11

13

14

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Erwin Kawata City & County of Honolulu 630 South Beretania Street Public Service Bldg. Room 310 Honolulu, Hawaii 96843

JOB DESCRIPTION

Generated 11/21/2023 5:56:21 PM

RED-HILL

JOB NUMBER

380-55685-2

Eurofins Eaton Analytical Pomona 941 Corporate Center Drive Pomona CA 91768-2642

Eurofins Eaton Analytical Pomona

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Eaton Analytical, LLC Project Manager.

Compliance Statement

- 1. Laboratory is accredited in accordance with TNI 2016 Standards and ISO/IEC 17025:2017.
- 2. Laboratory certifies that the test results meet all TNI 2016 and ISO/IEC 17025:2017 requirements unless noted under the individual analysis
- 3. Test results relate only to the sample(s) tested.
- 4. This report shall not be reproduced except in full, without the written approval of the laboratory.
- 5. Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. (DW,Water matrices)

Authorization

Generated 11/21/2023 5:56:21 PM

Authorized for release by Rachelle Arada, Project Manager Rachelle.Arada@et.eurofinsus.com (626)386-1106 e

3

4

5

6

8

9

11

13

14

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	9
QC Sample Results	11
QC Association Summary	15
Lab Chronicle	16
Method Summary	17
Sample Summary	18
Subcontract Data	19
Chain of Custody	79
Receipt Checklists	81

Definitions/Glossary

Client: City & County of Honolulu Job ID: 380-55685-2

Project/Site: RED-HILL

Qualifiers

Subcontract

Qualifier Description

U This analyte was not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

6

7

0

10

11

12

14

Case Narrative

Client: City & County of Honolulu

Job ID: 380-55685-2 Project/Site: RED-HILL

Job ID: 380-55685-2

Laboratory: Eurofins Eaton Analytical Pomona

Narrative

Job Narrative 380-55685-2

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 7/20/2023 10:15 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 2.9°C and 4.9°C

Subcontract Work

Methods 8015 Gas (Purgeable) LL (EAL), 8015 LL DRO/MRO/JP5/JP8: These methods were subcontracted to EMAX Laboratories Inc. The subcontract laboratory certifications are different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

Method 625 PAH Physis LL (EAL) + TICs: This method was subcontracted to Physis Environmental Laboratories. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

Detection Summary

Client: City & County of Honolulu Job ID: 380-55685-2

Project/Site: RED-HILL

Client Sample ID: AIEA WELLS PUMPS 1&2 (260)

Lab Sample ID: 380-55685-1

No Detections

Client Sample ID: TB: AIEA WELLS PUMPS 1&2 (260) Lab Sample ID: 380-55685-2

No Detections.

3

4

5

0

9

11

13

14

Job ID: 380-55685-2

Client: City & County of Honolulu

Project/Site: RED-HILL

Client Sample ID: AIEA WELLS PUMPS 1&2 (260)

Lab Sample ID: 380-55685-1 Matrix: Drinking Water Date Collected: 07/18/23 13:30

Date Received: 07/20/23 10:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		0.005	0.001	μg/L			07/31/23 15:28	1
1-Methylphenanthrene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
2,3,5-Trimethylnaphthalene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
2,6-Dimethylnaphthalene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
2-Methylnaphthalene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Acenaphthene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Acenaphthylene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Anthracene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Benz[a]anthracene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Benzo[a]pyrene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Benzo[b]fluoranthene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Benzo[e]pyrene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Benzo[g,h,i]perylene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Benzo[k]fluoranthene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Biphenyl	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Chrysene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Dibenz[a,h]anthracene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Dibenzo[a,l]pyrene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Dibenzothiophene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Disalicylidenepropanediamine	ND		0.1	0.05	μg/L		07/21/23 00:00	07/31/23 15:28	1
Fluoranthene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Fluorene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Indeno[1,2,3-cd]pyrene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Naphthalene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Perylene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Phenanthrene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Pyrene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 15:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
(d10-Acenaphthene)	78		27 - 133				07/21/23 00:00	07/31/23 15:28	1
(d10-Phenanthrene)	119		43 - 129				07/21/23 00:00	07/31/23 15:28	1
(d12-Chrysene)	121		52 - 144				07/21/23 00:00	07/31/23 15:28	1
(d12-Perylene)	98		36 - 161				07/21/23 00:00	07/31/23 15:28	1
(d8-Naphthalene)	78		25 - 125				07/21/23 00:00	07/31/23 15:28	1
Method: 8015 Gas (Purgeal	ole) LL (EAL) -	SW846 80	15B Gasolin	e Range	Organio	cs			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
GASOLINE	ND	U	0.02		mg/L			07/25/23 02:53	

Analyte	Result	Qualifier	KL	MDL	Unit	U	Prepared	Analyzea	DII Fac
GASOLINE	ND	U	0.02		mg/L			07/25/23 02:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
BROMOFLUOROBENZENE	73		60 - 140					07/25/23 02:53	1
Method: 8015 LL DRO/MRO	D/JP5/JP8 - 80 ⁴	15 - TPH D	RO/ORO						
	D 14	O	ъ.	MDI	1114	_	D	A I	D11 E

Method: 8015 LL DRO/MRO/JP5/JP8 - 8015 - TPH DRO/ORO										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
DIESEL	ND	U	0.03		mg/L			07/29/23 00:29	1	
JP5	ND	U	0.059		mg/L			07/29/23 00:29	1	
JP8	ND	U	0.059		mg/L			07/29/23 00:29	1	
MOTOR OIL	ND	U	0.059		mg/L			07/29/23 00:29	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
BROMOBENZENE	74		60 - 130					07/29/23 00:29		

Eurofins Eaton Analytical Pomona

Page 7 of 81

Client Sample Results

Client: City & County of Honolulu Job ID: 380-55685-2

Project/Site: RED-HILL

Lab Sample ID: 380-55685-1 Client Sample ID: AIEA WELLS PUMPS 1&2 (260)

Date Collected: 07/18/23 13:30

Matrix: Drinking Water

Date Received: 07/20/23 10:15

Method: 8015 LL DRO/MRO/JP5/JP8 - 8015 - TPH DRO/ORO (Continued)

%Recovery Qualifier Limits Prepared Analyzed Dil Fac HEXACOSANE 86 60 - 130 07/29/23 00:29

Client Sample ID: TB: AIEA WELLS PUMPS 1&2 (260) Lab Sample ID: 380-55685-2

Date Collected: 07/18/23 13:30 **Matrix: Water**

Date Received: 07/20/23 10:15

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics

Analyte Result Qualifier MDL Unit D RL Prepared Analyzed Dil Fac GASOLINE ND U 0.02 mg/L 07/25/23 03:30

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac BROMOFLUOROBENZENE 71 60 - 140 07/25/23 03:30

Job ID: 380-55685-2

Client: City & County of Honolulu Project/Site: RED-HILL

Method: 625 PAH Physis LL (EAL) + TICs - EPA 625 Base/Neutral and Acid Organics i

Matrix: BlankMatrix Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance I					
		Acenapht	Phenanth	CRY	NPT	PRY	
Lab Sample ID	Client Sample ID	(27-133)	(43-129)	(52-144)	(25-125)	(36-161)	
108519-B1	Method Blank	81	114	114	88	97	
108519-BS1	Lab Control Sample	62	88	108	57	87	
108519-BS2	Lab Control Sample Dup	66	95	106	64	90	
Surrogate Legend							

(d10-Acenaphthene) = (d10-Acenaphthene) (d10-Phenanthrene) = (d10-Phenanthrene)

CRY = (d12-Chrysene) NPT = (d8-Naphthalene) PRY = (d12-Perylene)

Method: 625 PAH Physis LL (EAL) + TICs - EPA 625 Base/Neutral and Acid Organics i

Matrix: Drinking Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Lim					
		Acenapht	Phenanth	CRY	NPT	PRY	
Lab Sample ID	Client Sample ID	(27-133)	(43-129)	(52-144)	(25-125)	(36-161)	
380-55685-1	AIEA WELLS PUMPS 1&2 (260)	78	119	121	78	98	
Surrogate Legend							
(d10-Acenaphthene) = (d10-Acenaphthene)				_		

(d10-Acenaphthene) = (d10-Phenanthrene) CRY = (d12-Chrysene)

BFB = BROMOFLUOROBENZENE

NPT = (d8-Naphthalene)
PRY = (d12-Perylene)

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics

Matrix: Drinking Water Prep Type: Total/NA

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (A	Acceptance Limi
		BFB		
Lab Sample ID	Client Sample ID	(60-140)		
380-55685-2	TB: AIEA WELLS PUMPS 1&2 (71		

Eurofins Eaton Analytical Pomona

Job ID: 380-55685-2

Client: City & County of Honolulu Project/Site: RED-HILL

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics

Matrix: WATER Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits)

BFB

Client Sample ID Lab Sample ID 23VG39G13B Method Blank

Surrogate Legend

BFB = BROMOFLUOROBENZENE

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics

Matrix: WATER Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits) **BFB** (70-130)Lab Sample ID Client Sample ID 23VG39G13C LCD 101 23VG39G13L Lab Control Sample 105

Surrogate Legend

BFB = BROMOFLUOROBENZENE

Method: 8015 LL DRO/MRO/JP5/JP8 - 8015 - TPH DRO/ORO

Matrix: Drinking Water Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits) BB XACOSA Lab Sample ID Client Sample ID (60-130)(60-130)380-55685-1 AIEA WELLS PUMPS 1&2 (260) 74 86

Surrogate Legend

BB = BROMOBENZENE

HEXACOSANE = HEXACOSANE

Method: 8015 LL DRO/MRO/JP5/JP8 - 8015 - TPH DRO/ORO

Matrix: WATER Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits) XACOSA BB Lab Sample ID Client Sample ID 23DSG037WB Method Blank

Surrogate Legend

BB = BROMOBENZENE

HEXACOSANE = HEXACOSANE

Method: 8015 LL DRO/MRO/JP5/JP8 - 8015 - TPH DRO/ORO

Matrix: WATER Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limit				
		ВВ	XACOSA				
Lab Sample ID	Client Sample ID	(60-130)	(60-130)				
23DSG037WL	Lab Control Sample	66	87				
23J5G037WL	Lab Control Sample	74	88				
23J8G037WL	Lab Control Sample	94	86				

BB = BROMOBENZENE

HEXACOSANE = HEXACOSANE

Eurofins Eaton Analytical Pomona

Page 10 of 81

Project/Site: RED-HILL

Method: 625 PAH Physis LL (EAL) + TICs - EPA 625 Base/Neutral and Acid Organics i

Lab Sample ID: 108519-B1 **Client Sample ID: Method Blank Matrix: BlankMatrix Prep Type: Total/NA Analysis Batch: O-42002** Prep Batch: O-42002_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
1-Methylphenanthrene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
2,3,5-Trimethylnaphthalene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
2,6-Dimethylnaphthalene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
2-Methylnaphthalene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Acenaphthene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Acenaphthylene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Anthracene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Benz[a]anthracene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Benzo[a]pyrene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Benzo[b]fluoranthene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Benzo[e]pyrene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Benzo[g,h,i]perylene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Benzo[k]fluoranthene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Biphenyl	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Chrysene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Dibenz[a,h]anthracene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Dibenzo[a,l]pyrene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Dibenzothiophene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Disalicylidenepropanediamine	ND		0.1	0.05	μg/L		07/21/23 00:00	07/31/23 06:29	1
Fluoranthene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Fluorene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Indeno[1,2,3-cd]pyrene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Naphthalene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Perylene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Phenanthrene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1
Pyrene	ND		0.005	0.001	μg/L		07/21/23 00:00	07/31/23 06:29	1

