFMW01 (ES016)					OWDFMW01 (ES017)					RPD	ES Trip				
Method	Chemical Constituent	Drinking Water Toxicity	Gross Contamination	Results	Q	LOQ	LOD	DL	Results	Q	LOQ	LOD	DL	Duplicate (%)	Results	Q	LOQ	LOD	DL
EPA 8015B	TPH-d	190	100	1,000		50	20	15	1,000		50	20	15	NA	-	-	-	-	-
EPA 8260B	TPH-g	100	100	N.D.	U	50	30	13	N.D.	U	50	30	13	NA	14	J	50	30	13
	Acenaphthene	370	20	N.D.	U	0.2	0.05	0.018	N.D.	U	0.2	0.05	0.018	NA	-	-	•	-	-
	Acenaphthylene	240	2,000	N.D.	U	0.2	0.05	0.021	N.D.	U	0.2	0.05	0.021	NA	-	-	•	-	-
	Anthracene	1,800	22	N.D.	U	0.2	0.05	0.034	N.D.	U	0.2	0.05	0.034	NA	-	-	-	-	-
	Benzo[a]anthracene	0.092	4.7	N.D.	U	0.2	0.05	0.024	N.D.	U	0.2	0.05	0.024	NA	-	-	-	-	-
	Benzo[g,h,i]perylene	1,500	0.13	N.D.	U	0.2	0.05	0.022	N.D.	U	0.2	0.05	0.022	NA	-	-	-	-	-
	Benzo[a]pyrene	0.2	0.81	N.D.	U	0.2	0.05	0.036	N.D.	U	0.2	0.05	0.036	NA	-	-	-	-	-
	Benzo[b]fluoranthene	0.092	0.75	N.D.	U	0.2	0.05	0.025	N.D.	U	0.2	0.05	0.025	NA NA	-	-	-	-	-
	Benzo[k]fluoranthene	0.92	0.4	N.D.	U	0.2	0.05	0.023	N.D.	U	0.2	0.05	0.023	NA NA	-	-	-	-	-
EPA 8270C SIM	Chrysene	9.2	0.50	N.D.	U	0.2	0.05	0.019	N.D.	U	0.2	0.05	0.019	NA NA	-	-	-	-	-
	Dibenzo[a,h]anthracene	0.0092	0.52	N.D.	U	0.2	0.05	0.027	N.D.	U	0.2	0.05	0.027	NA NA	-	-	-	-	-
	Fluoranthene	1,500 240	130 950	N.D.	U	0.2	0.05 0.05	0.027 0.024	N.D. N.D.	U	0.2	0.05	0.027 0.024	NA NA	-	-	-	-	-
	Fluorene Indeno[1,2,3-cd]pyrene	0.092	0.095	N.D.	U	0.2	0.05	0.024	N.D.	U	0.2	0.05	0.024	NA NA	-	-	-	<u>-</u>	-
	1,-Methylnaphthalene	4.7	10	N.D.	U	0.2	0.05	0.022	N.D.	U	0.2	0.05	0.022	NA NA		-	-	<u> </u>	-
	2,-Methylnaphthalene	24	10	N.D.	U	0.2	0.05	0.026	N.D.	U	0.2	0.05	0.026	NA NA	-	-	-	<u> </u>	-
	Naphthalene	17	21	0.032	J	0.2	0.05	0.028	0.039	J	0.2	0.05	0.028	19.72	-	-	-	<u> </u>	-
	Phenanthrene	240	410	N.D.	U	0.2	0.05	0.023	N.D.	U	0.2	0.05	0.023	NA	-	-	-	<u> </u>	_
	Pyrene	180	68	N.D.	U	0.2	0.05	0.025	N.D.	U	0.2	0.05	0.025	NA NA	-	-	-	<u> </u>	_
	1.1.1-Trichloroethane	200	970	N.D.	Ü	5	0.5	0.3	N.D.	Ü	5	0.5	0.3	NA NA	N.D.	U	5	0.5	0.3
	1,1,2-Trichloroethane	5	50,000	N.D.	Ü	1	0.5	0.38	N.D.	U	1	0.5	0.38	NA NA	N.D.	Ü	1	0.5	0.38
	1,1-Dichloroethane	2.4	50,000	N.D.	Ü	5	0.5	0.28	N.D.	Ü	5	0.5	0.28	NA	N.D.	Ü	5	0.5	0.28
	1,1-Dichloroethylene	7	1,500	N.D.	Ü	1	0.5	0.43	N.D.	Ü	1	0.5	0.43	NA	N.D.	U	1	0.5	0.43
	1,2,3-Trichloropropane	0.6	50,000	N.D.	Ü	5	2	0.64	N.D.	Ü	5	2	0.64	NA	N.D.	U	5	2	0.64
	1,2,4-Trichlorobenzene	70	3,000	N.D.	U	5	1	0.5	N.D.	U	5	1	0.5	NA	N.D.	U	5	1	0.5
	1,2-Dibromo-3- chloropropane	0.04	10	N.D.	U	10	2	1.2	N.D.	U	10	2	1.2	NA	N.D.	U	10	2	1.2
	1,2-Dibromoethane	0.04	50,000	N.D.	U	1	0.5	0.36	N.D.	U	1	0.5	0.36	NA	N.D.	U	1	0.5	0.36
	1,2-Dichlorobenzene	600	10	N.D.	U	1	0.5	0.46	N.D.	U	1	0.5	0.46	NA	N.D.	U	1	0.5	0.46
	1,2-Dichloroethane	0.15	7,000	N.D.	U	1	0.5	0.24	N.D.	U	1	0.5	0.24	NA	N.D.	U	1	0.5	0.24
	1,2-Dichloropropane	5	10	N.D.	U	5	0.5	0.42	N.D.	U	5	0.5	0.42	NA	N.D.	U	5	0.5	0.42
	1,3-Dichlorobenzene	180	5	N.D.	U	1	0.5	0.4	N.D.	U	1	0.5	0.4	NA	N.D.	U	1	0.5	0.4
	1,3-Dichloropropene (total of cis/trans)	0.43	50,000	N.D.	U	1	0.5	0.25	N.D.	U	1	0.5	0.25	NA	N.D.	U	1	0.5	0.25
	1,4-Dichlorobenzene	75	5	N.D.	U	1	0.5	0.43	N.D.	U	1	0.5	0.43	NA	N.D.	U	1	0.5	0.43
	Acetone	22,000	20,000	17	ICH, J	20	10	10	N.D.	ICH, U	20	10	10	NA	N.D.	IJ, ICH, U	20	10	6
	Benzene	5	170	0.39	J	1	0.5	0.14	0.17	J	1	0.5	0.14	78.57	N.D.	U	1	0.5	0.14
	Bromodichloromethane	0.12	50,000	N.D.	U	5	0.5	0.21	N.D.	U	5	0.5	0.21	NA	N.D.	U	5	0.5	0.21
	Bromoform	80	510	N.D.	IJ, U	10	2	0.5	N.D.	IJ, U	10	2	0.5	NA	N.D.	U	10	2	0.5
	Bromomethane	8.7	50,000	N.D.	U	20	5	3.9	N.D.	U	20	5	3.9	NA	N.D.	U	20	5	3.9
	Carbon Tetrachloride	5	520	N.D.	U	1	0.5	0.23	N.D.	U	1	0.5	0.23	NA	N.D.	U	1	0.5	0.23
EPA 8260B	Chlorobenzene	100	50	N.D.	U	5	0.5	0.17	N.D.	U	5	0.5	0.17	NA	N.D.	U	5	0.5	0.17
	Chloroethane	21,000	16	N.D.	U	10	5	2.3	N.D.	U	10	5	2.3	NA	N.D.	U	10	5	2.3
	Chloroform	70	2,400	N.D.	U	5	0.5	0.46	N.D.	U	5	0.5	0.46	NA NA	N.D.	U	5	0.5	0.46
	Chloromethane	1.8	50,000	N.D.	U	10	2	1.8	N.D.	U	10	2	1.8	NA NA	N.D.	U	10	2	1.8
	cis-1,2-Dichloroethylene	70	50,000	N.D.	U	1	0.5	0.48	N.D.	U	1	0.5	0.48	NA NA	N.D.	U	1	0.5	0.48
	Dibromochloromethane Ethylbenzene	0.16 700	50,000 30	N.D.	U	1	0.5	0.25 0.14	N.D.	U	1	0.5	0.25 0.14	NA NA	N.D. N.D.	U	1	0.5	0.25 0.14
	Hexachlorobutadiene	0.86	30 6	N.D. N.D.	U	1	0.5 0.5	0.14	N.D.	U	1	0.5 0.5	0.14	NA NA	N.D. N.D.	U	1	0.5	0.14
	Methyl ethyl ketone (2-Butanone)	7,100	8,400	N.D.	U	10	5.0	2.21	N.D.	U	10	5.0	2.21	NA NA	N.D.	U	10	5.0	2.21
	Methyl isobutyl ketone (4-Methyl-2-Pentanone)	2,000	1300	N.D.	U	10	5.0	4.4	N.D.	U	10	5.0	4.4	NA NA	N.D.	U	10	5.0	4.4
	Methyl tert-butyl Ether	12	5	N.D.	U	1	0.5	0.31	N.D.	U	1	0.5	0.31	NA NA	N.D.	U	1	0.5	0.31
	Methylene chloride	4.8	9,100	N.D.	U	5	2.0	0.64	N.D.	U	5	2.0	0.64	NA NA	N.D.	U	5	2.0	0.64
	Styrene	100	10	N.D.	Ü	1	0.5	0.17	N.D.	U	1	0.5	0.17	NA NA	N.D.	Ü	1	0.5	0.17
	Tetrachloroethane, 1,1,1,2-	0.52	50,000	N.D.	Ü	1	0.5	0.4	N.D.	Ü	1	0.5	0.4	NA NA	N.D.	Ü	1	0.5	0.4
	Tetrachloroethane, 1,1,2,2-	0.067	500	N.D.	Ü	1	0.5	0.41	N.D.	Ü	1	0.5	0.41	NA NA	N.D.	Ü	1	0.5	0.41
	Tetrachloroethylene	5	170	N.D.	Ü	5	0.5	0.39	N.D.	Ü	5	0.5	0.39	NA NA	N.D.	Ü	5	0.5	0.39
	Toluene	1,000	40	N.D.	U	1	0.5	0.24	N.D.	Ü	1	0.5	0.24	NA	N.D.	U	1	0.5	0.24
	trans-1,2- Dichloroethylene	100	260	N.D.	U	1	0.5	0.37	N.D.	Ü	1	0.5	0.37	NA	N.D.	U	1	0.5	0.37
	Trichloroethylene	5	310	N.D.	Ü	1	0.5	0.37	N.D.	Ü	1	0.5	0.37	NA	N.D.	Ü	1	0.5	0.37
	Vinyl chloride	2	3,400	N.D.	Ü	1	0.5	0.3	N.D.	Ü	1	0.5	0.3	NA	N.D.	Ü	1	0.5	0.3
	Xylenes	10,000	20	N.D.	Ü	10	1	0.23	N.D.	Ü	10	1	0.23	NA	N.D.	Ü	10	1	0.23
EPA 6020	Dissolved Lead	15	50,000	N.D.	Ü	1	0.2	0.0898	N.D.	Ü	1	0.2	0.0898	NA	-	-	-	-	-
-	n micrograms per liter (ug/L). Shaded values exceeded the	DOLLEA!		•		•					•	-	•						

The data are in micrograms per liter (µg/L). Shaded values exceeded the DOH EALs.

DOH EALS

DOH Tier 1 Environmental Action Levels for groundwater where groundwater is a current drinking water source and surface water is greater than 150 meters from the site (DOH, Fall 2011).

Detection Limit or Method Detection Limit (MDL)

EPA

Environmental Protection Agency

ICH

Initial calibration verification recovery above method control limit for this analyte.

DL EPA ICH IJ

Calibration verification recovery above method control limit for this analyte.

Analyte was detected at a concentration below the LOQ and above the DL. Reported value is estimated.

Limit of Detection

J LOD

LOQ NA N.D. Limit of Quantitation

Both results for duplicate pair were non-detect, no RPD calculations Not Detected

Q TPH-g TPH-d Total Petroleum Hydrocarbons as gasoline
Total Petroleum Hydrocarbons as diesel
Undetected at DL and is reported as less than the LOD. Contract No. N62742-12-D-1853

This Page Intentionally Left Blank.

SECTION 4 - SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

This quarterly monitoring report presents the results of groundwater sampling conducted on January 30, 2013, at the RHSF, JBPHH, Hawaii. The RHSF is located in Halawa Heights on the Island of Oahu. The DOH Facility ID number for the RHSF is 9-102271. The DOH Release ID numbers are 990051, 010011, and 020028.

The groundwater sampling was conducted as part of the long-term groundwater and soil vapor monitoring at the RHSF, under NAVFAC Contract Number N62742-12-D-1853. The sampling was conducted in accordance with the approved WP/SAP prepared by ESI.

On January 30, 2013, ESI personnel collected groundwater samples from two monitoring wells (wells HDMW2253-03 and OWDFMW01). A summary of the analytical results is provided below.

- HDMW2253-03 TPH-d (600 μg/L) and naphthalene (0.037 μg/L) were detected. TPH-d
 was detected at a concentration above the DOH EALs for both drinking water toxicity and
 gross contamination.
- OWDFMW01 TPH-d (1,000 μg/L), acetone (17 μg/L), benzene (0.39 μg/L), and naphthalene (0.032 μg/L) were detected. TPH-d was detected at a concentration above the DOH EALs for both drinking water toxicity and gross contamination.

Groundwater Contaminant Trends

Historical groundwater contaminant concentration trends of COPCs that exceed the DOH EALs are presented in Appendix D. A summary of groundwater contaminant trends are provided below.

- HDMW2253-03 Both TPH-d and naphthalene were detected; however, TPH-g which was detected during the previous sampling event in November 2012 (15 μg/L) was not detected this round of quarterly sampling. Naphthalene was last detected in July 2010. TPH-d concentrations detected during this round of quarterly sampling increased to concentrations above the DOH EALs for both drinking water toxicity and gross contamination. TPH-d concentrations last exceeded the DOH EALs for both drinking water toxicity and gross contamination in April 2012 (160 μg/L).
- OWDFMW01 With the exception of TPH-d, groundwater contaminant concentrations remained at low concentrations and did not change significantly, or were not detected. TPH-d concentrations detected during this round of sampling remained above the DOH EALs for both drinking water toxicity and gross contamination, but decreased from the previous sampling event in November 2012 (2,500 µg/L).

Conclusions and Recommendations

Since the wells were last sampled (November 2012), with the exception of TPH-d, groundwater contaminant concentrations remained at low concentrations and did not change significantly, or were not detected. TPH-d concentrations increased in well HDMW2253-03 and decreased in well OWDFMW01. The TPH-d concentration detected in HDMW2253-03 was the highest concentration detected since quarterly groundwater monitoring was initiated in 2009. TPH-d concentrations increased from 25 μ g/L during the last round of sampling to 600 μ g/L during this round of sampling. TPH-d concentrations in well OWDFMW01 decreased from 2,500 μ g/L during the last round of sampling to 1,000 μ g/L.

Based on the results of the assessment, we recommend continuing the groundwater monitoring program at the RHSF. If the TPH-d concentrations continue to systemically increase, we recommend increasing monitoring frequency to monthly even though the two outside wells are not included in the RHSF Groundwater Protection Plan.

SECTION 5 – FUTURE WORK

GROUNDWATER SAMPLING

Future work includes the second quarter 2013 groundwater monitoring which is scheduled for April 2013. It is anticipated that the quarterly groundwater monitoring status report will be submitted in May 2013.

This Page Intentionally Left Blank.

SECTION 6 - REFERENCES

Atlas of Hawaii, 1983, Department of Geography, University of Hawaii Press.

DLNR, 1985, Pan Evaporation: State of Hawai'i 1894-1983: Report R74, Division of Water and Land Development, August 1995.

DLNR, 1986, Rainfall Atlas of Hawaii: Report R76, Division of Water and Land Development, June 1986.

DOH, 2000, Hawaii Department of Health, Technical Guidance Manual for Underground Storage Tank Closure and Release Response, March 2000.

DOH, 2011, Screening for Environmental Hazards at Sites with Contaminated Soil and Groundwater, Hawai'i Department of Health, Hazard Evaluation and Emergency Response, December 2011.

DON, 2007, Project Procedures Manual, U.S. Navy Installation Restoration Program, NAVFAC Pacific, Prepared for Pacific Division, Naval Facilities Engineering Command (NAVFAC Pacific), February 2007.

Environet, 2010, Work Plan, Long-Term Monitoring, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, September 2010.

Environet, 2012, Quarterly Groundwater Monitoring Report-Outside (Non-Tunnel Wells), Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, July 2012.

ESI, 2012a, Work Plan/Sampling and Analysis Plan, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, October 2012.

