

Meeting Objectives

- Welcome new stakeholders
- Receive updates regarding the BWS
- Receive an update on Navy's Red Hill Bulk Fuel Storage Tanks
- Review Scorecard of the implementation of Water Master Plan
- Hear updates on recent meetings with Ag agencies and farmers
- Get your input on the July 2019 water rates public roll-out

New Stakeholders

- Christine Olah, AARP
- Walter Theommes III, Kamehameha Schools

Action

Review and accept notes from

 Stakeholder Advisory Group Meeting #28 held on Tuesday, October 16th, 2018

Scorecard Purpose

- Track advancement to achieve WMP goals
- Identify progress what have we done well
- Capture opportunities for improvement what can we do better
- Annual reporting and accountability to BWS Board and public

Scorecard Summary

- Organized around BWS's six functions
- Detailed indicators for financial, operational, capacity, structural and management goals
- Annual metrics to quantify results

PLAN	Total Number of Metrics	Met/on track to meet	Miss by 10% of goal	Miss by > 10% of Goal
Strategic Plan	9	7	1	1
Water Master Plan	33*	20	5	7

^{* 1} TBD

Indicator	Metric	Goal	Baseline	FY 2017	FY2018	
Supply from nonpotable sources	% of total supply served from nonpotable water system	> 12%	6% (on-track to meet goal)	7.15%	7.10%	
Annual water resource yield	% of available water resource yield used	< 90%	80%	70%	72%	
Watershed management	\$ budgeted for watershed management	4% of CIP \$3.35M	\$1.4M	\$1.4M	\$1.8M	
	Acres of watershed surveyed for invasive plant species removal per year	5,200 acres	1,691 acres	5,262 acres	43,739	
	Watershed area protected by fencing	20% of watershed funding	14%	19.80%	0%	

Indicator	Metric	Goal	Base	line	FY 2	017	FY2	018
Standby source capacity	% of source capacity used at Maximum Day Demand (MDD)	< 50%	44%	•	40%	•	41%	•
Water level at index wells	% of wells with stable water levels as determined by BWS	100%	100%	•	100%	•	100%	•
Permitted or assessed sustainable yield	Number of sources exceeding source permitted use or assessed sustainable yield (12-month moving avg)	0	o	•	o	•	0	•

Indicator	Metric	Goal	Basel	ine	FY 20	17	FY20	18
Water quality regulatory compliance	Number of water quality regulatory violations	0	0	•	0	•	0	•
Treatment on-line	% of chlorination systems on-line	100%	100%	•	100%	•	100%	•
Comprehensive treatment system condition assessment	Perform comprehensive condition assessment of all potable and nonpotable treatment systems	Update every 5 years	On- schedule (last 2014)	•	On- schedule	•	On- schedule	•

Indicator	Metric	Goal	Basel	ine	FY 20	17	FY20	18
Sufficient pump capacity	% of pressure zones where firm capacity (not counting largest pumping unit at each station) < MDD	< 5%	2.6%	•	2.8%	•	2.8%	•
Pumps available for use	% of pumps that are available to be put in- service	> 90%	82%	•	81%	•	82%	
Emergency power	% of population served indoor demand (85gpcd) in the event of loss of power	> 85%, distributed geographic ally	71%	•	71%	•	71%	•
oump station condition assessment	Perform regularly scheduled condition assessment	Update every 5 years	On- schedule (last 2015)	•	On- schedule	•	On- schedule	•

Indicator	Metric	Goal	Basel	ine	FY 20	17	FY20	18
Reservoir restrictions	Number of reservoirs with use restrictions	< 2%	1%	•	0.58%	•	0.58%	•
Storage deficient pressure zones	Pressure zones with less than Standard storage and without pumping or transmission equivalency to meet operating, emergency, and fire needs	0%	6%	•	5%	•	5%	•
Reservoir condition assessment	Perform regularly scheduled condition assessment	Update every 10 years	On- schedule (last 2015)	•	On- schedule	•	On- schedule	•

Indicator	Metric	Goal	Baseline		FY 2	017	FY2	018
Pipeline breaks	Pipeline breaks and leaks repaired per 100 miles per year (3-year average)	< 15	14	•	15	•	16	•
T point of colla	Pipeline breaks and leaks repaired per year (3-year average)	< 300	302	•	320	•	331	
Transmission pipeline breaks	Number of pipeline breaks for ≥ 16 inches in diameter (3-year average)	< 14	10	•	12	•	13	•
Non-revenue water	% of water produced but not sold	< 8.1%	7.8% (5-year average)	•	7.4%	•	TBD	
High risk pipelines	Portion of pipelines with risk score	< 5%	12%	•	14%	•	14%	•

WSFC is a 1-time charge

- Charged when connecting to the system for the first time, or when additional capacity is needed
- Fund growth-related capacity expansions
- Equitably recover earlier investments in oversizing infrastructure to accommodate new customers

Why update the WSFC now?

- Current charges adopted in 1993
- Water use patterns have changed
- Growth needs have changed
- Available capacities in existing system have changed
- Costs have increased
- Technical analysis needs to be updated
- Implement concurrent with other changes to BWS's rates and charges

In 1 day, the average agricultural customer uses 6,000 gallons, more than half of BWS's single family residential customers use in an entire month

We have a customer base of about 170,000 and we provide an average of 145 million gallons of water per day.