	Blank	Blank				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
(d10-Acenaphthene)	81		27 - 133	07/21/23 00:00	07/31/23 06:29	1
(d10-Phenanthrene)	114		43 - 129	07/21/23 00:00	07/31/23 06:29	1
(d12-Chrysene)	114		52 - 144	07/21/23 00:00	07/31/23 06:29	1
(d12-Perylene)	97		36 - 161	07/21/23 00:00	07/31/23 06:29	1
(d8-Naphthalene)	88		25 - 125	07/21/23 00:00	07/31/23 06:29	1

Lab Sample ID: 108519-BS1 Client Sample ID: Lab Control Sample Matrix: BlankMatrix Analysis Batch: O-42002 Prep Batch: O-42002_P

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1-Methylnaphthalene	0.5	0.352		μg/L		70	31 - 128	
1-Methylphenanthrene	0.5	0.521		μg/L		104	66 - 127	
2,3,5-Trimethylnaphthalene	0.5	0.466		μg/L		93	55 - 122	
2,6-Dimethylnaphthalene	0.5	0.404		μg/L		81	48 - 120	
2-Methylnaphthalene	0.5	0.389		μg/L		78	47 - 130	
Acenaphthene	0.5	0.384		μg/L		77	53 - 131	
Acenaphthylene	0.5	0.451		μg/L		90	43 - 140	
Anthracene	0.5	0.455		μg/L		91	58 - 135	

Eurofins Eaton Analytical Pomona

Page 11 of 81

Prep Type: Total/NA

Project/Site: RED-HILL

Method: 625 PAH Physis LL (EAL) + TICs - EPA 625 Base/Neutral and Acid Organics i (Continued)

Lab Sample ID: 108519-BS1 Client Sample ID: Lab Control Sample Matrix: BlankMatrix **Prep Type: Total/NA Analysis Batch: O-42002** Prep Batch: O-42002_P LCS LCS Spike

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benz[a]anthracene	0.5	0.532		μg/L		106	55 - 145	
Benzo[a]pyrene	0.5	0.482		μg/L		96	51 - 143	
Benzo[b]fluoranthene	0.5	0.539		μg/L		108	46 - 165	
Benzo[e]pyrene	0.5	0.491		μg/L		98	42 - 152	
Benzo[g,h,i]perylene	0.5	0.5		μg/L		100	63 - 133	
Benzo[k]fluoranthene	0.5	0.524		μg/L		105	56 - 145	
Biphenyl	0.5	0.483		μg/L		97	56 - 119	
Chrysene	0.5	0.536		μg/L		107	56 - 141	
Dibenz[a,h]anthracene	0.5	0.48		μg/L		96	55 - 150	
Dibenzo[a,l]pyrene	0.5	0.352		μg/L		70	50 - 150	
Dibenzothiophene	0.5	0.499		μg/L		100	46 - 126	
Disalicylidenepropanediamine	25	20.2		μg/L		81	50 - 150	
Fluoranthene	0.5	0.61		μg/L		122	60 - 146	
Fluorene	0.5	0.442		μg/L		88	58 - 131	
Indeno[1,2,3-cd]pyrene	0.5	0.464		μg/L		93	50 - 151	
Naphthalene	0.5	0.345		μg/L		69	41 - 126	
Perylene	0.5	0.446		μg/L		89	48 - 141	
Phenanthrene	0.5	0.493		μg/L		99	67 - 127	
Pyrene	0.5	0.576		μg/L		115	54 - 156	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
(d10-Acenaphthene)	62		27 - 133
(d10-Phenanthrene)	88		43 - 129
(d12-Chrysene)	108		52 - 144
(d12-Perylene)	87		36 - 161
(d8-Naphthalene)	57		25 - 125

Lab Sample ID: 108519-BS2 Client Sample ID: Lab Control Sample Dup Matrix: BlankMatrix Prep Type: Total/NA

Analysis Batch: O-42002

	Spike	LCS DUP	LCS DUP				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1-Methylnaphthalene	0.5	0.373		μg/L		75	31 - 128	7	30
1-Methylphenanthrene	0.5	0.556		μg/L		111	66 - 127	7	30
2,3,5-Trimethylnaphthalene	0.5	0.496		μg/L		99	55 - 122	6	30
2,6-Dimethylnaphthalene	0.5	0.423		μg/L		85	48 - 120	5	30
2-Methylnaphthalene	0.5	0.412		μg/L		82	47 - 130	5	30
Acenaphthene	0.5	0.409		μg/L		82	53 - 131	6	30
Acenaphthylene	0.5	0.479		μg/L		96	43 - 140	6	30
Anthracene	0.5	0.465		μg/L		93	58 - 135	2	30
Benz[a]anthracene	0.5	0.549		μg/L		110	55 - 145	4	30
Benzo[a]pyrene	0.5	0.486		μg/L		97	51 - 143	1	30
Benzo[b]fluoranthene	0.5	0.541		μg/L		108	46 - 165	0	30
Benzo[e]pyrene	0.5	0.472		μg/L		94	42 - 152	4	30
Benzo[g,h,i]perylene	0.5	0.509		μg/L		102	63 - 133	2	30
Benzo[k]fluoranthene	0.5	0.522		μg/L		104	56 - 145	1	30
Biphenyl	0.5	0.512		μg/L		102	56 - 119	5	30
Chrysene	0.5	0.528		μg/L		106	56 - 141	1	30

Eurofins Eaton Analytical Pomona

Prep Batch: O-42002_P

Page 12 of 81

Project/Site: RED-HILL

Method: 625 PAH Physis LL (EAL) + TICs - EPA 625 Base/Neutral and Acid Organics i (Continued)

Lab Sample ID: 108519-BS2	Client Sampl	e ID: Lab Control Sample Du	р
Matrix: BlankMatrix		Prep Type: Total/NA	4
Analysis Batch: O-42002		Prep Batch: O-42002_F	>
	Outlier LOOPIID LOOPIID	0/ D DDF	_

Spike	LCS DUP	LCS DUP				%Rec		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
0.5	0.471		μg/L		94	55 - 150	2	30
0.5	0.373		μg/L		75	50 - 150	7	30
0.5	0.538		μg/L		108	46 - 126	8	30
25	16.8		μg/L		67	50 - 150	19	30
0.5	0.624		μg/L		125	60 - 146	2	30
0.5	0.471		µg/L		94	58 - 131	7	30
0.5	0.458		μg/L		92	50 - 151	1	30
0.5	0.375		μg/L		75	41 - 126	8	30
0.5	0.449		µg/L		90	48 - 141	1	30
0.5	0.484		μg/L		97	67 - 127	2	30
0.5	0.573		μg/L		115	54 - 156	0	30
	Added 0.5 0.5 0.5 25 0.5 0.5 0.5 0.5	Added Result 0.5 0.471 0.5 0.373 0.5 0.538 25 16.8 0.5 0.624 0.5 0.471 0.5 0.458 0.5 0.375 0.5 0.449 0.5 0.484	Added Result Qualifier 0.5 0.471 0.5 0.373 0.5 0.538 25 16.8 0.5 0.624 0.5 0.471 0.5 0.458 0.5 0.375 0.5 0.449 0.5 0.484	Added Result Qualifier Unit 0.5 0.471 μg/L 0.5 0.373 μg/L 0.5 0.538 μg/L 25 16.8 μg/L 0.5 0.624 μg/L 0.5 0.471 μg/L 0.5 0.458 μg/L 0.5 0.375 μg/L 0.5 0.449 μg/L 0.5 0.484 μg/L	Added Result Qualifier Unit D 0.5 0.471 μg/L μg/L 0.5 0.373 μg/L μg/L 25 16.8 μg/L μg/L 0.5 0.624 μg/L μg/L 0.5 0.471 μg/L μg/L 0.5 0.375 μg/L μg/L 0.5 0.449 μg/L μg/L 0.5 0.484 μg/L μg/L	Added Result Qualifier Unit D %Rec 0.5 0.471 μg/L 94 0.5 0.373 μg/L 75 0.5 0.538 μg/L 108 25 16.8 μg/L 67 0.5 0.624 μg/L 125 0.5 0.471 μg/L 94 0.5 0.458 μg/L 92 0.5 0.375 μg/L 75 0.5 0.449 μg/L 90 0.5 0.484 μg/L 97	Added Result Qualifier Unit D %Rec Limits 0.5 0.471 μg/L 94 55 - 150 0.5 0.373 μg/L 75 50 - 150 0.5 0.538 μg/L 108 46 - 126 25 16.8 μg/L 67 50 - 150 0.5 0.624 μg/L 125 60 - 146 0.5 0.471 μg/L 94 58 - 131 0.5 0.458 μg/L 92 50 - 151 0.5 0.375 μg/L 75 41 - 126 0.5 0.449 μg/L 90 48 - 141 0.5 0.484 μg/L 97 67 - 127	Added Result Qualifier Unit D %Rec Limits RPD 0.5 0.471 μg/L 94 55 - 150 2 0.5 0.373 μg/L 75 50 - 150 7 0.5 0.538 μg/L 108 46 - 126 8 25 16.8 μg/L 67 50 - 150 19 0.5 0.624 μg/L 125 60 - 146 2 0.5 0.471 μg/L 94 58 - 131 7 0.5 0.458 μg/L 92 50 - 151 1 0.5 0.375 μg/L 75 41 - 126 8 0.5 0.449 μg/L 90 48 - 141 1 0.5 0.484 μg/L 97 67 - 127 2

LCS DUP LCS DUP

%Recovery	Qualifier	Limits
66		27 - 133
95		43 - 129
106		52 - 144
90		36 - 161
64		25 - 125
	66 95 106 90	95 106 90

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics

Lab Sample ID: 23VG39G13B Client Sample ID: Method Blank **Matrix: WATER** Prep Type: Total/NA

Analysis Batch: 23VG39G13

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
GASOLINE	ND	U	0.02		mg/L			07/24/23 16:32	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
BROMOFLUOROBENZENE						_		07/24/23 16:32	1

Lab Sample ID: 23VG39G13L **Client Sample ID: Lab Control Sample Matrix: WATER Prep Type: Total/NA**

Analysis Batch: 23VG39G13

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
GASOLINE	0.5	0.428		mg/L		86	60 - 130

LCS LCS %Recovery Qualifier Surrogate Limits BROMOFLUOROBENZENE 105 70 - 130

Eurofins Eaton Analytical Pomona

Project/Site: RED-HILL

Method: 8015 LL DRO/MRO/JP5/JP8 - 8015 - TPH DRO/ORO

Lab Sample ID: 23DSG037WB	Client Sample ID: Method Blank
Matrix: WATER	Prep Type: Total/NA

Matrix: WATER Analysis Batch: 23DSG037W

	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
DIESEL	ND	U	0.025	mg/L			07/28/23 19:29	1
JP5	ND	U	0.05	mg/L			07/28/23 19:29	1
JP8	ND	U	0.05	mg/L			07/28/23 19:29	1
MOTOR OIL	ND	U	0.05	mg/L			07/28/23 19:29	1

MB MB Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed BROMOBENZENE 07/28/23 19:29 **HEXACOSANE** 07/28/23 19:29

Lab Sample ID: 23DSG037WL **Client Sample ID: Lab Control Sample Matrix: WATER** Prep Type: Total/NA