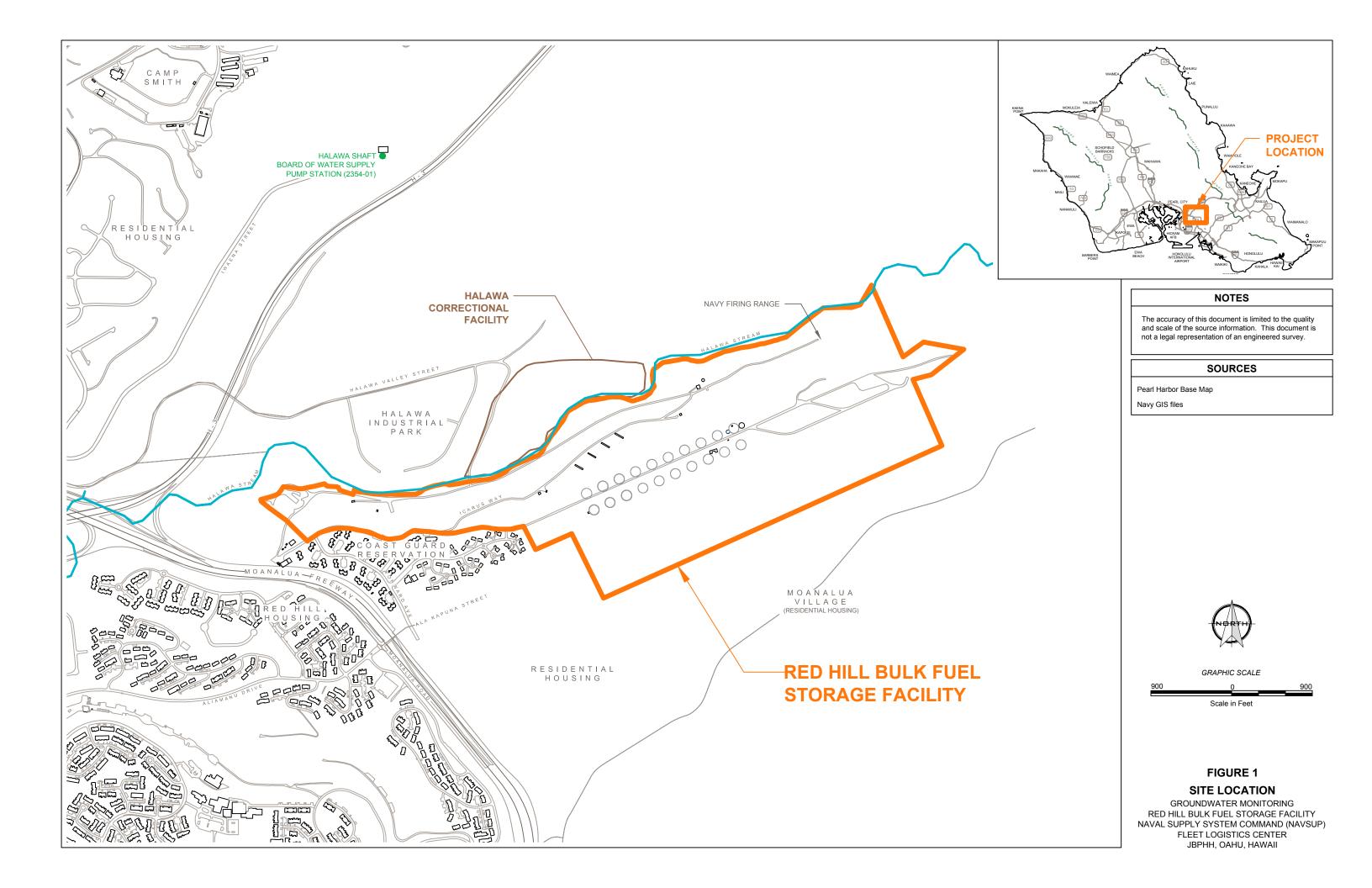
ESI, 2012b, Fourth Quarter 2012- Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, January 2013.

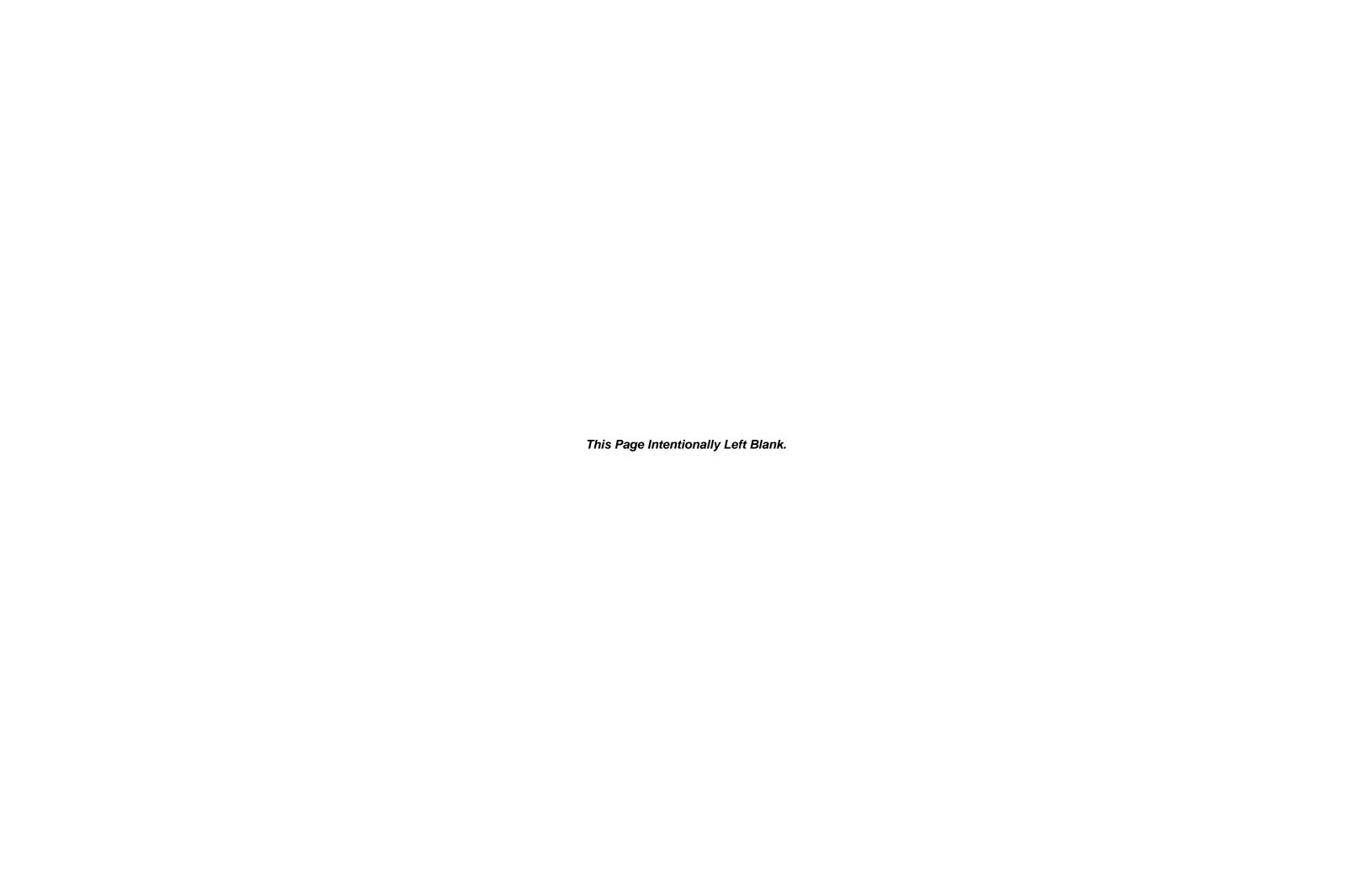
Foote et al., 1972, Soil Survey of the Islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii.

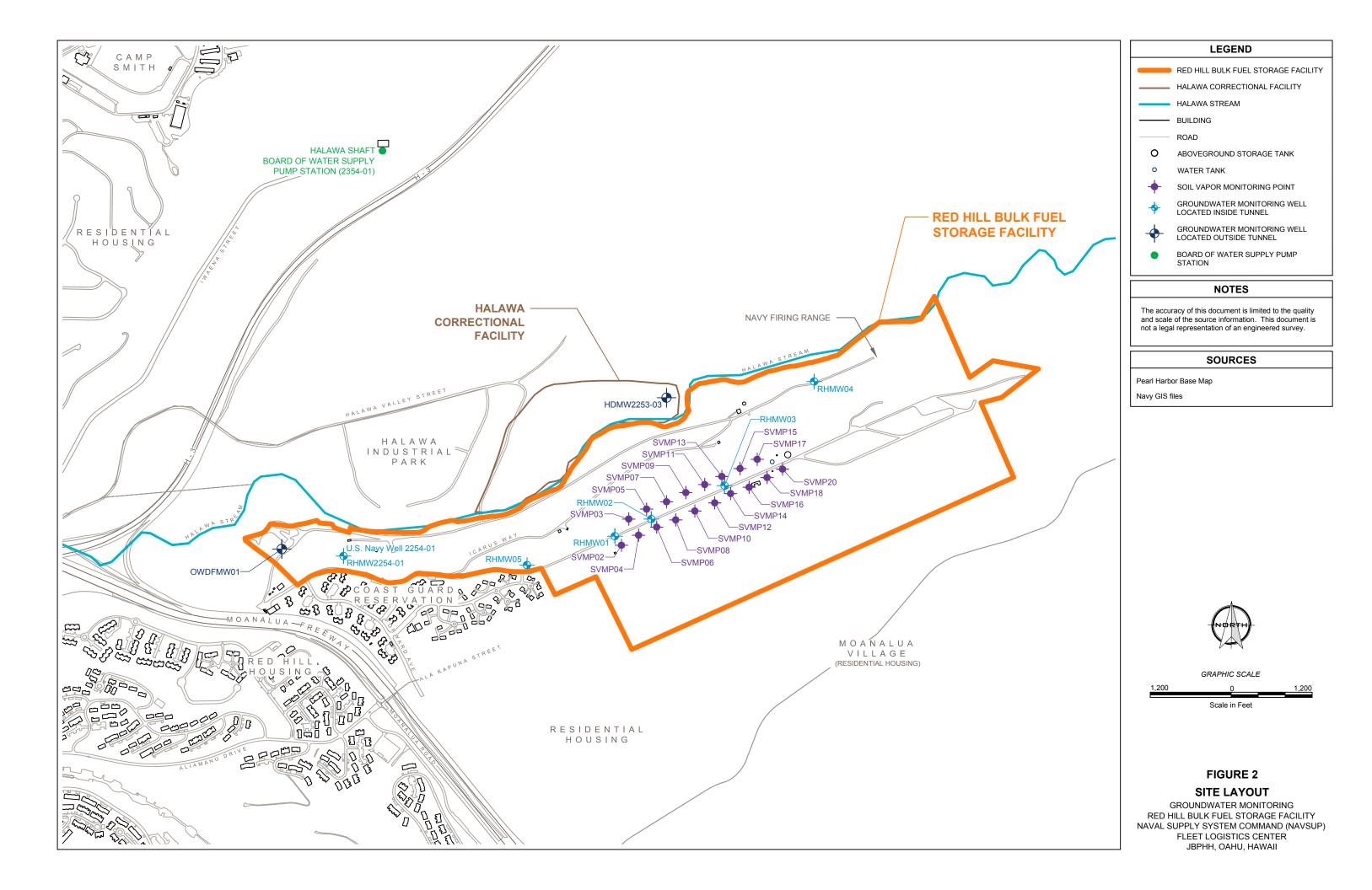
Mink, J. F. and Lau, L. S., 1990, Aquifer Identification and Classification for Oahu: Groundwater Protection Strategy for Hawaii: Water Resources Research Center Technical Report No. 179, February 1990.

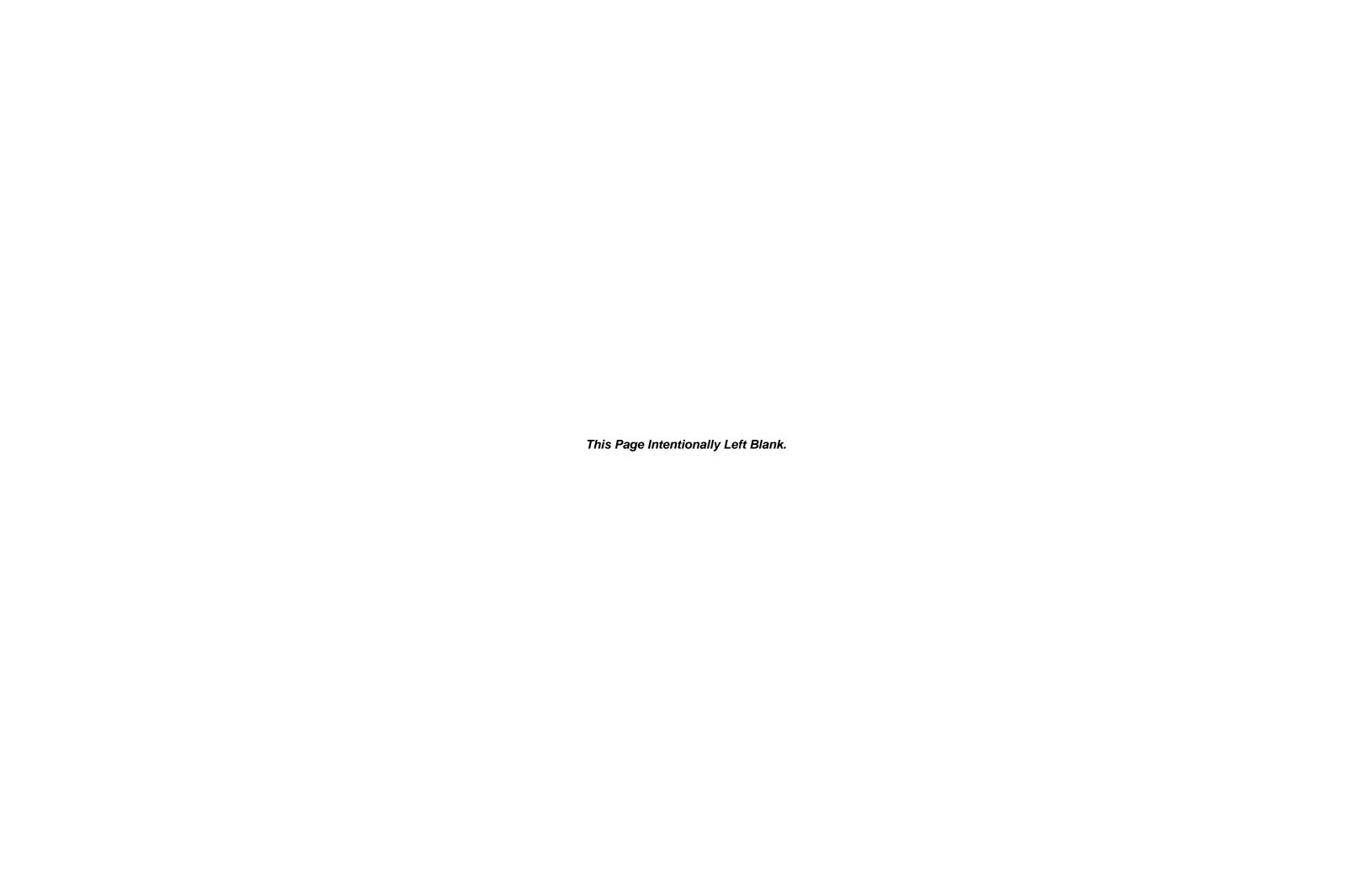
Stearns, H. T. and Vaksvik, K. N., 1935, Geology and Groundwater Resources of the Island of Oahu, Hawaii: Hawaii Div. Hydrogr. Bull.

Stearns, H. T. and Vaksvik, K. N., 1938, Records of the Drilled Wells on the Island of Oahu, Hawaii: Hawaii Div. Hydrogr. Bull. 4, 213 p.


TEC, 2008, Final Groundwater Protection Plan, Red Hill Fuel Storage Facility, Prepared for Navy Region Hawaii, Pearl Harbor, Hawaii, January 2008.


TEC, 2010a, Quarterly Groundwater Monitoring Report – Outside (Non-Tunnel) Wells, Prepared for Navy Region Hawaii, Pearl Harbor, Hawaii, April 2010.


TEC, 2010b, Quarterly Groundwater Monitoring Report – Outside (Non-Tunnel) Wells, Prepared for Navy Region Hawaii, Pearl Harbor, Hawaii, May 2010.


FIGURES

APPENDIX A Groundwater Sampling Logs

Well ID: OV	VDFMW01	Location:	Red Hill	Bulk Fuel Stora	ge Facility Pr	oject No.:	112066
Initial Wate	er Level: 120	.55 ft	Date:	1/30/2013	Tir	me: 730	
Total Depth	n of Well:	145.10 ft	Person	nel Involved:	Justin Lam,	Branden Ibara	<u> </u>
Length of S	Saturated Zone:		_ Weathe	er Conditions:	(Clear	
Volume of	Water to be Rer	moved: <u>5.0 L</u>	Method	of Removal:	Disposa	able Bailer	
Water Leve	el After Purging:	120.55 ft	Pumpin	ig Rate:	0.42 I	_/min	
Well Purge	Data: Volume		onductivity				Redox (ORP)
Time	Removed	pН	(mS/cm)	DO (mg/l)	Temperature	Salinity	(mV)
738	0.0 L	7.61	4.089	6.40	22.74	2.28	20.8
740	1.0 L	8.85	3.473	5.45	23.19	1.89	-5.1
742	2.0 L	8.80	3.534	5.03	23.32	1.92	-7.7
744	3.0 L	8.84	3.556	4.89	23.37	1.93	-7.7
746	4.0 L	8.87	3.558	4.86	23.35	1.93	-7.7
750	5.0 L	8.85	3.555	4.87	23.33	1.92	-7.7
							-
	·						
Sample Wi	thdrawal Metho	d:D	isposable B	ailer			
Appearanc	e of Sample:						
	Color:		Clear				
	Turbidity:		Low				
	Sediment:		Slight				
	Other:						
Laboratory	Analysis Param	eters and Pres	ervatives:		; TPH-g, VOCs - 82	60; PAHs - 82	70C sim;
				lead - 6020			
		-			ar, 5 - 500ml HDPE		
•	entification Num)17 (Dup) [0930]	, ES016 MS/MSD [0800]	
	nation Procedur	es: Triple Rin	sed				
Notes:	v. luctio Lex	Brandon Ibor	3				
Sampled by Sampled D	y. <u>Justin Lan</u> Jelivered to:	, Branden Ibara Calscience E		al Lab -	Transporters: FedE	X	
•	1/2013	2 a 2 c. 100 L			Time: 1045		
		Co	posity of Co	sing (Callana/Lin	oor Foot		

Capacity of Casing (Gallons/Linear Feet) 2"-0.16• 4"-0.65 • 8"-2.61 • 10"-4.08 • 12"-5.87