Agricultural WSFC comparisons to other islands

	BWS	Maui	Kauai	Hawaii
3/4"	\$6,671	\$18,884	\$21,170	NA
1"	\$10,934	\$33,356	\$35,290	\$13,750
1.5"	\$29,651	\$71,948	\$70,580	\$27,500
2"	\$64,866	\$125,012	\$112,920	\$44,000

Other islands' WSFC based on meter size for all customers

Strategic Approach for Affordable Impact Fees for New Farmers

- Ensure farmers know how much water they should be using per acre through a Water Use Plan requirement
- Right size the meter to limit wasteful water use. Smaller meters cost less
- Create an education program so farmers know how to conserve water
- Develop and implement conservation incentives for farmers to discount submeters, weather based irrigation controllers, soil moisture sensors, etc. Allow water bill adjustments if leaks are repaired
- Obtain State assistance to develop new water sources to buy down impact fees directly benefitting farmers

Recent Outreach Meetings with Ag Agencies and Farmers

- Agribusiness Development Corporation (ADC)
 December 11, 2018
- Hawaii Department of Agriculture (HDOA)
 December 20, 2018
- University of Hawaii, College of Tropical Research and Human Resources (CTAHR)
 December 21, 2018
- Hawaii Kai Farmers
 January 8, 2019

Outreach Purpose was to Gain Insights

- Opportunities and barriers for Ag water use plans
- Conservation measures that farmers use
- Tools to assist and/or incentivize Ag customers to plan for and use water efficiently

Hawaii Department of Agriculture (HDOA) Discussion Highlights

- It is in HDOA's and BWS's best interests to work together on conserving the water supply
- Expects that FSMA will be diligently enforced
- Exploring development of "agricultural hubs" for safe crop washing
- Greenhouses have potential for future Ag
- Believes BWS's pricing of Ag water, even at the subsidized rate, is high and would be a strong incentive to conserve water

What We Learned About HDOA Requirements

Tenants of agricultural lands required to prepare 2 plans

- ♦ Soil Conservation Plan
 Covers things like soil type, slopes, acreage, soil conservation measures, and planned water application.
- ◆Plans of Utilization and Development Includes a timeline of how to fully develop the agricultural property.

Ag water use plan is not required by either plan HDOA supports conservation incentives for farmers

Statewide Beginning Farmer Training Program

- UH's Cooperative Extension service agents could potentially help with educating farmers about water conservation measures
- CTAHR supports BWS conservation incentives for farmers
- UH may be able to assist the BWS create a model that focuses on water, to help farmers see what their costs would be with different scenarios

Water Conservation Measures

- Methods of conserving water include
 - Mulch and/or cover crops to reduce evaporation
 - Installing submeters (they really liked this)
 - Weather-based irrigation controllers and soil moisture sensors
 - Learning how to detect and repair leaks
- One farmer said that her irrigation system had been automated, but she changed back to watering by hand and is using much less water now

Future of Farming

- Kamehameha Schools (KS) is the landlord of much of the farmland in Hawaii Kai
 - Many leases expire in 2025
 - Some leases are longer
- Expect shift in management of Hawaii Kai farms to the next generation
 - In considering water conservation incentives, BWS should plan accordingly (e.g., potentially more interest in technology)

Outcomes of Meeting with Hawaii Kai Farmers

- Supportive of inter-agency and inter-organization cooperation, especially education about soil conservation and water conservation
- Water Use Plans have the potential to help new farmers calculate water needs and properly size meters
- Services of other agencies would be valuable in helping new farmers to prepare their water use plans

Legislation for Funding Support to Buy Down BWS Impact Fees for New Farmers

- Hawaii Farm Bureau introduced legislation for funding \$700,000 for 1 exploratory well at proposed BWS Kunia Wells IV pump station in upper Kunia
- Well station is mauka of proposed State Kunia Agriculture Park and could provide potable water for crop washing
- Rep. Ryan Yamane and DLNR Carty Chang are supportive
- Your support of this bill is appreciated

Next Steps

- Meet with new HDOA Director
- Explore 3-way Memorandum of Understanding with BWS/HDOA/CTAHR
- Meet with Michelle Gorham, West O'ahu Soil and Water Conservation District on ag education programs
- Meet with Windward farmers
- Support the State funding legislation
- Seek BWS Board input
- Refine BWS strategic approach for affordable impact fees for farmers
- SBRRB and public outreach
- BWS Board consideration

Recap of 2018 Public Input

- 4 Public Hearings: Honolulu, Kapolei, Kaneohe, Mililani – 65 attendees
- 15 Neighborhood Boards reached about 500 attendees
- ◆ 10 interest group presentations reached about 150 attendees
- Newspaper articles, social media, TV and radio interviews – estimated reach around 250,000
- Briefings for 6 City Council Members and Cabinet Briefing
- Mailed special edition of Water Matters to 170,000 account holders
- Over 1,300 page views on the BWS website

2019 Public Outreach

- Inserted small note in Winter Water Matters
- Updating the 4-page Water Matters for mailing with May / June 2019 bills
- Provide refresh training for Neighborhood Board representatives
- Provide this issue as a hand-out for Neighborhood Boards and in the customer service area of BWS/ Satellite City Halls March – July 2019
- Start social media campaign to remind customers and public about rate increases March – June 2019
- Reach out to traditional media in June 2019 in advance of changes
- Anything else?