Analysis Batch: 23DSG037W

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
DIESEL	2.5	2.13		mg/L		85	50 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
BROMOBENZENE	66		60 - 130
HEXACOSANE	87		60 - 130

Lab Sample ID: 23J5G037WL **Client Sample ID: Lab Control Sample Matrix: WATER** Prep Type: Total/NA

Analysis Batch: 23DSG037W

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
JP5	2.5	1.82		mg/L	_	73	30 - 160	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
BROMOBENZENE	74		60 - 130
HEXACOSANE	88		60 - 130

Lab Sample ID: 23J8G037WL **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: WATER

Analysis Batch: 23DSG037W

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
JP8	2.5	2.7		mg/L		108	30 - 160	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
BROMOBENZENE	94		60 - 130
HEXACOSANE	86		60 - 130

QC Association Summary

Client: City & County of Honolulu Job ID: 380-55685-2 Project/Site: RED-HILL

Subcontract

Analysis Batch: O-42002

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-55685-1	AIEA WELLS PUMPS 1&2 (260)	Total/NA	Drinking Water	625 PAH Physis	O-42002_P
				LL (EAL) + TICs	
108519-B1	Method Blank	Total/NA	BlankMatrix	625 PAH Physis	O-42002_P
				LL (EAL) + TICs	
108519-BS1	Lab Control Sample	Total/NA	BlankMatrix	625 PAH Physis	O-42002_P
				LL (EAL) + TICs	
108519-BS2	Lab Control Sample Dup	Total/NA	BlankMatrix	625 PAH Physis	O-42002_P
				LL (EAL) + TICs	

Analysis Batch: 23DSG037W

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-55685-1	AIEA WELLS PUMPS 1&2 (260)	Total/NA	Drinking Water	8015 LL	-
				DRO/MRO/JP5/J	
				P8	
23DSG037WB	Method Blank	Total/NA	WATER	8015 LL	
				DRO/MRO/JP5/J	
				P8	
23DSG037WL	Lab Control Sample	Total/NA	WATER	8015 LL	
				DRO/MRO/JP5/J	
				P8	
23J5G037WL	Lab Control Sample	Total/NA	WATER	8015 LL	
				DRO/MRO/JP5/J	
				P8	
23J8G037WL	Lab Control Sample	Total/NA	WATER	8015 LL	
				DRO/MRO/JP5/J	
				P8	

Analysis Batch: 23VG39G13

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-55685-1	AIEA WELLS PUMPS 1&2 (260)	Total/NA	Drinking Water	8015 Gas	
				(Purgeable) LL	
				(EAL)	
380-55685-2	TB: AIEA WELLS PUMPS 1&2 (260)	Total/NA	Water	8015 Gas	
				(Purgeable) LL	
				(EAL)	
23VG39G13B	Method Blank	Total/NA	WATER	8015 Gas	
				(Purgeable) LL	
				(EAL)	
23VG39G13L	Lab Control Sample	Total/NA	WATER	8015 Gas	
				(Purgeable) LL	
				(EAL)	

Prep Batch: O-42002_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-55685-1	AIEA WELLS PUMPS 1&2 (260)	Total/NA	Drinking Water	EPA_625	
108519-B1	Method Blank	Total/NA	BlankMatrix	EPA_625	
108519-BS1	Lab Control Sample	Total/NA	BlankMatrix	EPA_625	
108519-BS2	Lab Control Sample Dup	Total/NA	BlankMatrix	EPA 625	

Eurofins Eaton Analytical Pomona

Lab Chronicle

Client: City & County of Honolulu Job ID: 380-55685-2

Project/Site: RED-HILL

Client Sample ID: AIEA WELLS PUMPS 1&2 (260)

Lab Sample ID: 380-55685-1 Date Collected: 07/18/23 13:30 **Matrix: Drinking Water**

Date Received: 07/20/23 10:15

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst L	₋ab	or Analyzed
Total/NA	Prep	EPA_625		1	O-42002_P			07/21/23 00:00
Total/NA	Analysis	625 PAH Physis LL (EAL) + TICs		1	O-42002	YC		07/31/23 15:28
Total/NA	Analysis	8015 Gas (Purgeable) LL (EAL)		1	23VG39G13	SCerva		07/25/23 02:53
Total/NA	Analysis	8015 LL DRO/MRO/JP5/JP8		1	23DSG037W	SDees		07/29/23 00:29

Client Sample ID: TB: AIEA WELLS PUMPS 1&2 (260)

Lab Sample ID: 380-55685-2 Date Collected: 07/18/23 13:30 **Matrix: Water**

Date Received: 07/20/23 10:15

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor		Analyst	Lab	or Analyzed
Total/NA	Analysis	8015 Gas (Purgeable) LL (EAL)		1	23VG39G13	SCerva		07/25/23 03:30

Laboratory References:

= Physis Environmental Laboratories, 1904 Wright Circle, Anaheim, CA 92806

Method Summary

Client: City & County of Honolulu

Project/Site: RED-HILL

MethodMethod DescriptionProtocolLaboratory625EPA 625 Base/Neutral and Acid Organics iEPA

Protocol Laboratory

EPA

EPA

SW846

Job ID: 380-55685-2

Protocol References:

8015

8015B

EPA = US Environmental Protection Agency

8015 - TPH DRO/ORO

SW846 8015B Gasoline Range Organics

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

= Physis Environmental Laboratories, 1904 Wright Circle, Anaheim, CA 92806

4

^

7

10

11

13

14

Sample Summary

Client: City & County of Honolulu Project/Site: RED-HILL

Job ID: 380-55685-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
380-55685-1	AIEA WELLS PUMPS 1&2 (260)	Drinking Water	07/18/23 13:30	07/20/23 10:15
380-55685-2	TB: AIEA WELLS PUMPS 1&2 (260)	Water	07/18/23 13:30	07/20/23 10:15

LABORATORIES, INC.

3051 Fujita Street Torrance, CA 90505 Tel: (310)-618-8889

Date: 08-21-2023 EMAX Batch No.: 23G224

Attn: Jackie Contreras

Eurofins Eaton Analytical 750 Royal Oaks Dr., Suite 100 Monrovia, CA 91016-3629

Subject: Laboratory Report

Project: 380-55685

Enclosed is the Laboratory report for samples received on 07/21/23. The data reported relate only to samples listed below :

Sample ID	Control # Col Date	Matrix	Analysis
380-55685-1	G224-01 07/18/23	WATER	TPH GASOLINE TPH
380-55685-2	G224-02 07/18/23	WATER	TPH GASOLINE

The results are summarized on the following pages.

Please feel free to call if you have any questions concerning these results.

Sincerely yours,

Caspar J. Pang Laboratory Director

This report is confidential and intended solely for the use of the individual or entity to whom it is addressed. This report shall not be reproduced except in full or without the written approval of EMAX.

EMAX certifies that results included in this report meets all TNI & DOD requirements unless noted in the Case Narrative.

NELAP Accredited Certificate Number CA002912022-24 ANAB Accredited DoD ELAP and ISO/IEC 17025 Certificate Number L2278 Testing California ELAP Accredited Certificate Number 2672

Eurofins Eaton Analytical Pomona 941 Corporate Center Drive Pomona, CA 91768-2642 Phone: 626-386-1100

13 14

Chain of Custody Record

💸 eurofins

236224

Client Information (Sub Contract Lab) Client Contact Shipping/Receiving	Phone:		Arada E-Mail: Rache	Arada, Rachelle E-Mail: Rachelle.Arada@et.eurofinsus.com		State of Origin:
Company: EMAX Laboratories Inc			(0.3)	Accreditations Required (See note): State - Hawaii		380-55685-1
Address: 3051 Fujita Street,	Due Date Requested: 8/3/2023			Analysis	Requested	Preservation Codes:
City: Torrance	TAT Requested (days):		Netrograp			B - NaOH C - Zn Acetate
State, Zip: CA, 90505			Constitution in the			D - Nitric Acid E - NaHSO4
Phone:	PO#:		¥©crtanio))/ 801		G - Amchlor H - Ascorbic Acid
Email:	WO#		55-98s Y)	lo) L (EAL		I - Ice J - DI Water
Project Name:	Project #:		VPPIG	or N e) LL	iner	K-EDTA
RED-HILL	38001111			Yes o	ontal	C EDA
Sites Honolulu BWS Sites	SSOW#		0	ISD ((Purg (EAL) RO/M	of co	Other:
		Sample Type	Matrix (W=water,	Filtered Filtered 8015 Gas eable) LL 8015 LL D MRO/JP5/	Number	
Sample Identification - Client ID (Lab ID)	Sample Date	Time G=grab)	BT=Tissue, A=Air)	PE SU (P) SU DF	To	Special Instructions/Note:
	17			X	X	
AIEA WELLS PUMPS 1&2 (260) (380-55685-1)	7/18/23 Ha	13:30 awaiian	Water	×	ō	See Attached Instructions
7 TB: AIEA WELLS PUMPS 1&2 (260) (380-55685-2)	7/18/23 Ha	13:30 Hawaiian	Water	×	2	See Attached Instructions
Note: Since laboratory accreditations are subject to change, Eurofins Eaton Analytical, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/bests/matrix being analyzed, the samples must be shipped back to the Eurofins Eaton Analytical, LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Eaton Analytical, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Eaton Analytical, LLC.	ical, LLC places the owne s/matrix being analyzed, to is are current to date, retu	rship of method, analy he samples must be st Im the signed Chain o	∕te & accreditation on hipped back to the Efficient of Custody attesting t	ompliance upon our subcontract laboratories. The urofins Eaton Analytical, LLC laboratory or other to said compliance to Eurofins Eaton Analytical, I	is sample shipment is forwarded under instructions will be provided. Any char LC.	chain-of-custody. If the
Possible Hazard Identification Unconfirmed				Sample Disposal (A fee may be as	A fee may be assessed if samples are retained longer than 1 month) ant Disposal By Lab Archive For Mon	tained longer than 1 i Archive For
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	Rank: 2		Requireme		
Empty Kit Relinquished by:	Date:	e:		Time:	Method of Shipment:	
Relinquished by:	Date/Time:		Company	Received by:	フーシーン3	(3)
Relinquished by:	Date/Time:	14130	Company	Beceived by	Date/Time/21/23	1430 COMPANY
Reinquished by	Date/Time:		Company	Received by:	Date/Time:	
Custody Seals Intact: Custody Seal No.:				Cooler Temperature(s) °C and Other Remarks	arks 2.0/1.8 *cf:	·.6.Z
⇉	3	÷				- [