Well ID: HD	MW2253-03	Locatio	n: Red Hill	Bulk Fuel Stora	ge Facility Pr	oject No.:	112066			
Initial Water	Level: <u>20</u>	8.15 ft	Date:	1/30/2013	Ti	me: 955				
Total Depth	of Well:	1575 ft	Personr	nel Involved:	Justin Lam,	Branden Ibara	<u> </u>			
Length of Sa	aturated Zone	e: <u>-</u>	Weathe	r Conditions:	Clea	ar, Sunny				
Volume of V	Vater to be R	emoved:	Method	of Removal:	Disposable Bailer					
Water Level	After Purgin	g: <u> </u>	Pumpin	g Rate:	0.21	0.21 L/min				
Well Purge	Data:									
Time	Volume Removed	рН	Conductivity (mS/cm)	DO (mg/l)	Temperature	Salinity	Redox (ORP) (mV)			
1111	0.0 L	7.64	0.692	2.80	22.70	0.35	-50.4			
1114	1.0 L	7.19	0.513	1.56	22.54	0.26	-101.3			
1117	2.0 L	7.08	0.511	1.41	22.36	0.26	-52.1			
1121	3.0 L	7.07	0.499	1.38	22.46	0.25	-84.9			
1127	4.0 L	7.07	0.497	1.37	22.32	0.25	-85.6			
1134	5.0 L	7.07	0.501	1.35	22.40	0.25	-89.1			
			_							
•	hdrawal Meth	od:	Disposable Ba	ailer						
Appearance	-									
	Color:		Clear							
	Turbidity:		Low							
	Sediment:		Slight							
	Other:									
Laboratory A	Analysis Para	meters and Pr	eservatives:	TPH-d - 8015;	; TPH-g, VOCs - 82	:60; PAHs - 82	70C sim;			
·	·			lead - 6020	<u> </u>					
Number and	Types of Sa	mple Containe	ers: 6 - VOAs, 3	3 - 1L amber jar	, 1 - 500ml HDPE b	ottle				
Sample Ider	ntification Nur	mbers: ESC)18 [1100]							
		ures: Triple F								
Notes:		-								
Sampled by		m, Branden Ib								
Sampled De	-	Calscience	e Environmenta		Transporters: FedE	Х				
Date: <u>2/1</u>	/2013	(Canacity of Cas	ing (Gallons/Lin	Time: <u>1045</u>					

Capacity of Casing (Gallons/Linear Feet) 2"-0.16• 4"-0.65 • 8"-2.61 • 10"-4.08 • 12"-5.87

APPENDIX B Field Notes

Project / Client 112 oble NAVFAC

purpose: gw sampling Personnel: JL, BI tre 735: EST ouside. 750: salety meeting. 805: ESI enter through adit #5. 339: gwge RHMW 01 840: Firmon compressor and contral box, begin purping. BSU: compresor shot of no vader beging prosped BSS: compressor will not oday our 430: com pressor started and Stared our well not 935. pul pump out text pump.
1000. put pump back in well. test attempt to purp again, not propping. 1003, compressor will not sout. 1032: more to PHANNOZ. 1040: gange PHANWOZ 1050: beef a perosping well potomor

Location (Red) (1) . Date 1/28(13

Project / Client 112066 NAVFAC

1210- Cinish Sampling Putneroz more to KHMW 03 1215 RHMW33 Ptw: 102.98 DTB: 110,17 1218. Degin prying RHNW03 1220: no valu suggrey, 1241 : water pregry again 1305: finish RHM203 1310: walk back to RHINNO! 1320: set op eggip ment at retirent RHMWOI compressor will not stay on The out let by Tank 1/2 not usable. So had to Connect to extension wills. There was not enough voltage to operate the compressor. Compressor curtail fine at two other wells to day. 445: leave Potmwol. 1300 : EST exit funds.

Project / Client 112066 NAVFAC

1300. clear up for day. 1315. drop of drum at adit 3.

1325: ESI Leave Red Hill.

1/28/13

Location Red Hill Date 1/29/13 47.

Project / Client 112066 NAVFAC

perpose: you sampling personnel: 01, BI

730: ESI ousite

740 salety meeting.

750: ESI outer adit #5. clevator not working.

752: IL called RC about the

situation

800 c cheek adrt 43

adit #3 is clear. cull

ender lover tenrels through vo(it #3.

830: JL, BI bring equipment threeps adit#3.

832: voit for purphose to be opened.

910: youred RHMW 2354-01

DTW: 82.78 PTB:

920- beeny paying RHMWZ254-01

935: Collect Sample. 1000 - leave Kultur pump startion

Project / Client 1/2066

DTW: 82 1/20183 83.61 wo dept h to bottom, I? Could not get past 86.70 Short 1045: sample well 1100: clean up around PANEW 5. more to PHMW81. 1100 gage wells. PAMOSOI 1/15: a Hempt to perge well. 1/45: yater rate to coming out of Idoing 1215: water Still not working oct check bladder pump. set 1245: Stop attempt to purp well. no water coming and of taking not enough time to sample the nell pack up equipment charge time: Iss exhaust 55 1255 Cease though adit #5 1310: Leac exit funrels at adit \$5 330. clean up equipment 1330 leave Red Still to meet Domos at Fed Ex. 1/24/By Location Red Will. Date 1/30/13 Project / Client 1/2066 NAVFAC

pupose: you sampling personnel: BI, JL 715: ESJ at adit #3 730 - gaye ow Fravol PTW: 120.58 DTB: 145-10 740: vegin hard bailing the well. 810: begin sampling well. 830. Sinish sampling well. clean is and pack samples. 95: leave Red Hill wait to DINR at Halana corrections Facility. 930. PLNE at HCF. 938; yo to HDMW 2253-03. PLNR 950: gauge well. 9553 DTW: 208.15 1058: DLAR Simish w/ their work. 1105: EST begin prying well 135: finish puging, begin sampling HDMW 233 -03.

Project / Client 112066 NAVFAC

11555. leave HEF. go to ROTSF. add #5 1200: get to adit #5 a worker getting out of aditos said elevator wasn't working properly. 1205. ESI tested elevator. went out to get equipment to sample RHMWOI. 1220: get back to elevator; someone was stock in elevator. 1232: ESI empty lower into the IDW drum at aditt 1240. ESI bar PASF. To do Fed Ex 1/30/13

Location Red Hill Date 1/31/13 51 Project / Client 112066 NAVFAC

purpose: Soil vapor monitoring personnel: JL, BI 300: ESI get to adit 5 Salety meeting prep equipment 810: enser adit 5 elevator strete go to adet #3 822: ensu adit 3. 840. Loud 2/Wb OS Shallon | 518 | 532 | 518 | 546 mid | 778 | 757 | 808 | 808 dust 821 885 842 85 857 punge SUMPO3 snallon | 23 | 13 | 6 | 25 mid | 16 | 10 | 3 | 20 deep | 50 | 67 | 23 | 75 913 punge sumpor shallow 33 30 21 \$7 m.d 57 53 40 67 deep 424 347 431 441

1159 SVMP OZ need s to be resampled the take on the PITD was loose and
pulling in put sicle cit r
from the bog applications
were high due to maintenance
us to being done at tank 05. (+900 PPUDV) 1210 resumpre svrip 02 Shallon |542 | 535 | 551 | 555 ma 919 92 885 931 deep 1936 973 966 920

1225 ESI Leave Finnels.

1245. ESI exit adit 3.

1/31/13

Location Red Hill Date 2/4/13 55 Project / Client 112066 NAVFAC

personnel. JL, BI 800: EST get to RHSF elevator still not vorking at ad1 + 5.

BIS: FSI uppack equipment at Sa tety meeting. 820: EST enser a dit 3. 845: gay RAMOI

DTW: 84.04

900: regin guigt proping

Som well.

1800: begin sampling RAMOI

1215: Cinish sampling RAMOI

leave tunels through

adit 3. 1235: Exit June 15. 1745: leave RHSF 2/4/13

APPENDIX C Laboratory Reports

CALSCIENCE

WORK ORDER NUMBER: 13-02-0014

The difference is service

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For

Client: Environmental Science International, Inc.

Client Project Name: Red Hill LTM 112066

Attention: Robert Chong

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Richard Vellas

Approved for release on 02/7/2013 by: Richard Villafania

Project Manager

ResultLink >

Email your PM >

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Red Hill LTM 112066

Work Order Number: 13-02-0014

1	Client Sample Data	3
	1.1 EPA 6020 ICP/MS Metals (Aqueous)	3
	1.2 EPA 8015B (M) TPH Diesel (Aqueous)	4
	1.3 EPA 8270C SIM PAHs (Aqueous)	5
	1.4 GC/MS GRO/EPA 8260B Volatile Organics (Aqueous)	9
2	Quality Control Sample Data	21
	2.1 MS/MSD and/or Duplicate	21
	2.2 LCS/LCSD	29
3	Sample Analysis Summary	36
4	Glossary of Terms and Qualifiers	37
5	Chain of Custody/Sample Receipt Form	38

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 13-02-0014

Project Name:

Red Hill LTM 112066

Received:

02/01/13 10:45

ANALYTICAL REPORT

13-02-0014-1 Clier	nt ID: ES01	6			Matrix: A	queous U	nits: ug/L	Sampled: 01/30/13 08:00		
EPA 6020 ICP/MS Metals	: EPA 30	20A Total								
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
Lead	<0.200	U	0.0898	0.200	1.00	1	02/01/13 00:00	02/04/13 16:55	130201L02D	

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

13-02-0014-2 Clie	ent ID: ES01	7			Matrix: Ac	queous Ui	nits: ug/L	Sampled: 01	/30/13 09:30
EPA 6020 ICP/MS Metals	Extraction	n: EPA 3	020A Total						
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Lead	<0.200	U	0.0898	0.200	1.00	1	02/01/13 00:00	02/04/13 16:58	130201L02D

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

	13-02-0014-3 Clier	nt ID: ES01	8			Matrix: A	queous U	nits: ug/L	Sampled: 01	/30/13 11:00	
	EPA 6020 ICP/MS Metals	Extraction	n: EPA 30	20A Total							
	Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
ı	Lead	<0.200	U	0.0898	0.200	1.00	1	02/01/13 00:00	02/04/13 17:01	130201L02D	

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

099-14-497-15 Clie	nt ID: Meth	od Blank			Matrix: A	queous U	nits: ug/L	Sampled: 02	2/05/13 15:30
EPA 6020 ICP/MS Metals	Extraction	n: EPA 30	20A Total						
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Lead	<0.200	U	0.0898	0.200	1.00	1	02/01/13 00:00	02/04/13 16:20	

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 13-02-0014

Project Name:

Red Hill LTM 112066

Received:

02/01/13 10:45

ANALYTICAL REPORT

13-02-0014-1 Client	6		Matrix: A	queous U	nits: ug/L	Sampled: 01/30/13 08:00			
EPA 8015B (M) TPH Diesel Extraction: EPA 3510C									
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
TPH as Diesel	1000		15	20	50	1	02/04/13 00:00	02/05/13 02:45	130204B14
Surr: n-Octacosane (51-141%)	99%						02/04/13 00:00	02/05/13 02:45	130204B14

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

13-02-0014-2 Client I	D: ES01	7			Matrix: A	queous U	nits: ug/L	Sampled: 01	1/30/13 09:30
EPA 8015B (M) TPH Diesel	Extraction	on: EPA 3	510C						
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
TPH as Diesel	1000		15	20	50	1	02/04/13 00:00	02/05/13 03:02	130204B14
Surr: n-Octacosane (51-141%)	92%						02/04/13 00:00	02/05/13 03:02	130204B14

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

13-02-0014-3 Client I	D: ES018	3			Matrix: A	Aqueous U	nits: ug/L	Sampled: 01	/30/13 11:00
EPA 8015B (M) TPH Diesel	Extraction	n: EPA 3	510C						
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
TPH as Diesel	600		15	20	50	1	02/04/13 00:00	02/05/13 03:20	130204B14
Surr: n-Octacosane (51-141%)	107%	6					02/04/13 00:00	02/05/13 03:20	130204B14

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

099-15-516-26	Client	ID: Meth	nod Blank			Matrix: A	Aqueous U	nits: ug/L	Sampled: 02	2/05/13 16:44
EPA 8015B (M) TPH Diesel Analyte		Extract	ion: EPA 3	3510C						
Analyte		Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
TPH as Diesel		<20	U	15	20	50	1	02/04/13 00:00	02/05/13 01:17	130204B14
Surr: n-Octacosane (51-	-141%)	115	i%					02/04/13 00:00	02/05/13 01:17	130204B14

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 13-02-0014

Project Name:

Red Hill LTM 112066

Received:

02/01/13 10:45

13-02-0014-1 Clie	ent ID: ES01	16			Matrix: A	Aqueous	Units: ug/L	Sampled:0	1/30/13 08:00
EPA 8270C SIM PAHs	Extraction: E	PA 3510C							
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Naphthalene	0.032	J	0.023	0.050	0.20	1	02/04/13 00:00	02/05/13 17:34	130204L11
2-Methylnaphthalene	< 0.050	U	0.026	0.050	0.20	1	02/04/13 00:00	02/05/13 17:34	130204L11
1-Methylnaphthalene	< 0.050	U	0.028	0.050	0.20	1	02/04/13 00:00	02/05/13 17:34	130204L11
Acenaphthylene	< 0.050	U	0.018	0.050	0.20	1	02/04/13 00:00	02/05/13 17:34	130204L11
Acenaphthene	< 0.050	U	0.021	0.050	0.20	1	02/04/13 00:00	02/05/13 17:34	130204L11
Fluorene	< 0.050	U	0.024	0.050	0.20	1	02/04/13 00:00	02/05/13 17:34	130204L11
Phenanthrene	< 0.050	U	0.031	0.050	0.20	1	02/04/13 00:00	02/05/13 17:34	130204L11
Anthracene	< 0.050	U	0.034	0.050	0.20	1	02/04/13 00:00	02/05/13 17:34	130204L11
Fluoranthene	< 0.050	U	0.027	0.050	0.20	1	02/04/13 00:00	02/05/13 17:34	130204L11
Pyrene	< 0.050	U	0.025	0.050	0.20	1	02/04/13 00:00	02/05/13 17:34	130204L11
Benzo (a) Anthracene	< 0.050	U	0.024	0.050	0.20	1	02/04/13 00:00	02/05/13 17:34	130204L11
Chrysene	< 0.050	U	0.019	0.050	0.20	1	02/04/13 00:00	02/05/13 17:34	130204L11
Benzo (k) Fluoranthene	< 0.050	U	0.023	0.050	0.20	1	02/04/13 00:00	02/05/13 17:34	130204L11
Benzo (b) Fluoranthene	< 0.050	U	0.025	0.050	0.20	1	02/04/13 00:00	02/05/13 17:34	130204L11
Benzo (a) Pyrene	< 0.050	U	0.036	0.050	0.20	1	02/04/13 00:00	02/05/13 17:34	130204L11
Indeno (1,2,3-c,d) Pyrene	< 0.050	U	0.022	0.050	0.20	1	02/04/13 00:00	02/05/13 17:34	130204L11
Dibenz (a,h) Anthracene	< 0.050	U	0.027	0.050	0.20	1	02/04/13 00:00	02/05/13 17:34	130204L11
Benzo (g,h,i) Perylene	<0.050	U	0.022	0.050	0.20	1	02/04/13 00:00	02/05/13 17:34	130204L11
Surr: Nitrobenzene-d5 (28-139%	6) 10	08%					02/04/13 00:00	02/05/13 17:34	130204L11
Surr: 2-Fluorobiphenyl (33-144%	6) 96	5%					02/04/13 00:00	02/05/13 17:34	130204L11
Surr: p-Terphenyl-d14 (23-160%	6) 11	10%					02/04/13 00:00	02/05/13 17:34	130204L11

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: 13-02-0014

Project Name:

Red Hill LTM 112066

Received: 02/01/13 10:45

ANALYTICAL REPORT

13-02-0014-2 Clie	ent ID: ES01	7			Matrix: A	Aqueous l	Jnits: ug/L	Sampled: 01	1/30/13 09:30
EPA 8270C SIM PAHs	Extraction: E	PA 3510C							
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Naphthalene	0.039	J	0.023	0.050	0.20	1	02/04/13 00:00	02/05/13 18:00	130204L11
2-Methylnaphthalene	< 0.050	U	0.026	0.050	0.20	1	02/04/13 00:00	02/05/13 18:00	130204L11
1-Methylnaphthalene	< 0.050	U	0.028	0.050	0.20	1	02/04/13 00:00	02/05/13 18:00	130204L11
Acenaphthylene	< 0.050	U	0.018	0.050	0.20	1	02/04/13 00:00	02/05/13 18:00	130204L11
Acenaphthene	< 0.050	U	0.021	0.050	0.20	1	02/04/13 00:00	02/05/13 18:00	130204L11
Fluorene	< 0.050	U	0.024	0.050	0.20	1	02/04/13 00:00	02/05/13 18:00	130204L11
Phenanthrene	< 0.050	U	0.031	0.050	0.20	1	02/04/13 00:00	02/05/13 18:00	130204L11
Anthracene	< 0.050	U	0.034	0.050	0.20	1	02/04/13 00:00	02/05/13 18:00	130204L11
Fluoranthene	< 0.050	U	0.027	0.050	0.20	1	02/04/13 00:00	02/05/13 18:00	130204L11
Pyrene	< 0.050	U	0.025	0.050	0.20	1	02/04/13 00:00	02/05/13 18:00	130204L11
Benzo (a) Anthracene	< 0.050	U	0.024	0.050	0.20	1	02/04/13 00:00	02/05/13 18:00	130204L11
Chrysene	< 0.050	U	0.019	0.050	0.20	1	02/04/13 00:00	02/05/13 18:00	130204L11
Benzo (k) Fluoranthene	< 0.050	U	0.023	0.050	0.20	1	02/04/13 00:00	02/05/13 18:00	130204L11
Benzo (b) Fluoranthene	< 0.050	U	0.025	0.050	0.20	1	02/04/13 00:00	02/05/13 18:00	130204L11
Benzo (a) Pyrene	< 0.050	U	0.036	0.050	0.20	1	02/04/13 00:00	02/05/13 18:00	130204L11
Indeno (1,2,3-c,d) Pyrene	< 0.050	U	0.022	0.050	0.20	1	02/04/13 00:00	02/05/13 18:00	130204L11
Dibenz (a,h) Anthracene	< 0.050	U	0.027	0.050	0.20	1	02/04/13 00:00	02/05/13 18:00	130204L11
Benzo (g,h,i) Perylene	<0.050	U	0.022	0.050	0.20	1	02/04/13 00:00	02/05/13 18:00	130204L11
Surr: Nitrobenzene-d5 (28-139%	,	5%					02/04/13 00:00		
Surr: 2-Fluorobiphenyl (33-144% Surr: p-Terphenyl-d14 (23-160%	,	6% 17%					02/04/13 00:00 02/04/13 00:00	02/05/13 18:00 02/05/13 18:00	

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: 13-02-0014

Project Name:

Red Hill LTM 112066

Received:

02/01/13 10:45

ANALYTICAL REPORT

13-02-0014-3 Cli	2-0014-3 Client ID: ES018				Matrix: A	Aqueous	Units: ug/L	Sampled:0	1/30/13 11:00
EPA 8270C SIM PAHs	Extraction: E	EPA 3510C							
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Naphthalene	0.037	J	0.023	0.050	0.20	1	02/04/13 00:00	02/05/13 18:26	130204L11
2-Methylnaphthalene	< 0.050	U	0.026	0.050	0.20	1	02/04/13 00:00	02/05/13 18:26	130204L11
1-Methylnaphthalene	< 0.050	U	0.028	0.050	0.20	1	02/04/13 00:00	02/05/13 18:26	130204L11
Acenaphthylene	< 0.050	U	0.018	0.050	0.20	1	02/04/13 00:00	02/05/13 18:26	130204L11
Acenaphthene	< 0.050	U	0.021	0.050	0.20	1	02/04/13 00:00	02/05/13 18:26	130204L11
Fluorene	< 0.050	U	0.024	0.050	0.20	1	02/04/13 00:00	02/05/13 18:26	130204L11
Phenanthrene	< 0.050	U	0.031	0.050	0.20	1	02/04/13 00:00	02/05/13 18:26	130204L11
Anthracene	< 0.050	U	0.034	0.050	0.20	1	02/04/13 00:00	02/05/13 18:26	130204L11
Fluoranthene	< 0.050	U	0.027	0.050	0.20	1	02/04/13 00:00	02/05/13 18:26	130204L11
Pyrene	< 0.050	U	0.025	0.050	0.20	1	02/04/13 00:00	02/05/13 18:26	130204L11
Benzo (a) Anthracene	< 0.050	U	0.024	0.050	0.20	1	02/04/13 00:00	02/05/13 18:26	130204L11
Chrysene	< 0.050	U	0.019	0.050	0.20	1	02/04/13 00:00	02/05/13 18:26	130204L11
Benzo (k) Fluoranthene	< 0.050	U	0.023	0.050	0.20	1	02/04/13 00:00	02/05/13 18:26	130204L11
Benzo (b) Fluoranthene	< 0.050	U	0.025	0.050	0.20	1	02/04/13 00:00	02/05/13 18:26	130204L11
Benzo (a) Pyrene	< 0.050	U	0.036	0.050	0.20	1	02/04/13 00:00	02/05/13 18:26	130204L11
Indeno (1,2,3-c,d) Pyrene	< 0.050	U	0.022	0.050	0.20	1	02/04/13 00:00	02/05/13 18:26	130204L11
Dibenz (a,h) Anthracene	< 0.050	U	0.027	0.050	0.20	1	02/04/13 00:00	02/05/13 18:26	130204L11
Benzo (g,h,i) Perylene	<0.050	U	0.022	0.050	0.20	1	02/04/13 00:00	02/05/13 18:26	130204L11
Surr: Nitrobenzene-d5 (28-139)	%) 10	08%					02/04/13 00:00	02/05/13 18:26	130204L11
Surr: 2-Fluorobiphenyl (33-144)	%) 97	7%					02/04/13 00:00	02/05/13 18:26	130204L11
Surr: p-Terphenyl-d14 (23-1609	%) 11	10%					02/04/13 00:00	02/05/13 18:26	130204L11

-Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 099-15-148

Project Name:

Red Hill LTM 112066

Received:

02/01/13 10:45

099-15-148-8 Clie	ent ID: Meth	od Blank			Matrix: A	Aqueous	Units: ug/L	Sampled: 02	2/05/13 15:30
EPA 8270C SIM PAHs	Extraction: E	PA 3510C							
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Naphthalene	< 0.050	U	0.023	0.050	0.20	1	02/04/13 00:00	02/05/13 15:22	130204L11
2-Methylnaphthalene	< 0.050	U	0.026	0.050	0.20	1	02/04/13 00:00	02/05/13 15:22	130204L11
1-Methylnaphthalene	< 0.050	U	0.028	0.050	0.20	1	02/04/13 00:00	02/05/13 15:22	130204L11
Acenaphthylene	< 0.050	U	0.018	0.050	0.20	1	02/04/13 00:00	02/05/13 15:22	130204L11
Acenaphthene	< 0.050	U	0.021	0.050	0.20	1	02/04/13 00:00	02/05/13 15:22	130204L11
Fluorene	< 0.050	U	0.024	0.050	0.20	1	02/04/13 00:00	02/05/13 15:22	130204L11
Phenanthrene	< 0.050	U	0.031	0.050	0.20	1	02/04/13 00:00	02/05/13 15:22	130204L11
Anthracene	< 0.050	U	0.034	0.050	0.20	1	02/04/13 00:00	02/05/13 15:22	130204L11
Fluoranthene	< 0.050	U	0.027	0.050	0.20	1	02/04/13 00:00	02/05/13 15:22	130204L11
Pyrene	< 0.050	U	0.025	0.050	0.20	1	02/04/13 00:00	02/05/13 15:22	130204L11
Benzo (a) Anthracene	< 0.050	U	0.024	0.050	0.20	1	02/04/13 00:00	02/05/13 15:22	130204L11
Chrysene	< 0.050	U	0.019	0.050	0.20	1	02/04/13 00:00	02/05/13 15:22	130204L11
Benzo (k) Fluoranthene	< 0.050	U	0.023	0.050	0.20	1	02/04/13 00:00	02/05/13 15:22	130204L11
Benzo (b) Fluoranthene	< 0.050	U	0.025	0.050	0.20	1	02/04/13 00:00	02/05/13 15:22	130204L11
Benzo (a) Pyrene	< 0.050	U	0.036	0.050	0.20	1	02/04/13 00:00	02/05/13 15:22	130204L11
Indeno (1,2,3-c,d) Pyrene	< 0.050	U	0.022	0.050	0.20	1	02/04/13 00:00	02/05/13 15:22	130204L11
Dibenz (a,h) Anthracene	< 0.050	U	0.027	0.050	0.20	1	02/04/13 00:00	02/05/13 15:22	130204L11
Benzo (g,h,i) Perylene	<0.050	U	0.022	0.050	0.20	1	02/04/13 00:00	02/05/13 15:22	130204L11
Surr: Nitrobenzene-d5 (28-139%	%) 10	7%					02/04/13 00:00	02/05/13 15:22	130204L11
Surr: 2-Fluorobiphenyl (33-144%)	6) 10	2%					02/04/13 00:00	02/05/13 15:22	130204L11
Surr: p-Terphenyl-d14 (23-160%	6) 11	6%					02/04/13 00:00	02/05/13 15:22	130204L11

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Kallua, HI 96/34-250

Attn: Robert Chong

Work Order: 13-02-0014

Project Name:

Red Hill LTM 112066

Received:

02/01/13 10:45

13-02-0014-1 Clier	nt ID: ES01	16			Matrix: A	Aqueous	Units: ug/L	Sampled:0	1/30/13 08:00
GC/MS GRO/EPA 8260B	/olatile Org	anics E	xtraction:	EPA 5030C					
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Acetone	17	ICH,J	10	10	20	1	02/04/13 00:00	02/04/13 14:10	130204L01
Benzene	0.39	J	0.14	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
Bromodichloromethane	< 0.50	U	0.21	0.50	5.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
Bromoform	<2.0	IJ,U	0.50	2.0	10	1	02/04/13 00:00	02/04/13 14:10	130204L01
Bromomethane	<5.0	U	3.9	5.0	20	1	02/04/13 00:00	02/04/13 14:10	130204L01
2-Butanone	<5.0	U	2.2	5.0	10	1	02/04/13 00:00	02/04/13 14:10	130204L01
Carbon Tetrachloride	< 0.50	U	0.23	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
Chlorobenzene	< 0.50	U	0.17	0.50	5.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
Chloroethane	<5.0	U	2.3	5.0	10	1	02/04/13 00:00	02/04/13 14:10	130204L01
Chloroform	< 0.50	U	0.46	0.50	5.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
Chloromethane	<2.0	U	1.8	2.0	10	1	02/04/13 00:00	02/04/13 14:10	130204L01
Dibromochloromethane	< 0.50	U	0.25	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
1,2-Dibromo-3-Chloropropane	<2.0	U	1.2	2.0	10	1	02/04/13 00:00	02/04/13 14:10	130204L01
1,2-Dibromoethane	< 0.50	U	0.36	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
1,2-Dichlorobenzene	< 0.50	U	0.46	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
1,3-Dichlorobenzene	< 0.50	U	0.40	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
1,4-Dichlorobenzene	< 0.50	U	0.43	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
1,1-Dichloroethane	< 0.50	U	0.28	0.50	5.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
1,2-Dichloroethane	< 0.50	U	0.24	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
1,1-Dichloroethene	< 0.50	U	0.43	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
c-1,2-Dichloroethene	< 0.50	U	0.48	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
t-1,2-Dichloroethene	< 0.50	U	0.37	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
1,2-Dichloropropane	< 0.50	U	0.42	0.50	5.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
c-1,3-Dichloropropene	< 0.50	U	0.25	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
t-1,3-Dichloropropene	< 0.50	U	0.25	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
Ethylbenzene	< 0.50	U	0.14	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
Methylene Chloride	<2.0	U	0.64	2.0	5.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
4-Methyl-2-Pentanone	<5.0	U	4.4	5.0	10	1	02/04/13 00:00	02/04/13 14:10	130204L01
Styrene	< 0.50	U	0.17	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
1,1,1,2-Tetrachloroethane	< 0.50	U	0.40	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
1,1,2,2-Tetrachloroethane	< 0.50	U	0.41	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
Tetrachloroethene	< 0.50	U	0.39	0.50	5.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
Toluene	< 0.50	U	0.24	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
1,2,4-Trichlorobenzene	< 0.50	U	0.50	0.50	5.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
1,1,1-Trichloroethane	< 0.50	U	0.30	0.50	5.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
Hexachloro-1,3-Butadiene	< 0.50	U	0.32	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
1,1,2-Trichloroethane	< 0.50	U	0.38	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
Trichloroethene	< 0.50	U	0.37	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: 13-02-0014

Project Name:

Red Hill LTM 112066

cot Name.

Received: 02/01/13 10:45

13-02-0014-1	Client ID: ES	016			Matrix: A	Aqueous (Jnits: ug/L	Sampled:01	1/30/13 08:00
GC/MS GRO/EPA 820	60B Volatile O	rganics I	Extraction:	EPA 5030C					
Analyte	Resul	d Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
1,2,3-Trichloropropane	<2.0	U	0.64	2.0	5.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
Vinyl Chloride	<0.50	U	0.30	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
p/m-Xylene	<1.0	U	0.30	1.0	10	1	02/04/13 00:00	02/04/13 14:10	130204L01
o-Xylene	<0.50	U	0.23	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
Methyl-t-Butyl Ether (MTBE)	<0.50	U	0.31	0.50	1.0	1	02/04/13 00:00	02/04/13 14:10	130204L01
Gasoline Range Organics	<30	U	13	30	50	1	02/04/13 00:00	02/04/13 14:10	130204L01
Surr: Dibromofluoromethane	e (80-126%)	88%					02/04/13 00:00	02/04/13 14:10	130204L01
Surr: 1,2-Dichloroethane-d4	ł (80-134%)	94%					02/04/13 00:00	02/04/13 14:10	130204L01
Surr: Toluene-d8 (80-120%))	98%					02/04/13 00:00	02/04/13 14:10	130204L01
Surr: Toluene-d8-TPPH (88	3-112%)	99%					02/04/13 00:00	02/04/13 14:10	130204L01
Surr: 1,4-Bromofluorobenze	ene (80-120%)	96%					02/04/13 00:00	02/04/13 14:10	130204L01

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: 13-02-0014

Project Name:

Red Hill LTM 112066

Received:

02/01/13 10:45

Acetone	13-02-0014-2 Client ID: ES017		17		Matrix: Aqueous		Aqueous	Units: ug/L	Sampled: 01/30/13 09:30	
Analyre Result Qual. DL LOD LOG Factor Date/Time Date/Time Batch Accessors	GC/MS GRO/EPA 8260B V	/olatile Org	anics E	xtraction: l	EPA 5030C					
Benzene 0.17 J 0.14 0.50 1.0 1 0.204/13 00:00 0204/13 17:15 130204L01 Bromodichloromethane	Analyte	Result	Qual.	DL	LOD	LOQ		•	•	Batch
Bromodichloromethane	Acetone	<10	ICH,U	10	10	20	1	02/04/13 00:00	02/04/13 17:15	130204L01
Bromoromethane	Benzene	0.17	J	0.14	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
Bromomethane	Bromodichloromethane	<0.50	U	0.21	0.50	5.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
2-Butanone	Bromoform	<2.0	IJ,U	0.50	2.0	10	1	02/04/13 00:00	02/04/13 17:15	130204L01
Carbon Tetrachloride	Bromomethane	<5.0	U	3.9	5.0	20	1	02/04/13 00:00	02/04/13 17:15	130204L01
Chlorobenzene	2-Butanone	<5.0	U	2.2	5.0	10	1	02/04/13 00:00	02/04/13 17:15	130204L01
Chloroethane	Carbon Tetrachloride	<0.50	U	0.23	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
Chloroform	Chlorobenzene	<0.50	U	0.17	0.50	5.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
Chloromethane	Chloroethane	<5.0	U	2.3	5.0	10	1	02/04/13 00:00	02/04/13 17:15	130204L01
Dibromochloromethane	Chloroform	< 0.50	U	0.46	0.50	5.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
1,2-Dibromo-3-Chloropropane <2.0	Chloromethane	<2.0	U	1.8	2.0	10	1	02/04/13 00:00	02/04/13 17:15	130204L01
1,2-Dibromoethane	Dibromochloromethane	< 0.50	U	0.25	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
1,2-Dichlorobenzene	1,2-Dibromo-3-Chloropropane	<2.0	U	1.2	2.0	10	1	02/04/13 00:00	02/04/13 17:15	130204L01
1,3-Dichlorobenzene	1,2-Dibromoethane	< 0.50	U	0.36	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
1,4-Dichlorobenzene	1,2-Dichlorobenzene	< 0.50	U	0.46	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
1,1-Dichloroethane <0.50	1,3-Dichlorobenzene	< 0.50	U	0.40	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
1,2-Dichloroethane	1,4-Dichlorobenzene	< 0.50	U	0.43	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
1,1-Dichloroethene	1,1-Dichloroethane	< 0.50	U	0.28	0.50	5.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
c-1,2-Dichloroethene	1,2-Dichloroethane	< 0.50	U	0.24	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
t-1,2-Dichloroethene	1,1-Dichloroethene	< 0.50	U	0.43	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
1,2-Dichloropropane <0.50	c-1,2-Dichloroethene	< 0.50	U	0.48	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
c-1,3-Dichloropropene <0.50	t-1,2-Dichloroethene	< 0.50	U	0.37	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
t-1,3-Dichloropropene	1,2-Dichloropropane	< 0.50	U	0.42	0.50	5.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
Ethylbenzene	c-1,3-Dichloropropene	< 0.50	U	0.25	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
Methylene Chloride <2.0 U 0.64 2.0 5.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 4-Methyl-2-Pentanone <5.0 U 4.4 5.0 10 1 02/04/13 00:00 02/04/13 17:15 130204L01 Styrene <0.50 U 0.17 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,1,2-Tetrachloroethane <0.50 U 0.40 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,1,2-Tetrachloroethane <0.50 U 0.41 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 Tetrachloroethane <0.50 U 0.41 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 Toluene <0.50 U 0.24 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,2,4-Trichlorobenzene <0.50 U 0.50 0.50 5.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,1,1-Trichloroethane <0.50 U 0.32 0.50 5.0 <td>t-1,3-Dichloropropene</td> <td>< 0.50</td> <td>U</td> <td>0.25</td> <td>0.50</td> <td>1.0</td> <td>1</td> <td>02/04/13 00:00</td> <td>02/04/13 17:15</td> <td>130204L01</td>	t-1,3-Dichloropropene	< 0.50	U	0.25	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
4-Methyl-2-Pentanone	Ethylbenzene	< 0.50	U	0.14	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
Styrene < 0.50 U 0.17 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,1,2-Tetrachloroethane < 0.50 U 0.40 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,1,2-Tetrachloroethane < 0.50 U 0.41 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 Tetrachloroethene < 0.50 U 0.39 0.50 5.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 Toluene < 0.50 U 0.24 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,2,4-Trichloroethane < 0.50 U 0.50 0.50 5.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,1,1-Trichloroethane < 0.50 U 0.30 0.50 5.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,1,1-Trichloroethane < 0.50 U 0.30 0.50 5.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,1,1-Trichloroethane < 0.50 U 0.32 0.50 5.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,1,2-Trichloroethane < 0.50 U 0.38 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,1,2-Trichloroethane < 0.50 U 0.38 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01	Methylene Chloride	<2.0	U	0.64	2.0	5.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
1,1,1,2-Tetrachloroethane <0.50	4-Methyl-2-Pentanone	<5.0	U	4.4	5.0	10	1	02/04/13 00:00	02/04/13 17:15	130204L01
1,1,2,2-Tetrachloroethane <0.50	Styrene	< 0.50	U	0.17	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
Tetrachloroethene <0.50 U 0.39 0.50 5.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 Toluene <0.50 U 0.24 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,2,4-Trichlorobenzene <0.50 U 0.50 0.50 5.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,1,1-Trichloroethane <0.50 U 0.30 0.50 5.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 Hexachloro-1,3-Butadiene <0.50 U 0.32 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,1,2-Trichloroethane <0.50 U 0.38 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01	1,1,1,2-Tetrachloroethane	< 0.50	U	0.40	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
Toluene <0.50 U 0.24 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,2,4-Trichlorobenzene <0.50 U 0.50 0.50 5.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,1,1-Trichloroethane <0.50 U 0.30 0.50 5.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 Hexachloro-1,3-Butadiene <0.50 U 0.32 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,1,2-Trichloroethane <0.50 U 0.38 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01	1,1,2,2-Tetrachloroethane	< 0.50	U	0.41	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
1,2,4-Trichlorobenzene <0.50	Tetrachloroethene	< 0.50	U	0.39	0.50	5.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
1,1,1-Trichloroethane <0.50	Toluene	< 0.50	U	0.24	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
Hexachloro-1,3-Butadiene <0.50 U 0.32 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,1,2-Trichloroethane <0.50 U 0.38 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01	1,2,4-Trichlorobenzene	< 0.50	U	0.50	0.50	5.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
Hexachloro-1,3-Butadiene <0.50 U 0.32 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01 1,1,2-Trichloroethane <0.50	1,1,1-Trichloroethane	<0.50	U	0.30	0.50	5.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
1,1,2-Trichloroethane <0.50 U 0.38 0.50 1.0 1 02/04/13 00:00 02/04/13 17:15 130204L01	Hexachloro-1,3-Butadiene	<0.50		0.32	0.50		1	02/04/13 00:00	02/04/13 17:15	130204L01
	1,1,2-Trichloroethane	<0.50		0.38	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
	Trichloroethene	< 0.50	U	0.37		1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: Project Name: 13-02-0014