Environment Testing

le 3 of 35	peq	ujita St., Torrance, CA 9050				3224 10 07/22/23	8.0 187 ID: 230	REPC
60/70/	Mq JacQ	F COIL-RAM C	AR Jed	6	JO CELYND	الا لدامولط	Sample Labelin	BEALEMS:
y v	RIZ	anhason		D7¢	ן דע מעניואט	COC vs received	ner size mismatch	
	RII	AMMOMI		D23	Ę		formaim invoo 190	
			sug bute / tim			ons in COC/label	isal/date on correcti	inioN 01α
	6H		No sample for moisture deter			OOO ni bət	e received is not lis	D9 Sample
	8A	lved analysis	No filtration info for disso	DΣO		bevieser to	e listed in COC is n	D8 Sample
Sub	R7 Filter and preserved as necess		Insufficient Sample			C vs label	OOO dosemeim emi	D7 Date/T
	R6 Adjust pH as necessary	SVITEVI	Insufficient chemical presi	D18		ni b	əsəsibni ton zi əmi	D6 Date/T
ate and time+1 mm	RS Log-in with latest sampling da	C vs label	Preservation mismatch CC	ΔĬŒ		king] [broken]	ner -[improper] [lea	D2 Contai
	R4 Use vial with smallest bubble		Preservation not indicated			ni b	e ID is not indicate	D4 Sample
	R3 Cancel the analysis		No trip blank in cooler	sια			OOD datemaim oll s	
	R2 Refer to attached instruction	,	Bubble is >6mm	DIt	E 2/1	No label Ne 712	OOO dossmeim ei	ZQ Analys
C [] Tabel	RI Proceed as indicated in D CO		omiT gnibloH lo tuO	DI3			i bəsəsibni son si si	
	Code Description-Sample Mana	រព១ភាទនួន	Meseription-Sample Man	Code		រាឧឧកាខ	ption- Sample Ma	Code Descri
.ag.	Continue to next pa						:	recend
					ES □ NO	U WATER: U T	LKIX IS DKINKIN	SAMPLE MA
					OK 🗆 337		BSEKAVLION	
-1-1								
[2/52/L W	eming find sampling time.	ysis are received beyond 15 i	ater samples for pH analy	W .ei	nim č1 si solq	nt for water sam	g time requireme	niblod Hq 🗆
		22/60 451						
							-	
	<u> </u>							:
/						· ·		
	-			· ·				
		sh:sl	SM DARG FINE	220		NL	7	
		, , , , , , , , , , , , , , , , , , , ,	- '/	Ic	I.	9/5		
	17.	, ,	595/598 No				gradung	ona
Action	Corrective	noilsemolul \ UI lad	ClientSample La	SboD	Glasnietno	Oslqmg2dg1	SampleID	
							ANCIES	DISCREP
				-				Note:
		1	EDIATELY.	IMMI	was informed	MG .agner 10 tu	Temperature is o	Comments:
	N/S - a	N/S - 2	61831611 N/S - 8		8017	98122N/S(P)	:aəjəino	шлэцТ
Cooler 100C	Cooler 9	Cooler 8		C00		Cooler 6	7.0- (uəzon)	(Cool, ≤6 °C but not
Cooler 5	O° C00ler 4	Cooler 3	Jer 2 OC	C00	J. 8.1/	. ZCooler 1 2.0		Temperatures
	. Sufficient	□ Popeorn	msolonyi2 🗆		3	los9 olddug	factor:	Packaging
		Damaged 🗆	Intact		Í.	□ Custody Ses	correction	Condition
		□ Otper	. gox □			Z Coojei.		Container
	• .	,				NO	ING INSPECTION	PACKAG
								Ноге:
		beniuper gnineerse baA 🗆	D From Superfund Site	pai	ostions expec	☐ High concer	(Yns 1	Safety Issues (i
TAT	Preservative (if any)	A Analysis Required	☐ Courier Signature			Tel#/Fax#		Seattle Address
XIUEM Z	Sample ID	Sampling Date/Time	☐ Sampler Name			Client PM/F	ə	Client Name
xirteM 🗹	(II alama2 IX	amiltone 2 [7]	KIn3 [COCINSE
Time 14:30	Dale 07/21/23						rier Client Deli	
Sound-Silos	Recipient To CE 14 M.							□ Fedex □
	FCN 52C1C	S Mumber	Airbill / Trackir		1	Yısvilə	Type of D	

SYMBLE RECEIPT FORM 1
REFERENCE: EMAX-SM02 Rev. 12

E WAX

REPORTING CONVENTIONS

DATA QUALIFIERS:

Lab Qualifier	AFCEE Qualifier	Description
J	F	Indicates that the analyte is positively identified and the result is less than RL but greater than MDL.
N		Indicates presumptive evidence of a compound.
В	В	Indicates that the analyte is found in the associated method blank as well as in the sample at above QC level.
E	J	Indicates that the result is above the maximum calibration range or estimated value.
*	*	Out of QC limit.

Note: The above qualifiers are used to flag the results unless the project requires a different set of qualification criteria.

ACRONYMS AND ABBREVIATIONS:

CRDL	Contract Required Detection Limit
RL	Reporting Limit
MRL	Method Reporting Limit
PQL	Practical Quantitation Limit
MDL	Method Detection Limit
DO	Diluted out

DATES

The date and time information for leaching and preparation reflect the beginning date and time of the procedure unless the method, protocol, or project specifically requires otherwise.

4

5

6

8

10

11

13

14

LABORATORY REPORT FOR

EUROFINS EATON ANALYTICAL

380-55685

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

SDG#: 23G224

REPORT ID: 23G224

Client: EUROFINS EATON ANALYTICAL

Project: 380-55685

SDG : 23G224

METHOD 5030B/8015B

TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

A total of two(2) water samples were received on 07/21/23 to be analyzed for Total Petroleum Hydrocarbons by Purge and Trap in accordance with Method 5030B/8015B and project specific requirements.

Holding Time

Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried out on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details. MRL was analyzed as required by the project. Refer to MRL summary form for details.

Method Blank

Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one(1) method blank was analyzed. VG39G13B - result was compliant to project requirement. Refer to sample result summary form for details.

Lab Control Sample

Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of LCS/LCD was analyzed. VG39G13L/VG39G13C were within LCS limits. Refer to LCS summary form for details.

Matrix QC Sample

Matrix spike sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of MS/MSD was analyzed. Gasoline was within MS QC limits in G209-01M/G209-01S. Refer to Matrix QC summary form for details.

Surrogate

Surrogate was added on QC and field samples. All surrogate recoveries were within QC limits. Refer to sample result summary forms for details.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

Client : Project :	EUROFINS EATON ANALYTICAL 380-55685							SDG NO. : 23G224 Instrument ID : GCT039
				MA	WATER			
Client	Laboratory	Dilution	Ж	Analysis	Extraction	Sample	Calibration Prep.	n Prep.
Sample ID	Sample ID	Sample ID Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch Notes
		:	:			:	:	******************
MBI K1W	VG39G13B	1	¥	07/24/2316:32	07/24/2316:32	EG24005A	EG24004A	23VG39G13 Method Blank
I CSTW	VG39613L	-	¥	07/24/2318:24	07/24/2318:24	EG24008A	EG24004A	23VG39G13 Lab Control Sample (LCS)
LCD1W	VG39G13C	1	M	07/24/2319:02	07/24/2319:02	EG24009A	EG24004A	
380-55685-1	6224-01	1	¥	07/25/2302:53	07/25/2302:53	EG24019A	EG24014A	23VG39G13 Field Sample
380-55685-2	6224-02	1	¥	07/25/2303:30	07/25/2303:30	EG24020A	EG24014A	23VG39G13 Field Sample

FN - Filename % Moist - Percent Moisture

SAMPLE RESULTS

R

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

			7-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-
Client :	EUROFINS EATON ANALYTICAL	Date Collected:	07/18/23 13:30
Project :	380 - 55685	Date Received:	07/21/23
Batch No. :	23G224	Date Extracted:	07/25/23 02:53
Sample ID :	380-55685-1	Date Analyzed:	07/25/23 02:53
Lab Samp ID:	G224-01	Dilution Factor:	1
Lab File ID:	EG24019A	Matrix:	WATER
Ext Btch ID:	23VG39G13	% Moisture:	NA

	RESULTS	RL	MDL	
PARAMETERS	(mg/L)	(mg/L)	(mg/L)	
GASOLINE	ND	0.020	0.010	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT

0.0400

0.0293

Notes:

Parameter H-C Range Gasoline C6-C10

Calib. Ref.: EG24014A

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 5ml

Final Volume : 5ml

73

60-140

Instrument ID: 39

Prepared by

Bromofluorobenzene

: CMpang

Analyzed by : CMpang

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

Client	: EUROFINS EATON ANALYTICAL	Date Collected: 07/18/23 1	13:30

Project Date Received: 07/21/23 : 380-55685

Batch No. : 23G224 Date Extracted: 07/25/23 03:30 Sample ID : 380-55685-2 Date Analyzed: 07/25/23 03:30

Dilution Factor: 1 Lab Samp ID: G224-02 Matrix: WATER Lab File ID: EG24020A Ext Btch ID: 23VG39G13 % Moisture: NA

Calib. Ref.: EG24014A Instrument ID: 39

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
GASOLINE	ND	0.020	0.010	
SURROGATE PARAMETERS	RESULT	SPK_AMT	*RECOVERY	QC LIMIT
Bromofluorobenzene	0.0285	0.0400	71	60-140

Notes:

Parameter H-C Range Gasoline C6-C10

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 5ml Final Volume : 5ml

Analyzed by : CMpang Prepared by : CMpang

QC SUMMARIES

2

4

5

b

8

3

11

12

14

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

Client :	EUROFINS EATON ANALYTICAL	Date Collected:	07/24/23 16:32
Project :	380 - 55685	Date Received:	07/24/23
Batch No. :	23G224	Date Extracted:	07/24/23 16:32
Sample ID :	MBLK1W	Date Analyzed:	07/24/23 16:32
Lab Samp ID:	VG39G13B	Dilution Factor:	1
Lab File ID:	EG24005A	Matrix:	WATER
Ext Btch ID:	23VG39G13	% Moisture:	NA
Calib. Ref.:	EG24004A	Instrument ID:	39

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
GASOLINE	ND	0.020	0.010	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromofluorobenzene	0.0324	0.0400	81	60-140

Notes:

Parameter H-C Range Gasoline C6-C10

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 5ml

Final Volume : 5ml

Prepared by

: CMpang

Analyzed by : CMpang

EMAX QUALITY CONTROL DATA LAB CONTROL SAMPLE ANALYSIS

CLIENT

: EUROFINS EATON ANALYTICAL

PROJECT

: 380-55685

BATCH NO.

: 23G224

METHOD

: 5030B/8015B

MA	TR	ΤX
11/17		T V

: WATER

DILUTION FACTOR: 1

SAMPLE ID : MBLK1W

LAB SAMPLE ID : VG39G13B LAB FILE ID : EG24005A

DATE PREPARED : 07/24/23 16:32 DATE ANALYZED : 07/24/23 16:32

PREP BATCH

: 23VG39G13

CALIBRATION REF: EG24004A

LCS1W VG39G13L EG24008A

07/24/23 18:24 07/24/23 18:24

23VG39G13 EG24004A

% MOISTURE:NA

LCD1W

VG39G13C EG24009A 07/24/23 19:02

07/24/23 19:02 23VG39G13

EG24004A

ACCESSION:

MBResult SpikeAmt LCSResult LCSRec SpikeAmt LCDResult LCDRec RPD QCLimit MaxRPD **PARAMETERS** (mg/L) (mg/L) (mg/L) (%) (mg/L) (mg/L) (%) (%) (%) (%) 0.428 86 0.500 0.415 60-130 Gasoline ND 0.500 83 3 30

SURROGATE PARAMETER	SpikeAmt (mg/L)	LCSResult (mg/L)	LCSRec (%)	SpikeAmt (mg/L)	LCDResult (mg/L)	LCDRec	QCLimit (%)
Bromofluorobenzene	0.0400	0.0419	105	0.0400	0.0402	101	70-130

MB: Method Blank sample LCS: Lab Control Sample LCD: Lab Control Sample Duplicate