Red Hill LTM 112066

Received:

02/01/13 10:45

13-02-0014-2 Client ID: ES017		S017			Matrix: Aqueous		Units: ug/L	Sampled: 01/30/13 09:3	
GC/MS GRO/EPA 826	60B Volatile C	rganics	Extraction:	EPA 5030C					
Analyte	Resul	t Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
1,2,3-Trichloropropane	<2.0	U	0.64	2.0	5.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
Vinyl Chloride	<0.50	U	0.30	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
p/m-Xylene	<1.0	U	0.30	1.0	10	1	02/04/13 00:00	02/04/13 17:15	130204L01
o-Xylene	<0.50	U	0.23	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
Methyl-t-Butyl Ether (MTBE)	<0.50	U	0.31	0.50	1.0	1	02/04/13 00:00	02/04/13 17:15	130204L01
Gasoline Range Organics	<30	U	13	30	50	1	02/04/13 00:00	02/04/13 17:15	130204L01
Surr: Dibromofluoromethane	e (80-126%)	95%					02/04/13 00:00	02/04/13 17:15	130204L01
Surr: 1,2-Dichloroethane-d4	! (80-134%)	96%					02/04/13 00:00	02/04/13 17:15	130204L01
Surr: Toluene-d8 (80-120%))	98%					02/04/13 00:00	02/04/13 17:15	130204L01
Surr: Toluene-d8-TPPH (88	-112%)	100%					02/04/13 00:00	02/04/13 17:15	130204L01
Surr: 1,4-Bromofluorobenze	ne (80-120%)	93%					02/04/13 00:00	02/04/13 17:15	130204L01

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: 13-02-0014

Project Name:

Red Hill LTM 112066

Received:

02/01/13 10:45

ANALYTICAL REPORT

13-02-0014-3 Clier	nt ID: ES01	18			Matrix: A	Aqueous	Units: ug/L	Sampled:01	1/30/13 11:00
GC/MS GRO/EPA 8260B \	/olatile Org	anics E	xtraction:	EPA 5030C					
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Acetone	<10	ICH,U	10	10	20	1		02/04/13 17:42	130204L01
Benzene	< 0.50	U	0.14	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
Bromodichloromethane	< 0.50	U	0.21	0.50	5.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
Bromoform	<2.0	IJ,U	0.50	2.0	10	1	02/04/13 00:00	02/04/13 17:42	130204L01
Bromomethane	<5.0	U	3.9	5.0	20	1	02/04/13 00:00	02/04/13 17:42	130204L01
2-Butanone	<5.0	U	2.2	5.0	10	1	02/04/13 00:00	02/04/13 17:42	130204L01
Carbon Tetrachloride	< 0.50	U	0.23	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
Chlorobenzene	< 0.50	U	0.17	0.50	5.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
Chloroethane	<5.0	U	2.3	5.0	10	1	02/04/13 00:00	02/04/13 17:42	130204L01
Chloroform	< 0.50	U	0.46	0.50	5.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
Chloromethane	<2.0	U	1.8	2.0	10	1	02/04/13 00:00	02/04/13 17:42	130204L01
Dibromochloromethane	< 0.50	U	0.25	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
1,2-Dibromo-3-Chloropropane	<2.0	U	1.2	2.0	10	1	02/04/13 00:00	02/04/13 17:42	130204L01
1,2-Dibromoethane	< 0.50	U	0.36	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
1,2-Dichlorobenzene	< 0.50	U	0.46	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
1,3-Dichlorobenzene	< 0.50	U	0.40	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
1,4-Dichlorobenzene	< 0.50	U	0.43	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
1,1-Dichloroethane	< 0.50	U	0.28	0.50	5.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
1,2-Dichloroethane	< 0.50	U	0.24	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
1,1-Dichloroethene	< 0.50	U	0.43	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
c-1,2-Dichloroethene	< 0.50	U	0.48	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
t-1,2-Dichloroethene	< 0.50	U	0.37	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
1,2-Dichloropropane	< 0.50	U	0.42	0.50	5.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
c-1,3-Dichloropropene	< 0.50	U	0.25	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
t-1,3-Dichloropropene	< 0.50	U	0.25	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
Ethylbenzene	< 0.50	U	0.14	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
Methylene Chloride	<2.0	U	0.64	2.0	5.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
4-Methyl-2-Pentanone	<5.0	U	4.4	5.0	10	1	02/04/13 00:00	02/04/13 17:42	130204L01
Styrene	< 0.50	U	0.17	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
1,1,1,2-Tetrachloroethane	< 0.50	U	0.40	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
1,1,2,2-Tetrachloroethane	< 0.50	U	0.41	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
Tetrachloroethene	< 0.50	U	0.39	0.50	5.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
Toluene	< 0.50	U	0.24	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
1,2,4-Trichlorobenzene	< 0.50	U	0.50	0.50	5.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
1,1,1-Trichloroethane	< 0.50	U	0.30	0.50	5.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
Hexachloro-1,3-Butadiene	< 0.50	U	0.32	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
1,1,2-Trichloroethane	< 0.50	U	0.38	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
Trichloroethene	< 0.50	U	0.37	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01

ontents

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 13-02-0014

Project Name:

Red Hill LTM 112066

Received:

02/01/13 10:45

13-02-0014-3 Client ID: ES018		S018			Matrix: Aqueous		Units: ug/L	Sampled: 01/30/13 11:0	
GC/MS GRO/EPA 82	60B Volatile C	rganics	Extraction:	EPA 5030C					
Analyte	Resul	t Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
1,2,3-Trichloropropane	<2.0	U	0.64	2.0	5.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
Vinyl Chloride	<0.50	U	0.30	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
p/m-Xylene	<1.0	U	0.30	1.0	10	1	02/04/13 00:00	02/04/13 17:42	130204L01
o-Xylene	<0.50	U	0.23	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
Methyl-t-Butyl Ether (MTBE	<0.50	U	0.31	0.50	1.0	1	02/04/13 00:00	02/04/13 17:42	130204L01
Gasoline Range Organics	<30	U	13	30	50	1	02/04/13 00:00	02/04/13 17:42	130204L01
Surr: Dibromofluoromethan	e (80-126%)	99%					02/04/13 00:00	02/04/13 17:42	130204L01
Surr: 1,2-Dichloroethane-d-	4 (80-134%)	100%					02/04/13 00:00	02/04/13 17:42	130204L01
Surr: Toluene-d8 (80-120%	5)	101%					02/04/13 00:00	02/04/13 17:42	130204L01
Surr: Toluene-d8-TPPH (88	3-112%)	102%					02/04/13 00:00	02/04/13 17:42	130204L01
Surr: 1,4-Bromofluorobenze	ene (80-120%)	92%					02/04/13 00:00	02/04/13 17:42	130204L01

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: 13-02-0014

Project Name:

Red Hill LTM 112066

Received: 02/01/13 10:45

13-02-0014-4 Client II	D: ESTr	ip			Matrix: A	Aqueous	Units: ug/L	Sampled:07	1/30/13 07:00
GC/MS GRO/EPA 8260B Vol	atile Orga	anics Ext	raction: E	PA 5030C					
Analyte	Result	Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Acetone	<10	IJ,ICH,U	10	10	20	1	02/01/13 00:00	02/01/13 20:00	130201L01
Benzene	< 0.50	U	0.14	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
Bromodichloromethane	< 0.50	U	0.21	0.50	5.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
Bromoform	<2.0	U	0.50	2.0	10	1	02/01/13 00:00	02/01/13 20:00	130201L01
Bromomethane	<5.0	U	3.9	5.0	20	1	02/01/13 00:00	02/01/13 20:00	130201L01
2-Butanone	<5.0	U	2.2	5.0	10	1	02/01/13 00:00	02/01/13 20:00	130201L01
Carbon Tetrachloride	< 0.50	U	0.23	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
Chlorobenzene	< 0.50	U	0.17	0.50	5.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
Chloroethane	<5.0	U	2.3	5.0	10	1	02/01/13 00:00	02/01/13 20:00	130201L01
Chloroform	< 0.50	U	0.46	0.50	5.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
Chloromethane	<2.0	U	1.8	2.0	10	1	02/01/13 00:00	02/01/13 20:00	130201L01
Dibromochloromethane	< 0.50	U	0.25	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
1,2-Dibromo-3-Chloropropane	<2.0	U	1.2	2.0	10	1	02/01/13 00:00	02/01/13 20:00	130201L01
1,2-Dibromoethane	< 0.50	U	0.36	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
1,2-Dichlorobenzene	< 0.50	U	0.46	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
1,3-Dichlorobenzene	< 0.50	U	0.40	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
1,4-Dichlorobenzene	< 0.50	U	0.43	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
1,1-Dichloroethane	< 0.50	U	0.28	0.50	5.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
1,2-Dichloroethane	< 0.50	U	0.24	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
1,1-Dichloroethene	< 0.50	U	0.43	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
c-1,2-Dichloroethene	< 0.50	U	0.48	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
t-1,2-Dichloroethene	< 0.50	U	0.37	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
1,2-Dichloropropane	< 0.50	U	0.42	0.50	5.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
c-1,3-Dichloropropene	< 0.50	U	0.25	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
t-1,3-Dichloropropene	< 0.50	U	0.25	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
Ethylbenzene	< 0.50	U	0.14	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
Methylene Chloride	<2.0	U	0.64	2.0	5.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
4-Methyl-2-Pentanone	<5.0	U	4.4	5.0	10	1	02/01/13 00:00	02/01/13 20:00	130201L01
Styrene	< 0.50	U	0.17	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
1,1,1,2-Tetrachloroethane	< 0.50	U	0.40	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
1,1,2,2-Tetrachloroethane	< 0.50	U	0.41	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
Tetrachloroethene	< 0.50	U	0.39	0.50	5.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
Toluene	<0.50	U	0.24	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
1,2,4-Trichlorobenzene	<0.50	U	0.50	0.50	5.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
1,1,1-Trichloroethane	<0.50	U	0.30	0.50	5.0	1	02/01/13 00:00	02/01/13 20:00	130201L01
Hexachloro-1,3-Butadiene	<0.50	U	0.32	0.50	1.0	1		02/01/13 20:00	
1,1,2-Trichloroethane	<0.50	U	0.38	0.50	1.0	1		02/01/13 20:00	
Trichloroethene	<0.50	U	0.37	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: Project Name: 13-02-0014

Red Hill LTM 112066

Received: 02/01/13 10:45

13-02-0014-4 Client ID: ESTrip		STrip			Matrix: Aqueous		Units: ug/L	Sampled: 01/30/13 07:0		
GC/MS GRO/EPA 82	260B Volatile C	Organics	Extraction:	EPA 5030C						
Analyte	Resul	t Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
1,2,3-Trichloropropane	<2.0	U	0.64	2.0	5.0	1	02/01/13 00:00	02/01/13 20:00	130201L01	
Vinyl Chloride	<0.50	U	0.30	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01	
p/m-Xylene	<1.0	U	0.30	1.0	10	1	02/01/13 00:00	02/01/13 20:00	130201L01	
o-Xylene	< 0.50	U	0.23	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01	
Methyl-t-Butyl Ether (MTBE	< 0.50	U	0.31	0.50	1.0	1	02/01/13 00:00	02/01/13 20:00	130201L01	
Gasoline Range Organics	14	J	13	30	50	1	02/01/13 00:00	02/01/13 20:00	130201L01	
Surr: Dibromofluoromethar	ne (80-126%)	104%					02/01/13 00:00	02/01/13 20:00	130201L01	
Surr: 1,2-Dichloroethane-d	4 (80-134%)	104%					02/01/13 00:00	02/01/13 20:00	130201L01	
Surr: Toluene-d8 (80-120%	6)	100%					02/01/13 00:00	02/01/13 20:00	130201L01	
Surr: Toluene-d8-TPPH (8	8-112%)	101%					02/01/13 00:00	02/01/13 20:00	130201L01	
Surr: 1,4-Bromofluorobenz	ene (80-120%)	94%					02/01/13 00:00	02/01/13 20:00	130201L01	

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 099-13-057

Project Name:

Red Hill LTM 112066

Received: 02/01/13 10:45

099-13-057-5 Client ID: Method Bla			<	Matrix:	Aqueous	Units: ug/L	Sampled: 02	2/04/13 11:36
GC/MS GRO/EPA 8260B Vo	latile Org	anics E	Extraction: EPA 503	0C				
Analyte	Result	Qual.	DL LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
Acetone	<10	U	10 10	20	1	02/04/13 00:00	02/04/13 13:42	130204L01
Benzene	< 0.50	U	0.14 0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
Bromodichloromethane	<0.50	U	0.21 0.50	5.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
Bromoform	<2.0	U	0.50 2.0	10	1	02/04/13 00:00	02/04/13 13:42	130204L01
Bromomethane	<5.0	U	3.9 5.0	20	1	02/04/13 00:00	02/04/13 13:42	130204L01
2-Butanone	<5.0	U	2.2 5.0	10	1	02/04/13 00:00	02/04/13 13:42	130204L01
Carbon Tetrachloride	< 0.50	U	0.23 0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
Chlorobenzene	< 0.50	U	0.17 0.50	5.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
Chloroethane	<5.0	U	2.3 5.0	10	1	02/04/13 00:00	02/04/13 13:42	130204L01
Chloroform	<0.50	U	0.46 0.50	5.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
Chloromethane	<2.0	U	1.8 2.0	10	1	02/04/13 00:00	02/04/13 13:42	130204L01
Dibromochloromethane	<0.50	U	0.25 0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
1,2-Dibromo-3-Chloropropane	<2.0	U	1.2 2.0	10	1	02/04/13 00:00	02/04/13 13:42	130204L01
1,2-Dibromoethane	<0.50	U	0.36 0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
1,2-Dichlorobenzene	<0.50	U	0.46 0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
1,3-Dichlorobenzene	< 0.50	U	0.40 0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
1,4-Dichlorobenzene	< 0.50	U	0.43 0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
1,1-Dichloroethane	< 0.50	U	0.28 0.50	5.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
1,2-Dichloroethane	< 0.50	U	0.24 0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
1,1-Dichloroethene	<0.50	U	0.43 0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
c-1,2-Dichloroethene	< 0.50	U	0.48 0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
t-1,2-Dichloroethene	< 0.50	U	0.37 0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
1,2-Dichloropropane	< 0.50	U	0.42 0.50	5.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
c-1,3-Dichloropropene	< 0.50	U	0.25 0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
t-1,3-Dichloropropene	< 0.50	U	0.25 0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
Ethylbenzene	< 0.50	U	0.14 0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
Methylene Chloride	<2.0	U	0.64 2.0	5.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
4-Methyl-2-Pentanone	<5.0	U	4.4 5.0	10	1	02/04/13 00:00	02/04/13 13:42	130204L01
Styrene	< 0.50	U	0.17 0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
1,1,1,2-Tetrachloroethane	< 0.50	U	0.40 0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
1,1,2,2-Tetrachloroethane	< 0.50	U	0.41 0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
Tetrachloroethene	< 0.50	U	0.39 0.50	5.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
Toluene	<0.50	U	0.24 0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
1,2,4-Trichlorobenzene	< 0.50	U	0.50 0.50	5.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
1,1,1-Trichloroethane	<0.50	U	0.30 0.50	5.0	1		02/04/13 13:42	
Hexachloro-1,3-Butadiene	<0.50	U	0.32 0.50	1.0	1		02/04/13 13:42	
1,1,2-Trichloroethane	<0.50	U	0.38 0.50	1.0	1		02/04/13 13:42	
Trichloroethene	<0.50	U	0.37 0.50	1.0	1		02/04/13 13:42	

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

Robert Chong

Attn:

Work Order: Project Name: 099-13-057

Red Hill LTM 112066

Received: 02/01/13 10:45

099-13-057-5 Client ID: Method Blank					Matrix: Aqueous		Units: ug/L	Sampled: 02/04/13 11:36	
GC/MS GRO/EPA 8260B Volatile Organics Extraction: EPA 5030C									
Analyte	Resul	t Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
1,2,3-Trichloropropane	<2.0	U	0.64	2.0	5.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
Vinyl Chloride	<0.50	U	0.30	0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
p/m-Xylene	<1.0	U	0.30	1.0	10	1	02/04/13 00:00	02/04/13 13:42	130204L01
o-Xylene	<0.50	U	0.23	0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
Methyl-t-Butyl Ether (MTBE) <0.50	U	0.31	0.50	1.0	1	02/04/13 00:00	02/04/13 13:42	130204L01
Gasoline Range Organics	<30	U	13	30	50	1	02/04/13 00:00	02/04/13 13:42	130204L01
Surr: Dibromofluoromethane (80-126%) 93%							02/04/13 00:00	02/04/13 13:42	130204L01
Surr: 1,2-Dichloroethane-d4 (80-134%)		92%					02/04/13 00:00	02/04/13 13:42	130204L01
Surr: Toluene-d8 (80-120%)		99%					02/04/13 00:00	02/04/13 13:42	130204L01
Surr: Toluene-d8-TPPH (88-112%)		100%					02/04/13 00:00	02/04/13 13:42	130204L01
Surr: 1,4-Bromofluorobenzene (80-120%)		97%					02/04/13 00:00	02/04/13 13:42	130204L01

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

The difference is service

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Attn: Robert Chong

Work Order: 099-13-057

Project Name:

Red Hill LTM 112066

Received: 02/01/13 10:45

ANALYTICAL REPORT

099-13-057-6 Clier	nt ID: Meth	nod Blar	nk	Matrix:	Aqueous	Units: ug/L	Sampled: 02	2/04/13 17	:49
GC/MS GRO/EPA 8260B	Volatile Org	anics	Extraction: EPA 5030	С					
Analyte	Result	Qual.	DL LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch	
Acetone	<10	U	10 10	20	1	02/01/13 00:00	02/01/13 13:49	130201L01	
Benzene	< 0.50	U	0.14 0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
Bromodichloromethane	< 0.50	U	0.21 0.50	5.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
Bromoform	<2.0	U	0.50 2.0	10	1	02/01/13 00:00	02/01/13 13:49	130201L01	
Bromomethane	<5.0	U	3.9 5.0	20	1	02/01/13 00:00	02/01/13 13:49	130201L01	
2-Butanone	<5.0	U	2.2 5.0	10	1	02/01/13 00:00	02/01/13 13:49	130201L01	
Carbon Tetrachloride	< 0.50	U	0.23 0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
Chlorobenzene	< 0.50	U	0.17 0.50	5.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
Chloroethane	<5.0	U	2.3 5.0	10	1	02/01/13 00:00	02/01/13 13:49	130201L01	
Chloroform	< 0.50	U	0.46 0.50	5.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
Chloromethane	<2.0	U	1.8 2.0	10	1	02/01/13 00:00	02/01/13 13:49	130201L01	
Dibromochloromethane	< 0.50	U	0.25 0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
1,2-Dibromo-3-Chloropropane	<2.0	U	1.2 2.0	10	1	02/01/13 00:00	02/01/13 13:49	130201L01	
1,2-Dibromoethane	< 0.50	U	0.36 0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
1,2-Dichlorobenzene	< 0.50	U	0.46 0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
1,3-Dichlorobenzene	< 0.50	U	0.40 0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
1,4-Dichlorobenzene	< 0.50	U	0.43 0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
1,1-Dichloroethane	< 0.50	U	0.28 0.50	5.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
1,2-Dichloroethane	< 0.50	U	0.24 0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
1,1-Dichloroethene	< 0.50	U	0.43 0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
c-1,2-Dichloroethene	< 0.50	U	0.48 0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
t-1,2-Dichloroethene	< 0.50	U	0.37 0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
1,2-Dichloropropane	< 0.50	U	0.42 0.50	5.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
c-1,3-Dichloropropene	< 0.50	U	0.25 0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
t-1,3-Dichloropropene	< 0.50	U	0.25 0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
Ethylbenzene	< 0.50	U	0.14 0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
Methylene Chloride	<2.0	U	0.64 2.0	5.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
4-Methyl-2-Pentanone	<5.0	U	4.4 5.0	10	1	02/01/13 00:00	02/01/13 13:49	130201L01	
Styrene	< 0.50	U	0.17 0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
1,1,1,2-Tetrachloroethane	< 0.50	U	0.40 0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
1,1,2,2-Tetrachloroethane	< 0.50	U	0.41 0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
Tetrachloroethene	< 0.50	U	0.39 0.50	5.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
Toluene	< 0.50	U	0.24 0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
1,2,4-Trichlorobenzene	<0.50	U	0.50 0.50	5.0	1		02/01/13 13:49		
1,1,1-Trichloroethane	<0.50	U	0.30 0.50	5.0	1	02/01/13 00:00	02/01/13 13:49	130201L01	
Hexachloro-1,3-Butadiene	<0.50	U	0.32 0.50	1.0	1		02/01/13 13:49		
1,1,2-Trichloroethane	<0.50	U	0.38 0.50	1.0	1		02/01/13 13:49		
Trichloroethene	<0.50	U	0.37 0.50	1.0	1		02/01/13 13:49		
				-			- · · ·		

Contents

The difference is service

Client: Environmental Science International, Inc.

354 Uluniu Street, Suite 304

Kailua, HI 96734-2500

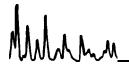
Attn: Robert Chong

Work Order: 099-13-057

Project Name:

Red Hill LTM 112066

Received:


02/01/13 10:45

ANALYTICAL REPORT

099-13-057-6	Client ID: Me	ethod Blar	nk		Matrix: A	Aqueous (Units: ug/L	Sampled: 02	2/04/13 17:49
GC/MS GRO/EPA 820	60B Volatile O	rganics	Extraction:	EPA 5030C					
Analyte	Resul	t Qual.	DL	LOD	LOQ	Dilution Factor	Preparation Date/Time	Analysis Date/Time	Batch
1,2,3-Trichloropropane	<2.0	U	0.64	2.0	5.0	1	02/01/13 00:00	02/01/13 13:49	130201L01
Vinyl Chloride	<0.50	U	0.30	0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01
p/m-Xylene	<1.0	U	0.30	1.0	10	1	02/01/13 00:00	02/01/13 13:49	130201L01
o-Xylene	<0.50	U	0.23	0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01
Methyl-t-Butyl Ether (MTBE)	(0.50	U	0.31	0.50	1.0	1	02/01/13 00:00	02/01/13 13:49	130201L01
Gasoline Range Organics	<30	U	13	30	50	1	02/01/13 00:00	02/01/13 13:49	130201L01
Surr: Dibromofluoromethan	e (80-126%)	94%					02/01/13 00:00	02/01/13 13:49	130201L01
Surr: 1,2-Dichloroethane-d4	<i>1 (80-134%)</i>	94%					02/01/13 00:00	02/01/13 13:49	130201L01
Surr: Toluene-d8 (80-120%))	98%					02/01/13 00:00	02/01/13 13:49	130201L01
Surr: Toluene-d8-TPPH (88	3-112%)	100%					02/01/13 00:00	02/01/13 13:49	130201L01
Surr: 1,4-Bromofluorobenze	ene (80-120%)	94%					02/01/13 00:00	02/01/13 13:49	130201L01

⁻Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method: 02/01/13 13-02-0014 EPA 3020A Total EPA 6020

Quality Control Sample ID			Matrix	li	nstrument		Date epared	Date Analyzed		/ISD Batch lumber
ES016			Aqueou	ıs lo	CP/MS 03	02/	01/13	02/04/13	1302	201S02D
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Lead	ND	100.0	107.8	108	106.5	106	80-120	1	0-20	

Quality Control - PDS / PDSD

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received Work Order No: Preparation: Method: 02/01/13 13-02-0014 EPA 3020A Total EPA 6020

Quality Control Sample ID		Matrix	Instrument		Date epared	Date Analyzed	PDS / PDSD Batch Number
ES016		Aqueous	ICP/MS 03	02/	01/13	02/04/13	130201S02D
<u>Parameter</u>	SAMPLE CONC	SPIKE PDS CONC ADDED	PDS %REC	PDSD CONC	PDSD %REC	%REC RP CL	D RPD CL Qualifiers
Lead	ND	100.0 107.9	108	109.5	109	75-125 1	0-20

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method: 02/01/13 13-02-0014 EPA 3510C EPA 8015B (M)

Quality Control Sample ID			Matrix	li	nstrument		Date epared	Date Analyzed		/ISD Batch lumber
ES016			Aqueou	ıs G	iC 45	02/	04/13	02/05/13	130)204S14
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Diesel	1036	4000	4602	89	4715	92	55-133	2	0-30	

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method:

EPA 8270C SIM PAHs

Quality Control Sample ID			Matrix		Instrument		Pate pared	Date Analyzed		ISD Batch umber
ES016			Aqueou	ıs	GC/MS AAA	01/0	01/95	02/05/13	130	204S11
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Naphthalene	ND	2.000	1.958	98	2.014	101	21-133	3	0-25	
2-Methylnaphthalene	ND	2.000	2.172	109	2.240	112	21-140	3	0-25	
1-Methylnaphthalene	ND	2.000	2.139	107	2.199	110	20-140	3	0-25	
Acenaphthylene	ND	2.000	1.987	99	2.020	101	33-145	2	0-25	
Acenaphthene	ND	2.000	1.936	97	2.026	101	49-121	5	0-25	
Fluorene	ND	2.000	2.121	106	2.159	108	59-121	2	0-25	
Phenanthrene	ND	2.000	2.090	104	2.134	107	54-120	2	0-25	
Anthracene	ND	2.000	1.925	96	1.975	99	27-133	3	0-25	
Fluoranthene	ND	2.000	2.088	104	2.133	107	26-137	2	0-25	
Pyrene	ND	2.000	2.398	120	2.419	121	18-168	1	0-25	
Benzo (a) Anthracene	ND	2.000	2.603	130	2.639	132	33-143	1	0-25	
Chrysene	ND	2.000	2.243	112	2.312	116	17-168	3	0-25	
Benzo (k) Fluoranthene	ND	2.000	2.537	127	2.577	129	24-159	2	0-25	
Benzo (b) Fluoranthene	ND	2.000	2.539	127	2.594	130	24-159	2	0-25	
Benzo (a) Pyrene	ND	2.000	2.372	119	2.413	121	17-163	2	0-25	
Indeno (1,2,3-c,d) Pyrene	ND	2.000	2.289	114	2.344	117	10-171	2	0-25	
Dibenz (a,h) Anthracene	ND	2.000	2.284	114	2.297	115	10-219	1	0-25	
Benzo (g,h,i) Perylene	ND	2.000	2.230	111	2.255	113	10-227	1	0-25	

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method: 02/01/13 13-02-0014 EPA 5030C EPA 8260B

Project Red Hill LTM 112066

Quality Control Sample ID			Matrix		Instrument		Date epared	Date Analyzed		/ISD Batch lumber
13-01-1812-1			Aqueou	ıs	GC/MS OO	02/	01/13	02/01/13	130)201S01
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Acetone	ND	50.00	37.82	76	49.25	98	40-140	26	0-20	4
Benzene	ND	50.00	44.02	88	49.35	99	80-120	11	0-20	
Bromodichloromethane	ND	50.00	45.98	92	52.26	105	75-120	13	0-20	
Bromoform	ND	50.00	47.63	95	56.04	112	70-130	16	0-20	
Bromomethane	ND	50.00	43.28	87	43.96	88	30-145	2	0-20	
2-Butanone	ND	50.00	43.99	88	49.70	99	30-150	12	0-20	
Carbon Tetrachloride	ND	50.00	43.17	86	47.14	94	65-140	9	0-20	
Chlorobenzene	ND	50.00	44.98	90	51.01	102	80-120	13	0-20	
Chloroethane	ND	50.00	46.57	93	49.31	99	60-135	6	0-20	
Chloroform	ND	50.00	44.94	90	49.80	100	65-135	10	0-20	
Chloromethane	ND	50.00	33.74	67	39.58	79	40-125	16	0-20	
Dibromochloromethane	ND	50.00	45.43	91	52.51	105	60-135	14	0-20	
1,2-Dibromo-3-Chloropropane	ND	50.00	39.96	80	51.15	102	50-130	25	0-20	4
1,2-Dibromoethane	ND	50.00	47.17	94	54.84	110	80-120	15	0-20	
1,2-Dichlorobenzene	ND	50.00	46.43	93	53.65	107	70-120	14	0-20	
1,3-Dichlorobenzene	ND	50.00	46.25	93	52.55	105	75-125	13	0-20	
1,4-Dichlorobenzene	ND	50.00	45.66	91	52.28	105	75-125	14	0-20	
1,1-Dichloroethane	ND	50.00	43.08	86	47.35	95	70-135	9	0-20	
1,2-Dichloroethane	ND	50.00	43.58	87	49.85	100	70-130	13	0-20	
1,1-Dichloroethene	ND	50.00	37.37	75	40.41	81	70-130	8	0-20	
c-1,2-Dichloroethene	ND	50.00	46.73	93	51.33	103	70-125	9	0-20	
t-1,2-Dichloroethene	ND	50.00	45.05	90	50.02	100	60-140	10	0-20	
1,2-Dichloropropane	ND	50.00	45.58	91	52.86	106	75-125	15	0-20	
c-1,3-Dichloropropene	ND	50.00	47.71	95	54.81	110	70-130	14	0-20	
t-1,3-Dichloropropene	ND	50.00	42.27	85	49.27	99	55-140	15	0-20	
Ethylbenzene	ND	50.00	47.32	95	53.19	106	75-125	12	0-20	
Methylene Chloride	ND	50.00	43.63	87	49.00	98	55-140	12	0-20	
4-Methyl-2-Pentanone	ND	50.00	45.41	91	55.10	110	60-135	19	0-20	
Styrene	ND	50.00	47.47	95	55.44	111	65-135	15	0-20	
1,1,1,2-Tetrachloroethane	ND	50.00	46.26	93	52.75	106	80-130	13	0-20	
1,1,2,2-Tetrachloroethane	ND	50.00	44.83	90	53.54	107	65-130	18	0-20	

RPD - Relative Percent Difference,

CL - Control Limit

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method: 02/01/13 13-02-0014 EPA 5030C EPA 8260B

Project Red Hill LTM 112066

Quality Control Sample ID		Matrix Instrun		Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number		
13-01-1812-1			Aqueous G		GC/MS OO	02/	01/13	13 02/01/13		201S01
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Tetrachloroethene	ND	50.00	39.09	78	43.09	86	45-150	10	0-20	
Toluene	ND	50.00	46.42	93	51.87	104	75-120	11	0-20	
1,2,4-Trichlorobenzene	ND	50.00	46.61	93	54.94	110	65-135	16	0-20	
1,1,1-Trichloroethane	ND	50.00	44.80	90	49.56	99	65-130	10	0-20	
Hexachloro-1,3-Butadiene	ND	50.00	43.76	88	49.93	100	50-140	13	0-20	
1,1,2-Trichloroethane	ND	50.00	45.13	90	52.35	105	75-125	15	0-20	
Trichloroethene	ND	50.00	43.81	88	49.50	99	70-125	12	0-20	
1,2,3-Trichloropropane	ND	50.00	44.28	89	52.27	105	75-125	17	0-20	
Vinyl Chloride	ND	50.00	38.90	78	43.51	87	50-145	11	0-20	
p/m-Xylene	ND	100.0	94.57	95	107.4	107	75-130	13	0-20	
o-Xylene	ND	50.00	49.90	100	56.10	112	80-120	12	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	46.93	94	54.53	109	65-125	15	0-20	

eturn to Contents

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: 02/01/13
Work Order No: 13-02-0014
Preparation: EPA 5030C
Method: GC/MS / EPA 8260B

Project Red Hill LTM 112066

Quality Control Sample ID			Matrix	1	nstrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
ES016			Aqueou	ıs C	SC/MS OO	02/	04/13	02/04/13	130	204S01
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Acetone	ND	50.00	95.75	192	98.45	197	40-140	3	0-20	3
Benzene	ND	50.00	51.57	103	47.73	95	80-120	8	0-20	
Bromodichloromethane	ND	50.00	52.75	106	49.20	98	75-120	7	0-20	
Bromoform	ND	50.00	56.99	114	53.76	108	70-130	6	0-20	
Bromomethane	ND	50.00	56.01	112	46.32	93	30-145	19	0-20	
2-Butanone	ND	50.00	60.34	121	54.65	109	30-150	10	0-20	
Carbon Tetrachloride	ND	50.00	52.07	104	48.02	96	65-140	8	0-20	
Chlorobenzene	ND	50.00	53.31	107	48.79	98	80-120	9	0-20	
Chloroethane	ND	50.00	54.22	108	49.81	100	60-135	8	0-20	
Chloroform	ND	50.00	51.47	103	47.54	95	65-135	8	0-20	
Chloromethane	ND	50.00	43.76	88	41.36	83	40-125	6	0-20	
Dibromochloromethane	ND	50.00	53.64	107	49.14	98	60-135	9	0-20	
1,2-Dibromo-3-Chloropropane	ND	50.00	51.73	103	45.08	90	50-130	14	0-20	
1,2-Dibromoethane	ND	50.00	55.57	111	50.49	101	80-120	10	0-20	
1,2-Dichlorobenzene	ND	50.00	55.01	110	50.41	101	70-120	9	0-20	
1,3-Dichlorobenzene	ND	50.00	54.25	108	50.21	100	75-125	8	0-20	
1,4-Dichlorobenzene	ND	50.00	53.73	107	49.39	99	75-125	8	0-20	
1,1-Dichloroethane	ND	50.00	48.94	98	45.78	92	70-135	7	0-20	
1,2-Dichloroethane	ND	50.00	50.20	100	46.95	94	70-130	7	0-20	
1,1-Dichloroethene	ND	50.00	43.82	88	41.04	82	70-130	7	0-20	
c-1,2-Dichloroethene	ND	50.00	52.24	104	49.27	99	70-125	6	0-20	
t-1,2-Dichloroethene	ND	50.00	52.27	105	48.70	97	60-140	7	0-20	
1,2-Dichloropropane	ND	50.00	53.02	106	48.59	97	75-125	9	0-20	
c-1,3-Dichloropropene	ND	50.00	55.94	112	51.60	103	70-130	8	0-20	
t-1,3-Dichloropropene	ND	50.00	49.89	100	45.96	92	55-140	8	0-20	
Ethylbenzene	ND	50.00	56.70	113	52.02	104	75-125	9	0-20	
Methylene Chloride	ND	50.00	49.24	98	45.39	91	55-140	8	0-20	
4-Methyl-2-Pentanone	ND	50.00	53.53	107	52.09	104	60-135	3	0-20	
Styrene	ND	50.00	58.53	117	52.87	106	65-135	10	0-20	
1,1,1,2-Tetrachloroethane	ND	50.00	55.57	111	50.01	100	80-130	11	0-20	
1,1,2,2-Tetrachloroethane	ND	50.00	6.699	13	4.454	9	65-130	40	0-20	3,4

CL - Control Limit

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method:

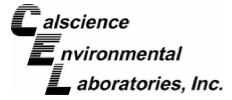
Method: GC/MS / EPA 8260B

Quality Control Sample ID			Matrix		Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
ES016			Aqueou	ıs	GC/MS OO	02/	04/13	02/04/13	130	204S01
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Tetrachloroethene	ND	50.00	81.63	163	75.10	150	45-150	8	0-20	3
Toluene	ND	50.00	53.83	108	49.91	100	75-120	8	0-20	
1,2,4-Trichlorobenzene	ND	50.00	57.83	116	50.54	101	65-135	13	0-20	
1,1,1-Trichloroethane	ND	50.00	52.92	106	49.36	99	65-130	7	0-20	
Hexachloro-1,3-Butadiene	ND	50.00	55.51	111	49.05	98	50-140	12	0-20	
1,1,2-Trichloroethane	ND	50.00	52.58	105	47.85	96	75-125	9	0-20	
Trichloroethene	ND	50.00	89.55	179	84.22	168	70-125	6	0-20	3
1,2,3-Trichloropropane	ND	50.00	53.47	107	47.43	95	75-125	12	0-20	
Vinyl Chloride	ND	50.00	48.47	97	44.64	89	50-145	8	0-20	
p/m-Xylene	ND	100.0	113.5	113	104.1	104	75-130	9	0-20	
o-Xylene	ND	50.00	58.92	118	53.54	107	80-120	10	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	53.56	107	49.79	100	65-125	7	0-20	

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

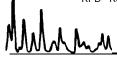
Date Received: Work Order No: Preparation: Method: N/A 13-02-0014 EPA 3020A Total EPA 6020

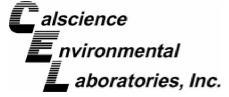
Quality Control Sample ID	Matrix	lr	nstrument		ate pared	Date Analyzed	i	LCS/LCSD Batch Number	
099-14-497-15	Aqueous	IC	P/MS 03	02/0	01/13	02/04/13		130201L02D	
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Lead	100.0	98.36	98	99.38	99	80-120	1	0-20	


Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method: N/A 13-02-0014 EPA 3510C EPA 8015B (M)

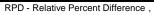
Quality Control Sample ID	Matrix		Instrument		ate pared	Date Analyzed	i	LCS/LCSD Batch Number	
099-15-516-26	Aqueous		GC 45	02/	04/13	02/05/13		130204B14	
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Diesel	4000	4209	105	4206	105	60-132	0	0-11	




Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method: N/A 13-02-0014 EPA 3510C EPA 8270C SIM PAHs

Quality Control Sample ID	Matrix	lr	nstrument		ate pared	Date Analyzed	l	LCS/LCSD Batch Number	
099-15-148-8	Aqueous	GC	/MS AAA	02/0	04/13	02/05/13		130204L11	
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Naphthalene	2.000	1.964	98	1.974	99	21-133	1	0-25	
2-Methylnaphthalene	2.000	2.176	109	2.150	107	21-140	1	0-25	
1-Methylnaphthalene	2.000	2.150	108	2.142	107	20-140	0	0-25	
Acenaphthylene	2.000	2.001	100	2.025	101	33-145 1		0-25	
Acenaphthene	2.000	1.940	97	1.975	99	55-121 2		0-25	
Fluorene	2.000	2.128	106	2.147	107	59-121	1	0-25	
Phenanthrene	2.000	2.162	108	2.175	109	54-120	1	0-25	
Anthracene	2.000	1.930	97	1.935	97	27-133	0	0-25	
Fluoranthene	2.000	2.169	108	2.159	108	26-137	0	0-25	
Pyrene	2.000	2.486	124	2.453	123	45-129	1	0-25	
Benzo (a) Anthracene	2.000	2.639	132	2.625	131	33-143	1	0-25	
Chrysene	2.000	2.337	117	2.329	116	17-168	0	0-25	
Benzo (k) Fluoranthene	2.000	2.627	131	2.647	132	24-159	1	0-25	
Benzo (b) Fluoranthene	2.000	2.670	133	2.597	130	24-159	3	0-25	
Benzo (a) Pyrene	2.000	2.435	122	2.415	121	17-163	1	0-25	
Indeno (1,2,3-c,d) Pyrene	2.000	2.330	116	2.338	117	25-175	0	0-25	
Dibenz (a,h) Anthracene	2.000	2.243	112	2.289	114	25-175	2	0-25	
Benzo (g,h,i) Perylene	2.000	2.267	113	2.266	113	25-157	0	0-25	



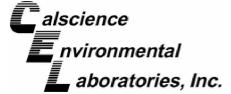
Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method: N/A 13-02-0014 EPA 5030C GC/MS / EPA 8260B

Quality Control Sample ID	Matrix	lr	nstrument		ate pared	Date Analyze	d	LCS/LCSD Batch Number	
099-13-057-6	Aqueous	G	C/MS OO	02/	01/13	02/01/13		130201L01	
<u>Parameter</u>	<u>SPIKE</u> ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Acetone	50.00	63.88	128	57.49	115	40-140	11	0-20	
Benzene	50.00	50.29	101	44.85	90	80-120	11	0-20	
Bromodichloromethane	50.00	54.16	108	47.74	95	75-120	13	0-20	
Bromoform	50.00	59.12	118	52.80	106	70-130	11	0-20	
Bromomethane	50.00	46.92	94	41.36	83	30-145	13	0-20	
2-Butanone	50.00	58.36	117	50.94	102	30-150	14	0-20	
Carbon Tetrachloride	50.00	51.26	103	46.17	92	65-140	10	0-20	
Chlorobenzene	50.00	52.42	105	47.01	94	80-120	11	0-20	
Chloroethane	50.00	52.91	106	47.84	96	60-135	10	0-20	
Chloroform	50.00	51.26	103	46.53	93	65-135	10	0-20	
Chloromethane	50.00	43.72	87	39.59	79	40-125	10	0-20	
Dibromochloromethane	50.00	54.85	110	49.59	99	60-135	10	0-20	
1,2-Dibromo-3-Chloropropane	50.00	52.98	106	50.46	101	50-130	5	0-20	
1,2-Dibromoethane	50.00	55.29	111	51.42	103	80-120	7	0-20	
1,2-Dichlorobenzene	50.00	55.07	110	48.78	98	70-120	12	0-20	
1,3-Dichlorobenzene	50.00	55.22	110	48.14	96	75-125	14	0-20	
1,4-Dichlorobenzene	50.00	53.38	107	47.98	96	75-125	11	0-20	
1,1-Dichloroethane	50.00	49.91	100	45.37	91	70-135	10	0-20	
1,2-Dichloroethane	50.00	50.66	101	45.12	90	70-130	12	0-20	
1,1-Dichloroethene	50.00	44.22	88	39.05	78	70-130	12	0-20	
c-1,2-Dichloroethene	50.00	53.00	106	48.01	96	70-125	10	0-20	
t-1,2-Dichloroethene	50.00	52.01	104	47.33	95	60-140	9	0-20	
1,2-Dichloropropane	50.00	52.76	106	47.46	95	75-125	11	0-20	
c-1,3-Dichloropropene	50.00	56.26	113	50.92	102	70-130	10	0-20	
t-1,3-Dichloropropene	50.00	51.40	103	46.56	93	55-140	10	0-20	
Ethylbenzene	50.00	55.68	111	49.97	100	75-125	11	0-20	
Methylene Chloride	50.00	50.22	100	45.73	91	55-140	9	0-20	
4-Methyl-2-Pentanone	50.00	54.02	108	53.18	106	60-135	2	0-20	
Styrene	50.00	57.70	115	51.37	103	65-135	12	0-20	
1,1,2-Tetrachloroethane	50.00	54.96	110	48.81	98	80-130	12	0-20	
1,1,2,2-Tetrachloroethane	50.00	53.84	108	48.76	98	65-130	10	0-20	

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method: N/A 13-02-0014 EPA 5030C GC/MS / EPA 8260B


Project: Red Hill LTM 112066

Quality Control Sample ID	Matrix	Instrument			ate pared	Date Analyzed	t	LCS/LCSD Batch Number	
099-13-057-6	Aqueous	G	GC/MS OO		01/13	02/01/13		130201L01	
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Tetrachloroethene	50.00	49.02	98	42.19	84	45-150	15	0-20	
Toluene	50.00	53.16	106	47.42	95	75-120	11	0-20	
1,2,4-Trichlorobenzene	50.00	57.56	115	52.08	104	65-135	10	0-20	
1,1,1-Trichloroethane	50.00	52.63	105	46.97	94	65-130	11	0-20	
Hexachloro-1,3-Butadiene	50.00	54.99	110	48.08	96	50-140	13	0-20	
1,1,2-Trichloroethane	50.00	53.21	106	48.60	97	75-125	9	0-20	
Trichloroethene	50.00	51.83	104	45.11	90	70-125	14	0-20	
1,2,3-Trichloropropane	50.00	52.77	106	49.16	98	75-125	7	0-20	
Vinyl Chloride	50.00	46.51	93	42.00	84	50-145	10	0-20	
p/m-Xylene	100.0	112.3	112	100.4	100	75-130	11	0-20	
o-Xylene	50.00	57.68	115	52.20	104	80-120	10	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	54.47	109	50.84	102	65-125	7	0-20	
Gasoline Range Organics	1000	1007	101	1062	106	80-120	5	0-20	

FAX: (714) 894-7501

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500


Date Received: Work Order No: Preparation: Method: N/A 13-02-0014 EPA 5030C GC/MS / EPA 8260B

Quality Control Sample ID	Matrix	In	strument	Date Prepared		Date Analyzed	l	LCS/LCSD Batch Number	
099-13-057-5	Aqueous	G	C/MS OO	02/0	04/13	02/04/13		130204L01	
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Acetone	50.00	67.27	135	57.57	115	40-140	16	0-20	
Benzene	50.00	45.55	91	46.28	93	80-120	2	0-20	
Bromodichloromethane	50.00	49.55	99	49.67	99	75-120	0	0-20	
Bromoform	50.00	55.22	110	55.34	111	70-130	0	0-20	
Bromomethane	50.00	43.27	87	43.20	86	30-145	0	0-20	
2-Butanone	50.00	49.03	98	50.67	101	30-150	3	0-20	
Carbon Tetrachloride	50.00	47.77	96	48.10	96	65-140	1	0-20	
Chlorobenzene	50.00	47.25	94	48.15	96	80-120	2	0-20	
Chloroethane	50.00	48.74	97	49.19	98	60-135	1	0-20	
Chloroform	50.00	46.70	93	47.15	94	65-135	1	0-20	
Chloromethane	50.00	41.43	83	41.22	82	40-125	1	0-20	
Dibromochloromethane	50.00	49.80	100	51.14	102	60-135	3	0-20	
1,2-Dibromo-3-Chloropropane	50.00	49.18	98	52.32	105	50-130	6	0-20	
1,2-Dibromoethane	50.00	49.44	99	50.84	102	80-120	3	0-20	
1,2-Dichlorobenzene	50.00	48.69	97	49.77	100	70-120	2	0-20	
1,3-Dichlorobenzene	50.00	48.80	98	49.96	100	75-125	2	0-20	
1,4-Dichlorobenzene	50.00	48.34	97	49.24	98	75-125	2	0-20	
1,1-Dichloroethane	50.00	45.23	90	45.92	92	70-135	2	0-20	
1,2-Dichloroethane	50.00	45.76	92	46.13	92	70-130	1	0-20	
1,1-Dichloroethene	50.00	39.52	79	40.08	80	70-130	1	0-20	
c-1,2-Dichloroethene	50.00	47.45	95	48.42	97	70-125	2	0-20	
t-1,2-Dichloroethene	50.00	47.22	94	47.53	95	60-140	1	0-20	
1,2-Dichloropropane	50.00	48.31	97	49.14	98	75-125	2	0-20	
c-1,3-Dichloropropene	50.00	52.65	105	53.06	106	70-130	1	0-20	
t-1,3-Dichloropropene	50.00	45.61	91	46.99	94	55-140	3	0-20	
Ethylbenzene	50.00	49.76	100	50.64	101	75-125	2	0-20	
Methylene Chloride	50.00	44.15	88	45.23	90	55-140	2	0-20	
4-Methyl-2-Pentanone	50.00	48.24	96	49.97	100	60-135	4	0-20	
Styrene	50.00	51.11	102	52.37	105	65-135	2	0-20	
1,1,1,2-Tetrachloroethane	50.00	49.85	100	51.42	103	80-130	3	0-20	
1,1,2,2-Tetrachloroethane	50.00	46.24	92	48.68	97	65-130	5	0-20	

Environmental Science International, Inc. 354 Uluniu Street, Suite 304 Kailua, HI 96734-2500

Date Received: Work Order No: Preparation: Method: N/A 13-02-0014 EPA 5030C GC/MS / EPA 8260B

Quality Control Sample ID	Matrix	Matrix Instrument Prepared Aqueous GC/MS OO 02/04/13			Date Analyzed	b	LCS/LCSD Batch Number		
099-13-057-5	Aqueous			02/04/13		130204L01			
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifier
Tetrachloroethene	50.00	42.79	86	43.81	88	45-150	2	0-20	
Toluene	50.00	47.97	96	48.54	97	75-120	1	0-20	
1,2,4-Trichlorobenzene	50.00	51.98	104	52.13	104	65-135	0	0-20	
1,1,1-Trichloroethane	50.00	48.14	96	48.97	98	65-130	2	0-20	
Hexachloro-1,3-Butadiene	50.00	49.87	100	49.23	98	50-140	1	0-20	
1,1,2-Trichloroethane	50.00	47.04	94	47.86	96	75-125	2	0-20	
Trichloroethene	50.00	46.90	94	46.87	94	70-125	0	0-20	
1,2,3-Trichloropropane	50.00	45.90	92	47.96	96	75-125	4	0-20	
Vinyl Chloride	50.00	44.01	88	44.08	88	50-145	0	0-20	
p/m-Xylene	100.0	100.4	100	102.5	102	75-130	2	0-20	
o-Xylene	50.00	51.59	103	52.73	105	80-120	2	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	49.62	99	51.22	102	65-125	3	0-20	
Gasoline Range Organics	1000	1245	125	1226	123	80-120	2	0-20	Χ

Sample Analysis Summary Report

WORK ORDER #: <u>13-02-0014</u>

Lab Sample Number	Client Sample ID	Method	Extraction	Date/Time Analyzed	Chemist ID	Instrument	Analytical Location
1-K	ES016	EPA 6020	EPA 3020A T	02/4/2013 16:55	598	ICP/MS 03	1
1-0	ES016	EPA 8270C SIM PA	EPA 3510C	02/5/2013 17:34	449	GC/MS AA	1
1-L	ES016	EPA 8015B (M)	EPA 3510C	02/5/2013 2:45	682	GC 45	1
1-B	ES016	GC/MS / EPA 8260	EPA 5030C	02/4/2013 14:10	486	GC/MS OO	2
2-G	ES017	EPA 6020	EPA 3020A T	02/4/2013 16:58	598	ICP/MS 03	1
2-1	ES017	EPA 8270C SIM PA	EPA 3510C	02/5/2013 18:00	449	GC/MS AA	1
2-L	ES017	EPA 8015B (M)	EPA 3510C	02/5/2013 3:02	682	GC 45	1
2-B	ES017	GC/MS / EPA 8260	EPA 5030C	02/4/2013 17:15	486	GC/MS OO	2
3-G	ES018	EPA 6020	EPA 3020A T	02/4/2013 17:01	598	ICP/MS 03	1
3-I	ES018	EPA 8270C SIM PA	EPA 3510C	02/5/2013 18:26	449	GC/MS AA	1
3-L	ES018	EPA 8015B (M)	EPA 3510C	02/5/2013 3:20	682	GC 45	1
3-B	ES018	GC/MS / EPA 8260	EPA 5030C	02/4/2013 17:42	486	GC/MS OO	2
4-A	ESTrip	GC/MS / EPA 8260	EPA 5030C	02/1/2013 20:00	486	GC/MS OO	2

Location	Description
1	7440 Lincoln Way, Garden Grove, CA 92841
2	7445 Lampson Avenue, Garden Grove, CA 92841

02/07/13

Glossary of Terms and Qualifiers

Work Order Number: 13-02-0014

VOIR Oraci I	Turnson. 10 02 0011
Qualifier	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample
'	data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
DL	The Detection Limit (DL) is the smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
ICH	Initial calibrtn. verif. recov. above method CL for this analyte.
ICJ	Initial calibrtn. verif. recov. below method CL for this analyte.
IH	Calibrtn. verif. recov. below method CL for this analyte.
IJ	Calibrtn. verif. recov. above method CL for this analyte.
J	Analyte was detected at a concentration below the LOQ and above the DL. Reported value is estimated.
LOD	The Limit of Detection (LOD) is the smallest amount or concentration of a substance that must be present in a sample in order to be detected at 99% confidence level.
LOQ	The Limit of Quantitation (LOQ) is the lowest concentration of a substance that produces a quantitative result within specified limits of precision and bias.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
U	Undetected at Detection Limit (DL) and is reported as less than the Limit of Detection (LOD).
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for

% moisture. All QC results are reported on a wet weight basis.

MPN - Most Probable Number

7
Sana
=

Calscience Environmental Laboratories, Inc. 7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494

Other CA office locations: Concord and San Luis Obispo For courier service / sample drop off information, contact sales@calscience.com or call us.