EMAX QUALITY CONTROL DATA MS/MSD ANALYSIS

CLIENT

: EUROFINS EATON ANALYTICAL

PROJECT

: 380-55688

BATCH NO. **METHOD**

: 23G209 : 5030B/8015B

MATRIX

SAMPLE ID

: WATER

DILUTION FACTOR: 1 : 380-55688-1

LAB SAMPLE ID : G209-01

LAB FILE ID : EG24010A

DATE PREPARED : 07/24/23 19:39

DATE ANALYZED : 07/24/23 19:39

PREP BATCH

: 23VG39G13 CALIBRATION REF: EG24004A

380-55688-1MS

G209-01M EG24011A

07/24/23 20:16 07/24/23 20:16

23VG39G13 EG24004A

% MOISTURE:NA

380-55688-1MSD G209-01S

EG24012A

07/24/23 22:32 07/24/23 22:32

23VG39G13 EG24004A

ACCESSION:

PSResult SpikeAmt MSResult MSRec SpikeAmt MSDResult MSDRec RPD QCLimit MaxRPD PARAMETERS (mg/L) (mg/L) (mg/L) (%) (mg/L) (mg/L) (%) (%) (%) (%) 0.479 0.500 0.494 50-130 Gasoline ND 0.500 96 99 3 30

SURROGATE PARAMETER	SpikeAmt	MSResult	MSRec	SpikeAmt	MSDResult	MSDRec	QCLimit
	(mg/L)	(mg/L)	(%)	(mg/L)	(mg/L)	(%)	(%)
Bromofluorobenzene	0.0400	0.0423	106	0.0400	0.0445	111	60-140

PS: Parent Sample MS: Matrix Spike MSD: Matrix Spike Duplicate

REPORT ID: 23G224

Page 14 of 35/2023

LABORATORY REPORT FOR

EUROFINS EATON ANALYTICAL

380-55685

METHOD 3520C/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

SDG#: 23G224

Client : EUROFINS EATON ANALYTICAL

Project: 380-55685

SDG : 23G224

METHOD 3520C/8015B

TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

One (1) water sample was received on 07/21/23 to be analyzed for Total Petroleum Hydrocarbons by Extraction in accordance with Method 3520C/8015B and project specific requirements.

Holding Time

The sample was analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried out on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details. MRL was analyzed as required by the project. Refer to MRL summary form for details.

Method Blank

Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one(1) method blank was analyzed. DSG037WB - result was compliant to project requirement. Refer to sample result summary form for details.

Lab Control Sample

Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) LCS was analyzed. Percent recovery for Diesel was within LCS QC limits in DSG037WL. Refer to LCS summary form for details.

Matrix QC Sample

Matrix spike sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of MS/MSD was analyzed. Diesel was within MS QC limits in 23G182-01M/23G182-01S. Refer to Matrix QC summary form for details.

Surrogate

Surrogates were added on QC and field samples. All surrogate recoveries were within QC limits. Refer to sample result summary forms for details.

Sample Analysis

The sample was analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

Client : EUROFINS EATON ANALYTICAL

Project: 380-55685

: 23G224 SDG

METHOD 3520C/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

One(1) water sample was received on 07/21/23 to be analyzed for Petroleum Hydrocarbons by Extraction in accordance with Method 3520C/8015B and project specific requirements.

Holding Time

The sample was analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICÁL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried out on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details. MRL was analyzed as required by the project. Refer to MRL summary form for details.

Method Blank

Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one (1) method blank was analyzed. DSG037WB - result was compliant to project requirement. Refer to sample result summary form for details.

Lab Control Sample

Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) LCS was analyzed. Percent recovery for JP5 was within LCS QC limits in J5G037WL. Refer to LCS summary form for details.

Matrix QC Sample

Matrix spike sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of MS/MSD was analyzed. JP5 was within MS QC limits in 23G182-01M/23G182-01S. Refer to Matrix QC summary form for details.

Surrogate

Surrogates were added on QC and field samples. All surrogate recoveries were within QC limits. Refer to sample result summary forms for details.

Sample Analysis

The sample was analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

Client : EUROFINS EATON ANALYTICAL

Project: 380-55685

SDG : 23G224

METHOD 3520C/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

One(1) water sample was received on 07/21/23 to be analyzed for Petroleum Hydrocarbons by Extraction in accordance with Method 3520C/8015B and project specific requirements.

Holding Time

The sample was analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried out on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details. MRL was analyzed as required by the project. Refer to MRL summary form for details.

Method Blank

Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one(1) method blank was analyzed. DSG037WB - result was compliant to project requirement. Refer to sample result summary form for details.

Lab Control Sample

Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) LCS was analyzed. Percent recovery for JP8 was within LCS QC limits in J8G037WL. Refer to LCS summary form for details.

Matrix QC Sample

Matrix spike sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of MS/MSD was analyzed. JP8 was within MS QC limits in 23G183-01M/23G183-01S. Refer to Matrix QC summary form for details.

Surrogate

Surrogates were added on QC and field samples. All surrogate recoveries were within QC limits. Refer to sample result summary forms for details.

Sample Analysis

The sample was analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

LAB CHRONICLE TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

SDG NO. : 23G224 Instrument ID : D5	MATER	% Analysis Extraction Sample	Moist DateTime DateTime Data FN		NA 07/28/2319:29 07/27/2312:30 LG28022A LG28016A 2	~	1 NA 07/29/2300:29 07/27/2312:30 LG28038A LG28016A 23DSG037W Field Sample
		Ж	Moist	:	NA	_	1 NA 07
: EUROFINS EATON ANALYTICAL : 380-55685		Laboratory	Sample ID Factor		DSG037WB	DSG037WL	G224·01
Client : Project :		Client	Sample ID		MBLK1W	CS1W	380-55685-1

FN - Filename % Moist - Percent Moisture

SDG NO. : 23G224 Instrument ID : D5	rep. Satch Notes 23DSG037W Method Blank 23DSG037W Lab Control Sample (LCS)
S	Calibration Prep. Data FN Batch LG28017A 23DSG0: LG28017A 23DSG0:
	Sample Data FN LG2802A LG28034A
-	Extraction DateTime 07/27/2312:30 07/27/2312:30
	MATER Analysis DateTime 07/28/2319:29 07/28/2320:07
	% Moist NA NA NA
	Dilution Factor
I ANALYTICAL	Laboratory Dilution Sample ID Factor DSG037WB 1 J5G037WL 1 G224-01 1
: EUROFINS EATON ANALYTICAL : 380-55685	1
Client Project	Client Sample ID

FN - Filename % Moist - Percent Moisture

23DSG037W Method Blank 23DSG037W Lab Control Sample (LCS) 23DSG037W Field Sample

LG28018A LG28018A LG28018A

LG28022A LG28025A LG28038A

07/27/2312:30 07/27/2312:30 07/27/2312:30

07/28/2319:29 07/28/2320:25 07/29/2300:29

¥¥¥

DSG037WB 38G037WL G224-01

380-55685-1

LCS1W

FN - Filename % Moist - Percent Moisture

Notes

Calibration Prep. Data FN Batch

Sample Data FN :

Extraction DateTime

WATER

Analysis DateTime

Moist

Dilution Factor :

Laboratory Sample ID

> Sample ID MBLK1W

Client

: EUROFINS EATON ANALYTICAL : 380-55685

Client Project

: 23G224 : D5

SDG NO. Instrument ID

SAMPLE RESULTS

Client : EUROFINS EATON ANALYTICAL Date Collected: 07/18/23 13:30

: 380-55685 Project

Date Received: 07/21/23

Batch No. : 23G224

Date Extracted: 07/27/23 12:30

Sample ID : 380-55685-1

Date Analyzed: 07/29/23 00:29

Lab Samp ID: 23G224-01 Lab File ID: LG28038A

Dilution Factor: 1

Ext Btch ID: 23DSG037W

Matrix: WATER % Moisture: NA

Calib. Ref.: LG28016A

Instrument ID: D5

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
Diesel	ND	0.030	0.015	
Motor Oil	ND	0.059	0.030	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromobenzene	0.435	0.590	74	60 - 130
Hexacosane	0.127	0.148	86	60 - 130

Notes:

Parameter

H-C Range

Diesel

C10-C24

Motor Oil

C24-C36

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 850ml

Final Volume : 5ml

Prepared by

: RGalan

Analyzed by : SDeeso

Client : EUROFINS EATON ANALYTICAL Date Collected: 07/18/23 13:30

Project : 380-55685 Batch No. : 23G224

Date Received: 07/21/23 Date Extracted: 07/27/23 12:30

Sample ID : 380-55685-1

Date Analyzed: 07/29/23 00:29

Lab Samp ID: 23G224-01 Lab File ID: LG28038A

Dilution Factor: 1

Ext Btch ID: 23DSG037W Calib. Ref.: LG28017A

Matrix: WATER % Moisture: NA Instrument ID: D5

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
JP5	ND	0.059	0.030	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT

SOUTH TANGETERS	KLOOLI	0. K_7411	ALLOGICA	40	
	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
Bromobenzene	0.435	0.590	74	60-130	
Hexacosane	0.127	0.148	86	60-130	

Notes:

: Reporting Limit

Parameter

H-C Range

C8-C18

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 850ml

Final Volume : 5ml

Prepared by

: RGalan

Analyzed by : SDeeso

Client : EUROFINS EATON ANALYTICAL Date Collected: 07/18/23 13:30

Project : 380-55685 Date Received: 07/21/23

Batch No. : 23G224 Sample ID : 380-55685-1 Date Extracted: 07/27/23 12:30 Date Analyzed: 07/29/23 00:29

Lab Samp ID: 23G224-01 Lab File ID: LG28038A

Dilution Factor: 1

Ext Btch ID: 23DSG037W

Matrix: WATER % Moisture: NA

Calib. Ref.: LG28018A

Instrument ID: D5

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
JP8	ND	0.059	0.030	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromobenzene Hexacosane	0.435 0.127	0.590 0.148	74 86	60-130 60-130

Notes:

: Reporting Limit

Parameter

H-C Range

JP8

C8-C18

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 850ml

Final Volume : 5ml

Prepared by

: RGalan

Analyzed by : SDeeso

QC SUMMARIES

: EUROFINS EATON ANALYTICAL Date Collected: 07/27/23 12:30

Date Received: 07/27/23

: 380-55685 Project Batch No. : 23G224 Date Extracted: 07/27/23 12:30 Sample ID : MBLK1W Date Analyzed: 07/28/23 19:29

Lab Samp ID: DSG037WB Dilution Factor: 1 Lab File ID: LG28022A Matrix: WATER Ext Btch ID: 23DSG037W % Moisture: NA

Calib. Ref.: LG28016A Instrument ID: D5

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
Diesel	ND	0.025	0.012	
Motor Oil	ND	0.050	0.025	
SURROGATE PARAMETERS	RESULT	SPK_AMT	*RECOVERY	QC LIMIT
Bromobenzene	0.330	0.500	66	60-130
Hexacosane	0.108	0.125	87	60-130

Notes:

Client

Parameter H-C Range Diesel C10-C24

Motor 011 C24-C36

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Final Volume : 5ml Sample Amount : 1000ml

Analyzed by : SDeeso Prepared by : RGalan

EMAX QUALITY CONTROL DATA LAB CONTROL SAMPLE ANALYSIS

CLIENT

: EUROFINS EATON ANALYTICAL

PROJECT

: 380-55685

BATCH NO.