WO # / LAB USE ONLY

13-02-0014

CHAIN OF CUSTODY RECORD

1/30/13 Page

							((),((),(),(),(),(),(),(),(),()							*								CONTRACTOR OF STREET			
LABORATORY CLIENT: Environment	al Grio	inco Ti	nter	nati	in 1				ENT PI										P.O. N	1O':					
ADDRESS:	16 14-	7100 DI	1464	1 044	//WV		<i>.</i>	1 Ra	ed	Hi	II L	/٦ر	VI	ll.	2O	66									
ADDRESS: 354 Uluniu 5	**************************************	<u> 309 </u>						PRO	DJECT	CONT	TACT:					-			SAMF	LER(S	S): (PR	INT)			
Kailua	k	STATE		9	67	3 ^{ZIP}		R	obi	201	(he	ma	i											
TEL: 406-261-0740 RCHO	NG Ceste	wei rom	DEF	-uer	Q _{ezri}	בישט'י	INY						₹E(QUI	EST	red	Α	NAI	LYS	SES	j		(00000000000000000000000000000000000000		
TURNAROUND TIME:			, - , -	-tr-rs		CIDO			-					And of the second section (-		MWW.company.com	tunciana maria	-	***************************************	27.75000
SAME DAY 24 HR 48 H	R □72 H	R XSTA	NDARE)					¥																
COELT EDF GLOBAL ID					LOG	CODE			CE-C44					2)											
SPECIAL INSTRUCTIONS:			ranomenta de la composition de la comp	(Antionia management)				l Q	1					En Core / Terra Core Prep (5035)				Sin		.69.	3				
·								13	V 3		ا ا		1	rep					8	Cr(VI) [7196 or 7199 or 218.6]	0				
								8	35		BTEX / MTBE (8260) or		<u></u>	ore F				(8310) er (8270)	T22 Metals (6010B/747X)	0 66	3				
								စ္က	စ္စ		(82		Oxygenates (8260)	ra C	(381)		8)	010	or 71					
					ved	-0	Field Filtered	5 ic	5		/TBE	260)	tes (/Ter	SVOCs (8270)	Pesticides (8081)	382)	\$	9) SIE	196	- -				
LAB	SAMF	DING		NO.	Unpreserved	erve	世	(<u>6</u>	9		×	VOCs (8260)	gena	Sore	Cs (icide	PCBs (8082)	3	Meta	[]	ead				
USE SAMPLE ID	DATE	TIME	MATRIX	OF CONT.	d n	Preserved	Field	臣	TPH (d) or DRO or (65)	TPH (BTE	9	ő	ᇤ	SVC	Pesi	PCE	288	T22	5	<u>@</u>				İ
I ESO16	1/30/13	0800	uter	ι0	X	×	X	X	X		MATERIAL PROPERTY.	×		en annun en so				X			X				
2 ESO16 MS/MSD	1/30/13		vales		X	X	X	X	X			X						K			X				
2 ESO16 MS/MGD B ESO17	1/30/13		wher		X	<u> </u>	 	X	X			X						X			X				
485018	1/30/13		votes		X		X	X	×			X						X			X				1
595 TOO	1/30/13		inder			X		X										-							
5 95 Trip F ES 010	1/30/13		into	10	X		X	×	文			X			±		gyputit-suttents	X			X		-		-
	1,754.0							ŕ																	1
LUB.						ļ																	-		
الله			 			 		-	 												$\vdash \dashv$				
									ļ										<u> </u>	<u> </u>	 				
																				'					
Relinantshed by: (Signature)	120/17) }	ediament engagement	R	eceive	d by: (Signat	ure/A	ffiliatio	on)	descent of the second	i in the second		-	*************	ancommon de la common de la com	AND COMPRESSORS	Dat	ie:	disconnection	***************************************	Time):	***************************************	٦
moom /	2011	, >				11. /	01		<i>FE</i> (1)					1 /1	4			<u> </u>	,			<u> </u>			<u> </u>
Relinquished by: (Signature)				R	eceive	a by: (Signat	ure/A	miliatio	on)			B	W	4	K	-	Dat	e://	117	<u>'</u>	Time	04	5	Page 38 of 4
Relinquished by: (Signature)			· · · · · · · · · · · · · · · · · · ·	⊢ R	eceive	d by: (Signat	ure/A	ffiliatio	on)	***************************************		9/8	<u> </u>	w	v V		Dat	+ + +	<u>'''</u>		7 C			$-\frac{\infty}{0}$
· · · · · · · · · · · · · · · · · · ·				'`		~ \	g			,			v V	V					,						4

SHIP DATE: 30JAN13 ACTWGT: 51.7 LB CAD: /POS1322 DIMS: 29x17x15 IN

BILL RECIPIENT

ÚNITED STATES US

SAMPLE CONTROL **CALSCIENCE ENVIRON** 7440 LINCOLN WAY

GARDEN GROVE CA 92841

FedEx Express

1 of 2 **8704 7942 2465** FRI - 01 FEB A1

IZ APVA

92841 CA-US SNA

ORIGIN ID:HNLA

SHIP DATE: 30JAN13 ACTWGT: 71.7 LB CAD: /POS1322 DIMS: 29x17x15 IN BILL RECIPIENT

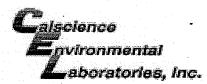
UNITED STATES US

TO SAMPLE CONTROL CALSCIENCE ENVIRON 7440 LINCOLN WAY

GARDEN GROVE CA 92841 (714) 895 – 5494

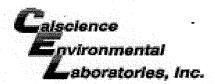
01 FEB A1

Mstr# 8704 7942 2465 Z API


2 of 2

MPS# 7955 5020 6803

92841 CA-US SNA

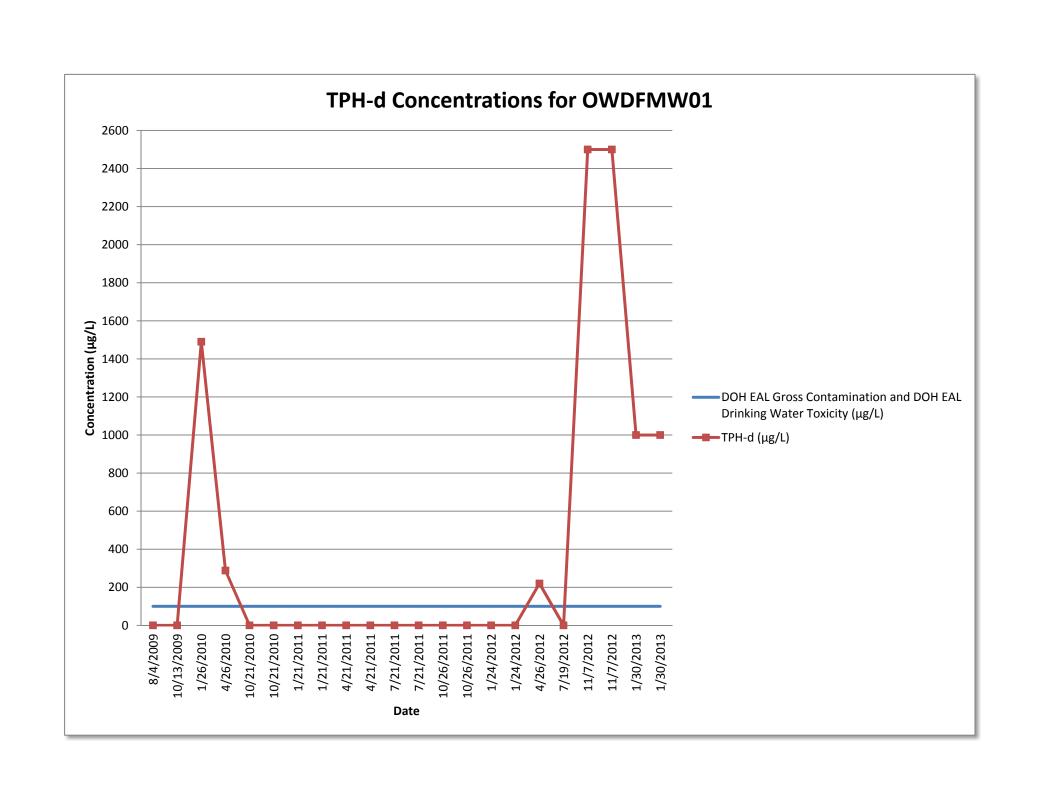

FedEx Express

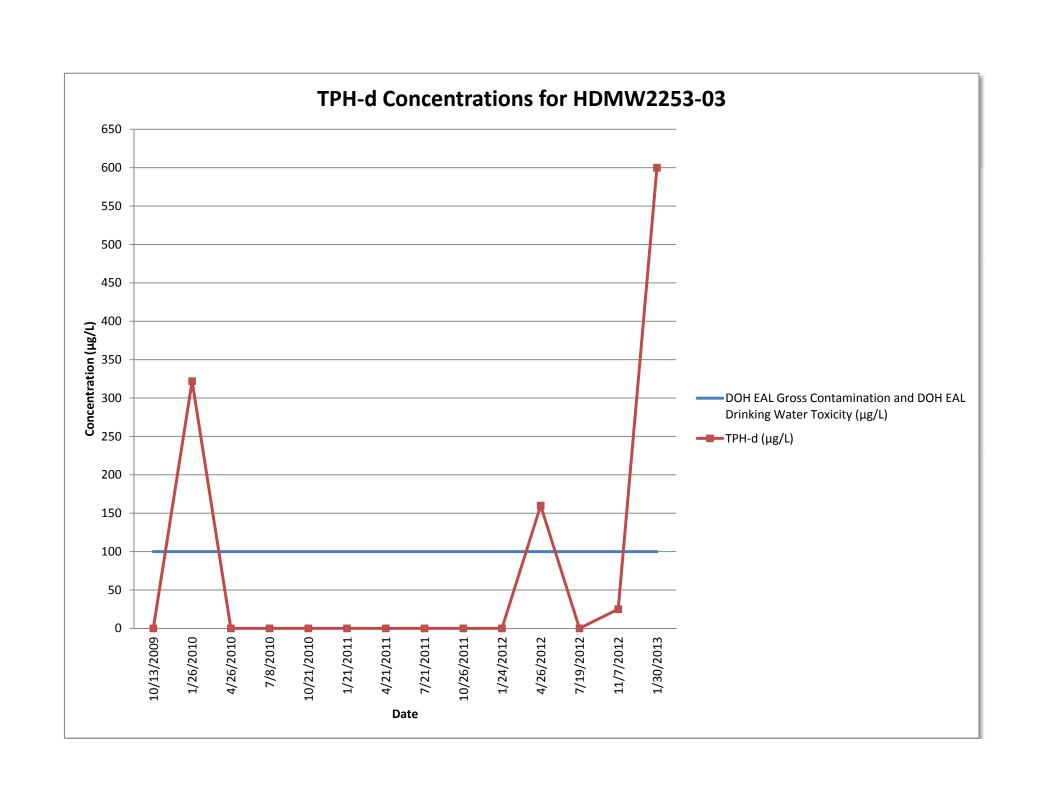
WORK ORDER #: 13-02- 2 2 2 2

CLIENT: ESI		02 /0 /13
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozen	except sedi	ment/tissue)
Temperature 2 · · · °C · 0.2 °C (CF) = · · · · °C	Blank	☐ Sample
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).		
☐ Sample(s) outside temperature criteria but received on ice/chilled on same da	y of sampling	J.
☐ Received at ambient temperature, placed on ice for transport by Cou	ırier.	
Ambient Temperature: Air Filter		Initial: <u></u>
CUSTODY SEALS INTACT:		
☑ Cooler □ □ □ No (Not Intact) □ Not Present	□ N/A	Initial:
□ Sample □ □ □ No (Not Intact) ☑ Not Present		Initial: <u>PS</u>
		<u> </u>
	es_	No N/A
Chain-Of-Custody (COC) document(s) received with samples		
COC document(s) received complete		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.		
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.		
Sampler's name indicated on COC.	AND IN	
Sample container label(s) consistent with COC		
Sample container(s) intact and good condition		
Proper containers and sufficient volume for analyses requested	Ø	
Analyses received within holding time	7	
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours		
Proper preservation noted on COC or sample container	zí	
☑ Unpreserved vials received for Volatiles analysis		
Volatile analysis container(s) free of headspace		
Tedlar bag(s) free of condensation CONTAINER TYPE:		
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores	[®] □TerraCo	ores [®] □
Water: ☑VOA ☑VOAh □VOAna₂ □125AGB □125AGBh □125AGBp [□1AGB □	1AGB na₂ □1AGB s
□500AGB 12500AGJ □500AGJs □250AGB □250CGB □250CGBs	□1РВ □	1PBna □500PB
□250PB □250PBn₄□125PB □125PBznna □100PJ □100PJna₂ □		
Air: Tedlar® Canister Other: Trip Blank Lot#: 12121013 Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Enveronment Enveronment Enveronment Enveronment Enveronment Enveronment	elope Re	viewed by:

WORK ORDER #: 13-02- ☑ □ □ □

SAMPLE RECEIPT FORM Cooler 2 of 2


CLIENT: ESI	DATE: 02/01/13)
Parade la la casa de la participa de la		


CLIENT: 02/01/13									
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozen except sediment/tissue)									
Temperature 2 • 4 °C - 0.2°C (CF) = 2 • 2 °C ☑ Blank ☐ Sample									
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).									
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling.									
☐ Received at ambient temperature, placed on ice for transport by Courier.									
Ambient Temperature: ☐ Air ☐ Filter Initial: #									
CUSTODY SEALS INTACT:									
☑ Cooler □ □ No (Not Intact) □ Not Present □ N/A Initial: <u>②</u>									
□ Sample □ □ □ No (Not Intact) ☑ Not Present Initial: □									
SAMPLE CONDITION: Yes No N/A									
Chain-Of-Custody (COC) document(s) received with samples									
COC document(s) received complete									
Collection date/time, matrix, and/or # of containers logged in based on sample labels.									
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.									
Sampler's name indicated on COC.									
Sample container label(s) consistent with COC									
Sample container(s) intact and good condition									
Proper containers and sufficient volume for analyses requested									
Analyses received within holding time									
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours □ □ □									
Proper preservation noted on COC or sample container									
☐ Unpreserved vials received for Volatiles analysis									
Volatile analysis container(s) free of headspace □ □ □									
Tedlar bag(s) free of condensation									
CONTAINER TYPE:									
Solid: 40zCGJ 80zCGJ 160zCGJ Sleeve () EnCores Terra Cores									
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp i□1AGB □1AGBna₂ □1AGBs									
□500AGB ଢ500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □1PBna □500PB									
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna ₂ □ □ □ □ □ □									
Air: □Tedlar [®] □Canister Other: □ Trip Blank Lot#: Labeled/Checked by:									
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope Reviewed by: 1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2									

APPENDIX D Historical Groundwater Exceedance Trends

APPENDIX E Waste Disposal Manifest

1	NON-HAZARDOUS WASTE MANIFEST	1. Generator ID Number HIR (000 050 401	2. Page 1 of 1	3. Emergency Response		4. Waste Tr	4. Waste Tracking Number 000019546				
	5 Generald's hame and Mall 400 MARSHALL JBPHH, HI 968 Generator's Phone:	Address C/O NAV ROAD, ATTN: 60-3139 808-471-4	ESTRELITA HIGA	DDE PRJ4:	RED F		ULK FUEL			C8553- CILITY	R	
	6. Transporter 1 Company Nam PACIFIC COMME							U.S. EPA ID Number H I R 0 0 0 0 9 7 8 2 4				
·	7. Transporter 2 Company Nam UNITEK SOLVEN	T SERVICES,		80	8-682-8284			U.S. EPA ID Number H I D 9 8 2 4 4 3 7 1 5				
	ONITEK SOLVENT SERVICES, INC. 91-125 KAOMI LOOP KAPOLEI, HI 96707							U.S. EPA ID Number H I D 9 8 2 4 4 3 7 1 5				
	Facility's Phone: 9. Waste Shipping Name	and Description		_	10. Conta	ainers Type	11. Total Quantity	12. Unit Wt./Vol.				
GENERATOR -		L NOT REGULA' E AND DECONTA	TED BY DOT AMINATION WATE	IR)	001	DM	00025	G		NON-RO	CRA	
GEN GEN	2.											
	3.											
	A \$45 d	ppm P	•							- AVA	0	
13 Special Handling Instructions and Additional Information 2008 9b1: TOTAL HALOGEN: 400P GENERATOR'S CERTIFICATION: I HEREBY DECLARE THAT THE CONTENTS OF THIS CONSIGNMENT ARE FULLY AND ACCURATELY DESCRIBED ABOVE BY PROPER SHIPPING NAME (WHERE APPLICABLE) AND ARE CLASSIFIED, PACKED, MARKED, AND LABELED AND ARE IN ALL RESPECTS IN PROPER CONDITION FOR TRANSPORT BY HIGHWAY ACCORDING TO APPLICABLE GOVERNMENT REGULATIONS. I FURTHER CERTIFY THAT IT THIS IS USED OIL IT IS SUBJECT TO REGULATION UNDER \$\tilde{u}\$ CFR PART 279; THAT IT DOES NOT CONTAIN PCBS GREATER THAN OR EQUAL TO 2 PPM; AND THAT IT HAS NOT BEEN CONTAINANTED WITH CARBURATOR CLEANERS, BRAKE SPRAY, PREON, HALOGENATED SOLVENTS, OR OTHER HAZARDOUS MATERIALS AND/OR HAZARDOUS WASTES. 14. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged,											d,	
igg	marked and labeled/placard		proper condition for transport ac		ature	onal governm	nental regulations.		Month	Day	Year	
NT'L	15. International Shipments	import to U.S.	<u>-</u>	Export from U		•						
\neg	Transporter Signature (for export 1 Transporter Acknowledgmer Tansporter 1 Printed/Typed Nag	nt of Receipt of Materials	·	Sign	Date leav	N/			Month	Day	Y <u>ea</u> r	
TRAMSPORTER	ransporter 2 Printed/Typed Nar	WAHILANI		Sign	atural 2 of	Men		· · · · · · · · · · · · · · · · · · ·	Month	Day	Year Year	
F ∤	17. Discrepancy	Agas			- Creame		Gai	<u>د</u> ———		00		
	17a. Discrepancy Indication Spa	Quantity	<u> </u> Туре		Residue Manifest Reference N	Jumber:	Partial Reje	ection		Full Rejection	n	
ACILITY	17b. Alternate Facility (or General	ator)	vulliper,	U.S. EPA ID N	lumber							
DESIGNATED FACILITY	Facility's Phone: 17c. Signature of Alternate Facil	ity (or Generator)					<u> </u>		Month	Day	Year	
- DESIG	Ha test of	ven to un	Nu	ハンカa								
]-	<u> </u>	CO107011	<u> </u>	11/17/11	7+5)	<i>J</i> ' '	<u> </u>		· · · · · ·	·		
V	18. Designated Facility Owner or Printed/Typed Name	<u> </u>	<u> </u>		as noted in Item 17a	Dy			Month 173	P6 2	Year (2[م_ا	