: 23G224

METHOD

: 3520C/8015B

MATRIX

: WATER

% MOISTURE:NA

DILUTION FACTOR: 1

: MBLK1W

LCS1W

SAMPLE ID

LAB SAMPLE ID : DSG037WB

DSG037WL

LAB FILE ID : LG28022A

LG28023A

DATE PREPARED : 07/27/23 12:30

07/27/23 12:30

DATE ANALYZED : 07/28/23 19:29

07/28/23 19:48

PREP BATCH

: 23DSG037W

23DSG037W

CALIBRATION REF: LG28016A

LG28016A

ACCESSION:

PARAMETERS Diesel	MBResult (mg/L) ND	SpikeAmt (mg/L) 2.50	LCSResult (mg/L)	LCSRec (%) 85	QCLimit (%) 50-130
SURROGATE PARAMETERS Bromobenzene		SpikeAmt (mg/L)	LCSResult (mg/L)	LCSRec (%) 	QCLimit (%)
Hexacosane		0.125	0.109	87	60-130

MB: Method Blank sample LCS: Lab Control Sample

EMAX QUALITY CONTROL DATA MS/MSD ANALYSIS

CLIENT

: EUROFINS EATON ANALYTICAL

PROJECT

: 380-55350

BATCH NO. METHOD

: 23G182 : 3520C/8015B

MATRIX

: WATER

% MOISTURE:NA

DILUTION FACTOR: 1

SAMPLE ID

: 380-55350-1

380-55350-1MS 23G182-01M

380-55350-1MSD

LAB SAMPLE ID : 23G182-01

: LG28026A

23G182-01S

LAB FILE ID

LG28027A

LG28028A

DATE PREPARED : 07/27/23 12:30 DATE ANALYZED : 07/28/23 20:44

07/27/23 12:30 07/28/23 21:03 07/27/23 12:30 07/28/23 21:22

PREP BATCH

23DSG037W

23DSG037W

CALIBRATION REF: LG28016A

: 23DSG037W

LG28016A

LG28016A

ACCESSION:

PSResult SpikeAmt MSResult MSRec SpikeAmt MSDResult MSDRec RPD QCLimit MaxRPD **PARAMETERS** (mg/L) (mg/L) (mg/L) (%) (mg/L) (mg/L) (%) (%) (%) (%) Diesel ND 2.90 2.90 100 2.90 2.80 97 4 50-130 30

	SpikeAmt	MSResult	MSRec	SpikeAmt	MSDResult	MSDRec	QCLimit
SURROGATE PARAMETERS	(mg/L)	(mg/L)	(%)	(mg/L)	(mg/L)	(%)	(%)
• • • • • • • • • • • • • • • • • • • •			• • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
Bromobenzene	0.580	0.442	76	0.580	0.454	78	60-130
Hexacosane	0.145	0.147	101	0.145	0.140	97	60-130

PS: Parent Sample MS: Matrix Spike MSD: Matrix Spike Duplicate

METHOD 3520C/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

Client : EUROFINS EATON ANALYTICAL Date Collected: 07/27/23 12:30

Project : 380-55685 Date Received: 07/27/23

Batch No. : 23G224 Date Extracted: 07/27/23 12:30 Sample ID : MBLK1W Date Analyzed: 07/28/23 19:29

Lab Samp ID: DSG037WB Dilution Factor: 1

Lab File ID: LG28022A Matrix: WATER Ext Btch ID: 23DSG037W % Moisture: NA Calib. Ref.: LG28017A Instrument ID: D5

PARAMETERS JP5	RESULTS (mg/L) ND	RL (mg/L) 0.050	MDL (mg/L) 0.25	
SURROGATE PARAMETERS Bromobenzene Hexacosane	0.330 0.108	SPK_AMT 0.500 0.125	%RECOVERY 66 87	QC LIMIT 60-130 60-130

Notes:

RL : Reporting Limit

Parameter H-C Range

JP5 C8-C18

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 1000ml Final Volume : 5ml

ampre Amount : 1000mi Final volume : 5m

Prepared by : RGalan Analyzed by : SDeeso

EMAX QUALITY CONTROL DATA LAB CONTROL SAMPLE ANALYSIS

CLIENT

: EUROFINS EATON ANALYTICAL

PROJECT

: 380-55685

BATCH NO.

: 23G224

METHOD

: 3520C/8015B

MATRIX

: WATER

% MOISTURE:NA

DILUTION FACTOR: 1

SAMPLE ID

: MBLK1W

LCS1W J5G037WL

LAB SAMPLE ID : DSG037WB LAB FILE ID

LG28024A

DATE PREPARED : 07/27/23 12:30

: LG28022A

07/27/23 12:30

DATE ANALYZED : 07/28/23 19:29

LCSResult LCSRec

(%)

73

74

87

(mg/L)

1.82

LCSResult LCSRec

(mg/L)

0.371

0.109

QCLimit

(%)

30-160

QCLimit

(%)

60-130

60-130

07/28/23 20:07

PREP BATCH

: 23DSG037W

23DSG037W

CALIBRATION REF: LG28017A

LG28017A

(mg/L)

2.50

SpikeAmt

(mg/L)

0.500

0.125

MBResult SpikeAmt

(mg/L)

ND

ACCESSION:

PARAMETERS

JP5

SURROGATE PARAMETERS

.

Bromobenzene

Hexacosane

MB: Method Blank sample LCS: Lab Control Sample

PROJECT : 3 BATCH NO. : 2	EUROFINS EATON ANA 380-55350 23G182 3520C/8015B	ALYTICAL								
LAB SAMPLE ID : 1 LAB FILE ID : 1 DATE PREPARED : (DATE ANALYZED : (1 380-55350-1 23G182-01 LG28026A 07/27/23 12:30 07/28/23 20:44 23DSG037W	23G1 LG28 07/2 07/2 23D5	-55350-1MS .82-01M .8029A .27/23 12:30 .28/23 21:40 .60037W .8017A			1 380-55 23G182 LG2803 07/27/	0A 23 12:30 23 21:59 37W			
PARAMETERS		•	MSResult (mg/L)		SpikeAmt (mg/L)		MSDRec (%)		QCLimit	MaxRPD
JP5	ND ND	2.78	2.40	86	2.88	2.21	77	8	30-160	30
SURROGATE PARAMETE	ERS	SpikeAmt (mg/L)	MSResult (mg/L)		SpikeAmt (mg/L)				QCLimit (%)	
Bromobenzene	•••	0.555	0.456	82	0.575	0.406	71		60-130	•

PS: Parent Sample MS: Matrix Spike MSD: Matrix Spike Duplicate

0.139

0.127

92

0.144

0.128

89

60-130

Hexacosane

METHOD 3520C/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

Client : EUROFINS EATON ANALYTICAL Date Collected: 07/27/23 12:30

Project : 380-55685 Date Received: 07/27/23

Date Extracted: 07/27/23 12:30 Batch No. : 23G224 Sample ID : MBLK1W Date Analyzed: 07/28/23 19:29

Lab Samp ID: DSG037WB Dilution Factor: 1 Lab File ID: LG28022A

Matrix: WATER Ext Btch ID: 23DSG037W % Moisture: NA Calib. Ref.: LG28018A Instrument ID: D5

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
JP8	ND	0.050	0.025	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromobenzene Hexacosane	0.330 0.108	0.500 0.125	66 87	60 - 130 60 - 130

Notes:

RL: Reporting Limit

Parameter H-C Range

JP8 C8-C18

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Final Volume : 5ml Sample Amount : 1000ml

Prepared by : RGalan Analyzed by : SDeeso

EMAX QUALITY CONTROL DATA LAB CONTROL SAMPLE ANALYSIS

CLIENT

: EUROFINS EATON ANALYTICAL

PROJECT

: 380-55685

BATCH NO. METHOD

: 23G224 : 3520C/8015B

MATRIX

: WATER

% MOISTURE:NA

DILUTION FACTOR: 1

SAMPLE ID

: MBLK1W

LCS1W J8G037WL

LAB SAMPLE ID : DSG037WB

LG28025A

LAB FILE ID : LG28022A DATE PREPARED : 07/27/23 12:30

DATE ANALYZED : 07/28/23 19:29

07/27/23 12:30

07/28/23 20:25

PREP BATCH

: 23DSG037W

23DSG037W

CALIBRATION REF: LG28018A

LG28018A

ACCESSION:

PARAMETERS JP8	MBResult (mg/L) 	SpikeAmt (mg/L) 2.50	LCSResult (mg/L)	LCSRec (%) 	QCLimit (%) 30-160
SURROGATE PARAMETERS		SpikeAmt (mg/L)	LCSResult	LCSRec	QCLimit
Bromobenzene		0.500	0.471	94	60-130
Hexacosane		0.125	0.108	86	60-130

MB: Method Blank sample LCS: Lab Control Sample

EMAX QUALITY CONTROL DATA MS/MSD ANALYSIS

CLIENT

: EUROFINS EATON ANALYTICAL

PROJECT

: 380-55362

BATCH NO. **METHOD**

: 23G183 : 3520C/8015B

MATRIX

SAMPLE ID

: WATER

DILUTION FACTOR: 1

: 380-55362-1

LAB SAMPLE ID : 23G183-01

LAB FILE ID : LG28031A

DATE PREPARED : 07/27/23 12:30 DATE ANALYZED : 07/28/23 22:18

: 23DSG037W

PREP BATCH CALIBRATION REF: LG28018A 1

380-55362-1MS 23G183-01M

LG28032A

07/27/23 12:30 07/28/23 22:36

23DSG037W LG28018A

% MOISTURE:NA

380-55362-1MSD 23G183-01S

LG28033A

07/27/23 12:30 07/28/23 22:55

23DSG037W LG28018A

ACCESSION:

RPD QCLimit MaxRPD MSDResult MSDRec MSRec SpikeAmt PSResult SpikeAmt MSResult (mg/L) (%) (%) (%) (%) (mg/L)(mg/L) (%) (mg/L) **PARAMETERS** (mg/L) 9 30 ND 2.85 3.01 106 2.85 3.29 115 30-160 JP8

SURROGATE PARAMETERS	SpikeAmt (mg/L)	MSResult (mg/L)	MSRec (%)	SpikeAmt (mg/L)	MSDResult (mg/L)	MSDRec (%)	QCLimit (%)
Bromobenzene	0.570	0.547	96	0.570	0.575	101	60-130
Hexacosane	0.142	0.122	86	0.142	0.130	91	60-130

PS: Parent Sample MS: Matrix Spike MSD: Matrix Spike Duplicate

REPORT ID: 23G224

Page 35 of 35/2023

August 02, 2023

Rachelle Arada **Eurofins Eaton Analytical** 750 Royal Oaks Drive Suite 100 Monrovia, CA 91016-

Project Name: RED-HILL Project # 38001111 Job # 380-55685-1

Physis Project ID: 1407003-424

Dear Rachelle,

Enclosed are the analytical results for the sample submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 7/21/2023. A total of 1 sample was received for analysis in accordance with the attached chain of custody (COC). Per the COC, the sample was analyzed for:

Organics	
Polynuclear Aromatic Hydrocarbons by EPA 625.1	
Disalicylidenepropanediamine by EPA 625.1	
Dibenzo [a,l] Pyrene w/ PAHs by EPA 625.1	

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Misty Mercier 714 602-5320 Extension 202 mistymercier@physislabs.com

PROJECT SAMPLE LIST

Eurofins Eaton Analytical

PHYSIS Project ID: 1407003-424

Total Samples: 1

RED-HILL Project # 38001111 Job # 380-55685-1 PHYSIS ID Sample ID Date Matrix Description Time Sample Type 108520 AIEA WELLS PUMPS 1&2 (260) 380-55685-1 7/18/2023 13:30 Samplewater Not Specified

i - 2 of 6

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS ₂	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

i - 4 of 6

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

4 5

6

8

10

13

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
E	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
М	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

CASE NARRATIVE

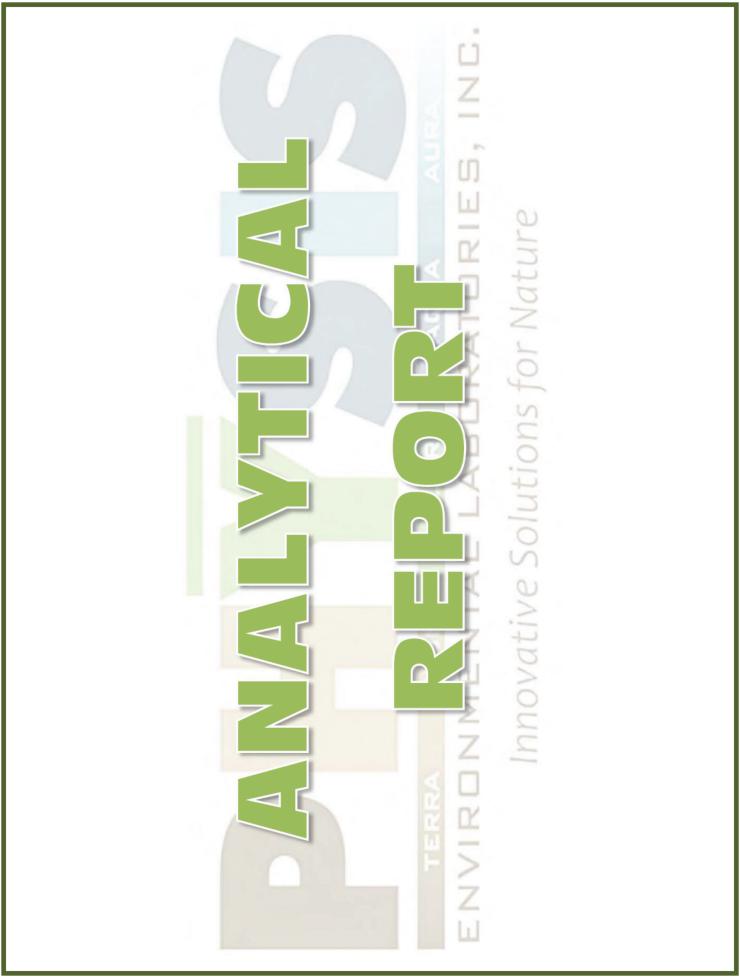
QUALIFIER NOTES

In addition to the use of analyte specific Physis Qualifier Codes where applicable, the following were also noted.

ND

MDL is listed due to report format restrictions; it is not used in reporting. Analytical results reported are ND at the RL.

5


6

8

9

12

13

Page 61 of 81 11/21/2023

Project: RED-HILL Project # 38001111 Job # 380-55685-1

Innovative Solutions for Nature

ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE Batch II	Date Processed	Date Analyzed
Sample ID: 108520-R1	AIEA WELLS PUMPS 18	(2 (260) 380-	Matrix: Sampl	lewate	r		Sampled:	18-Jul-23 13:30	Received:	21-Jul-23

Page 62 of 81 11/21/2023

PHYSIS Project ID: 1407003-424 Client: Eurofins Eaton Analytical

Project: RED-HILL Project # 38001111 Job # 380-55685-1

Polynuclear Aromatic Hydrocarbons

	1 oryfraeledi 7 il offia de Try di ocal Bolis												
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE Batch ID	Date Processed	Date Analyzed			
Sample ID: 108520-R1	AIEA WELLS PUMPS 18	k2 (260) 380- M	atrix: Sampl	lewate	-		Sampled:	18-Jul-23 13:30	Received:	21-Jul-23			
(d10-Acenaphthene)	EPA 625.1	% Recovery	78	1			Total	0-42002	21-Jul-23	31-Jul-23			
(d10-Phenanthrene)	EPA 625.1	% Recovery	119	1			Total	0-42002	21-Jul-23	31-Jul-23			
(d12-Chrysene)	EPA 625.1	% Recovery	121	1			Total	0-42002	21-Jul-23	31-Jul-23			
(d12-Perylene)	EPA 625.1	% Recovery	98	1			Total	0-42002	21-Jul-23	31-Jul-23			
(d8-Naphthalene)	EPA 625.1	% Recovery	78	1			Total	0-42002	21-Jul-23	31-Jul-23			
1-Methylnaphthalene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			
1-Methylphenanthrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			
2,3,5-Trimethylnaphthalene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			
2,6-Dimethylnaphthalene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			
2-Methylnaphthalene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			
Acenaphthene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			
Acenaphthylene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			
Anthracene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			
Benz[a]anthracene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			
Benzo[a]pyrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			
Benzo[b]fluoranthene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			
Benzo[e]pyrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			
Benzo[g,h,i]perylene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			
Benzo[k]fluoranthene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			
Biphenyl	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			
Chrysene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			
D benz[a,h]anthracene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			
D benzo[a,l]pyrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			
D benzothiophene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23			

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

ar - 2 of 3

5

7

8

1 0

13

14

Project: RED-HILL Project # 38001111 Job # 380-55685-1

Innovative Solutions for Nature

	Polynuclear Aromatic Hydrocarbons													
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE Batch ID	Date Processed	Date Analyzed				
Fluoranthene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23				
Fluorene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23				
Indeno[1,2,3-cd]pyrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23				
Naphthalene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23				
Perylene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23				
Phenanthrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23				
Pyrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-42002	21-Jul-23	31-Jul-23				

_

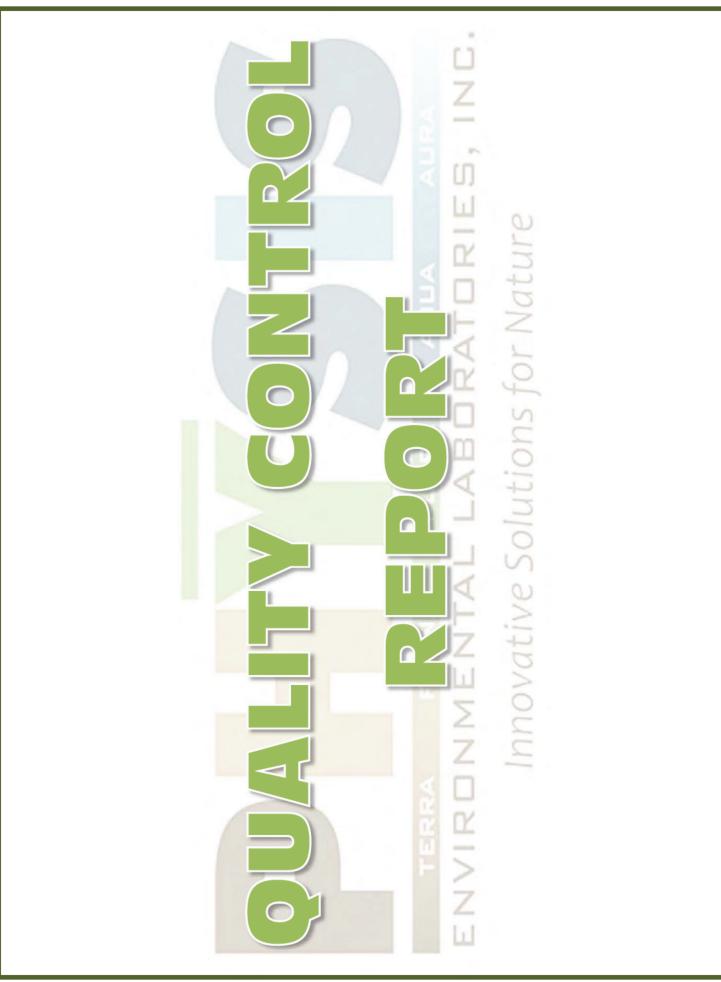
3

4

5

8

4.0


11

13

14

15

Page 64 of 81 11/21/2023

Ω

Project: RED-HILL Project # 38001111 Job # 380-55685-1

Innovative Solutions for Nature

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

Base	e/Neu	tral Extr	acta	ble Co	omp	ounds		(QUA	LITY CO	NTRO	L REPO	ORT
ANALYTE	FRACT	ON RESULT	DF	MDL	RL	UNITS	SPIKE	SOURCE		ACCURACY	P	RECISION	QA CODEc
							LEVEL	RESULT	%	LIMITS	%	LIMITS	
Sample ID: 10851	9-B1	QAQC Procedu	ıral Bla	nk		Matrix:	BlankMatı	rix Sa	ampled:			Received:	
		Method: EPA 625	.1			Batch ID:	0-42002		Prepared:	21-Jul-23		Analyzed:	31-Jul-23
Disalicylidenepropanediamin	Total	ND	1	0.05	0.1	μg/L							
Sample ID: 10851	9-BS1	QAQC Procedu	ıral Bla	nk		Matrix:	BlankMatı	rix Sa	ampled:			Received:	
		Method: EPA 625	.1			Batch ID:	0-42002		Prepared:	21-Jul-23		Analyzed:	31-Jul-23
Disalicylidenepropanediamin	Total	20.2	1	0.05	0.1	μg/L	25	0	81	50 - 150%	PASS		
Sample ID: 10851	9-BS2	QAQC Procedu	ıral Bla	nk		Matrix:	Blank Matı	rix Sa	ampled:			Received:	
										_			
		Method: EPA 625	.1			Batch ID:	0-42002		Prepared:	: 21-Jul-23		Analyzed:	31-Jul-23

Page 66 of 81 11/21/2023

CA ELAP #2769

qcb - 1 of 7

info@physislabs.com

2

3

4

5

6

-/

8

40

11

-

14

Project: RED-HILL Project # 38001111 Job # 380-55685-1

Innovative Solutions for Nature

Polynuclear Aromatic Hydrocarbons

QUALITY CONTROL REPORT

ANALYTE	FRACTION	RESULT	DF	MDL	RL	UNITS	SPIKE S	SOURCE	A	CCURACY	PRI	ECISION	QA CODEc
							LEVEL	RESULT	%	LIMITS	%	LIMITS	

							LEVEL R	ESULI	%	LIMITS		% LIMITS	
Sample ID: 108519	-B1	QAQC Procedu	ıral Blank			Matrix: Bla	nkMatrix	San	npled:			Received:	
		Method: EPA 625	.1			Batch ID: O-42		Pre	epared: 2	_		Analyzed: 31-Jul-23	
(d10-Acenaphthene)	Total	81	1			% Recovery	100		81	27 - 133%	PASS		
(d10-Phenanthrene)	Total	114	1			% Recovery	100		114	43 - 129%	PASS		
(d12-Chrysene)	Total	114	1			% Recovery	100		114	52 - 144%	PASS		
(d12-Perylene)	Total	97	1			% Recovery	100		97	36 - 161%	PASS		
(d8-Naphthalene)	Total	88	1			% Recovery	100		88	25 - 125%	PASS		
1-Methylnaphthalene	Total	ND	1	0.001	0.005	μg/L							
1-Methylphenanthrene	Total	ND	1	0.001	0.005	μg/L							
2,3,5-Trimethylnaphthalene	Total	ND	1	0.001	0.005	μg/L							
2,6-Dimethylnaphthalene	Total	ND	1	0.001	0.005	μg/L							
2-Methylnaphthalene	Total	ND	1	0.001	0.005	μg/L							
Acenaphthene	Total	ND	1	0.001	0.005	μg/L							
Acenaphthylene	Total	ND	1	0.001	0.005	μg/L							
Anthracene	Total	ND	1	0.001	0.005	μg/L							
Benz[a]anthracene	Total	ND	1	0.001	0.005	μg/L							
Benzo[a]pyrene	Total	ND	1	0.001	0.005	μg/L							
Benzo[b]fluoranthene	Total	ND	1	0.001	0.005	μg/L							
Benzo[e]pyrene	Total	ND	1	0.001	0.005	μg/L							
Benzo[g,h,i]perylene	Total	ND	1	0.001	0.005	μg/L							
Benzo[k]fluoranthene	Total	ND	1	0.001	0.005	μg/L							
Biphenyl	Total	ND	1	0.001	0.005	μg/L							
Chrysene	Total	ND	1	0.001	0.005	μg/L							
Dibenz[a,h]anthracene	Total	ND	1	0.001	0.005	μg/L							
Dibenzo[a,l]pyrene	Total	ND	1	0.001	0.005	μg/L							
Dibenzothiophene	Total	ND	1	0.001	0.005	μg/L							

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

qcb - 2 of 7

11/21/2023

Page 67 of 81

2

3

4

_

7

8

10

10

13

Project: RED-HILL Project # 38001111 Job # 380-55685-1

Innovative Solutions for Nature

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

Poly	/nuclear	Hydr	QUALITY CONTROL REPORT										
ANALYTE	FRACTION	RESULT	DF	MDL	RL	UNITS	SPIKE	SOURCE		ACCURACY	PR	ECISION	QA CODEc
							LEVEL	RESULT	%	LIMITS	%	LIMITS	
Fluoranthene	Total	ND	1	0.001	0.005	μg/L							
Fluorene	Total	ND	1	0.001	0.005	μg/L							
Indeno[1,2,3-cd]pyrene	Total	ND	1	0.001	0.005	μg/L							
Naphthalene	Total	ND	1	0.001	0.005	μg/L							
Perylene	Total	ND	1	0.001	0.005	μg/L							
Phenanthrene	Total	ND	1	0.001	0.005	μg/L							
Pyrene	Total	ND	1	0.001	0.005	μg/L							

qcb - 3 of 7

Page 68 of 81 11/21/2023

CA ELAP #2769

info@physislabs.com

ACCURACY

Project: RED-HILL Project # 38001111 Job # 380-55685-1

Innovative Solutions for Nature

FRACTION

ANALYTE

Chrysene

Dibenz[a,h]anthracene

Dibenzo[a,l]pyrene

Dibenzothiophene

Polynuclear Aromatic Hydrocarbons

RESULT DF MDL

RL

UNITS

SPIKE SOURCE

QUALITY CONTROL REPORT

PRECISION

							LEVEL	RESULT	%	LIMITS		% LIMITS	
Sample ID: 108519	-BS1	QAQC Procedur	al Blank			Matrix: Bla	nkMatri	x Sa	mpled:			Received:	
		Method: EPA 625.1				Batch ID: 0-42002		F	Prepared: 2	_		Analyzed: 31-Jul	-23
(d10-Acenaphthene)	Total	62	1			% Recovery	100	0	62	27 - 133% P	ASS		
(d10-Phenanthrene)	Total	88	1			% Recovery	100	0	88	43 - 129% P	ASS		
(d12-Chrysene)	Total	108	1			% Recovery	100	0	108	52 - 144% P	ASS		
(d12-Perylene)	Total	87	1			% Recovery	100	0	87	36 - 161% P	ASS		
(d8-Naphthalene)	Total	57	1			% Recovery	100	0	57	25 - 125% P	ASS		
1-Methylnaphthalene	Total	0.352	1	0.001	0.005	μg/L	0.5	0	70	31 - 128% P	ASS		
1-Methylphenanthrene	Total	0.521	1	0.001	0.005	μg/L	0.5	0	104	66 - 127% P	ASS		
2,3,5-Trimethylnaphthalene	Total	0.466	1	0.001	0.005	μg/L	0.5	0	93	55 - 122% P	ASS		
2,6-Dimethylnaphthalene	Total	0.404	1	0.001	0.005	μg/L	0.5	0	81	48 - 120% P	ASS		
2-Methylnaphthalene	Total	0.389	1	0.001	0.005	μg/L	0.5	0	78	47 - 130% P	ASS		
Acenaphthene	Total	0.384	1	0.001	0.005	μg/L	0.5	0	77	53 - 131% P	ASS		
Acenaphthylene	Total	0.451	1	0.001	0.005	μg/L	0.5	0	90	43 - 140% P	ASS		
Anthracene	Total	0.455	1	0.001	0.005	μg/L	0.5	0	91	58 - 135% P	ASS		
Benz[a]anthracene	Total	0.532	1	0.001	0.005	μg/L	0.5	0	106	55 - 145% P	ASS		
Benzo[a]pyrene	Total	0.482	1	0.001	0.005	μg/L	0.5	0	96	51 - 143% P	ASS		
Benzo[b]fluoranthene	Total	0.539	1	0.001	0.005	μg/L	0.5	0	108	46 - 165% P	ASS		
Benzo[e]pyrene	Total	0.491	1	0.001	0.005	μg/L	0.5	0	98	42 - 152% P	ASS		
Benzo[g,h,i]perylene	Total	0.5	1	0.001	0.005	μg/L	0.5	0	100	63 - 133% P	ASS		
Benzo[k]fluoranthene	Total	0.524	1	0.001	0.005	μg/L	0.5	0	105	56 - 145% P	ASS		
Biphenyl	Total	0.483	1	0.001	0.005	μg/L	0.5	0	97	56 - 119% P	ASS		

1904 E. Wright Circle, Anaheim CA 92806

Total

Total

Total

Total

main: (714) 602-5320

0.536

0.48

0.352

0.499

fax: (714) 602-5321

0.005

0.005

0.005

0.005

μg/L

μg/L

µg/L

μg/L

0.001

0.001

0.001

0.001

www.physislabs.com

0

0

0

0.5

0.5

0.5

0.5

info@physislabs.com

107

96

70

100

CA ELAP #2769

qcb - 4 of 7

Page 69 of 81 11/21/2023

56 - 141% PASS

55 - 150% PASS

50 - 150% PASS

46 - 126% PASS

J

J

QA CODEc

6

8

10

13

Project: RED-HILL Project # 38001111 Job # 380-55685-1

Innovative Solutions for Nature

1904 E. Wright Circle, Anaheim CA 92806

Poly	ynuclear <i>i</i>	Hydr	QUALITY CONTROL REPORT										
ANALYTE	FRACTION RESULT DF MDL RL UNITS SPIKE SOURCE								Α	CCURACY	F	RECISION	QA CODEc
							LEVEL	RESULT	%	LIMITS	%	LIMITS	
Fluoranthene	Total	0.61	1	0.001	0.005	μg/L	0.5	0	122	60 - 146% PAS	S		
Fluorene	Total	0.442	1	0.001	0.005	μg/L	0.5	0	88	58 - 131% PAS	S		
Indeno[1,2,3-cd]pyrene	Total	0.464	1	0.001	0.005	μg/L	0.5	0	93	50 - 151% PAS	S		
Naphthalene	Total	0.345	1	0.001	0.005	μg/L	0.5	0	69	41 - 126% PAS	S		
Perylene	Total	0.446	1	0.001	0.005	μg/L	0.5	0	89	48 - 141% PAS	S		
Phenanthrene	Total	0.493	1	0.001	0.005	μg/L	0.5	0	99	67 - 127% PAS	S		
Pyrene	Total	0.576	1	0.001	0.005	μg/L	0.5	0	115	54 - 156% PAS	S		

qcb - 5 of 7

Page 70 of 81 11/21/2023

CA ELAP #2769

Client: Eurofins Eaton Analytical

RL

Project: RED-HILL Project # 38001111 Job # 380-55685-1

PHYSIS Project ID: 1407003-424

ACCURACY

Innovative Solutions for Nature

FRACTION

ANALYTE

Polynuclear Aromatic Hydrocarbons

RESULT DF MDL

QUALITY CONTROL REPORT

PRECISION

LIMITS

							LEVEL	RESULT	%	LIMITS		%	LIMITS
Sample ID: 108519-	-BS2	QAQC Procedura	al Blank			Matrix: Bla	nkMatri	x San	npled:			F	Received:
(d10-Acenaphthene)	Total	Method: EPA 625.1 66	1			Batch ID: 0-42002 % Recovery 100 0		Pri 0	epared: 2 66	1-Jul-23 27 - 133%	PASS	6	Analyzed: 31-Jul-23 30 PASS
(d10-Phenanthrene)	Total	95	1			% Recovery	100	0	95	43 - 129%	PASS	8	30 PASS
(d12-Chrysene)	Total	106	1			% Recovery	100	0	106	52 - 144%	PASS	2	30 PASS
(d12-Perylene)	Total	90	1			% Recovery	100	0	90	36 - 161%	PASS	3	30 PASS
(d8-Naphthalene)	Total	64	1			% Recovery	100	0	64	25 - 125%	PASS	12	30 PASS
1-Methylnaphthalene	Total	0.373	1	0.001	0.005	μg/L	0.5	0	75	31 - 128%	PASS	7	30 PASS
1-Methylphenanthrene	Total	0.556	1	0.001	0.005	μg/L	0.5	0	111	66 - 127%	PASS	7	30 PASS
2,3,5-Trimethylnaphthalene	Total	0.496	1	0.001	0.005	μg/L	0.5	0	99	55 - 122%	PASS	6	30 PASS
2,6-Dimethylnaphthalene	Total	0.423	1	0.001	0.005	μg/L	0.5	0	85	48 - 120%	PASS	5	30 PASS
2-Methylnaphthalene	Total	0.412	1	0.001	0.005	μg/L	0.5	0	82	47 - 130%	PASS	5	30 PASS
Acenaphthene	Total	0.409	1	0.001	0.005	μg/L	0.5	0	82	53 - 131%	PASS	6	30 PASS
Acenaphthylene	Total	0.479	1	0.001	0.005	μg/L	0.5	0	96	43 - 140%	PASS	6	30 PASS
Anthracene	Total	0.465	1	0.001	0.005	μg/L	0.5	0	93	58 - 135%	PASS	2	30 PASS
Benz[a]anthracene	Total	0.549	1	0.001	0.005	μg/L	0.5	0	110	55 - 145%	PASS	4	30 PASS
Benzo[a]pyrene	Total	0.486	1	0.001	0.005	μg/L	0.5	0	97	51 - 143%	PASS	1	30 PASS
Benzo[b]fluoranthene	Total	0.541	1	0.001	0.005	μg/L	0.5	0	108	46 - 165%	PASS	0	30 PASS
Benzo[e]pyrene	Total	0.472	1	0.001	0.005	μg/L	0.5	0	94	42 - 152%	PASS	4	30 PASS
Benzo[g,h,i]perylene	Total	0.509	1	0.001	0.005	μg/L	0.5	0	102	63 - 133%	PASS	2	30 PASS
Benzo[k]fluoranthene	Total	0.522	1	0.001	0.005	μg/L	0.5	0	104	56 - 145%	PASS	1	30 PASS
Biphenyl	Total	0.512	1	0.001	0.005	μg/L	0.5	0	102	56 - 119%	PASS	5	30 PASS
Chrysene	Total	0.528	1	0.001	0.005	μg/L	0.5	0	106	56 - 141%	PASS	1	30 PASS
Dibenz[a,h]anthracene	Total	0.471	1	0.001	0.005	μg/L	0.5	0	94	55 - 150%	PASS	2	30 PASS

UNITS

SPIKE SOURCE

LEVEL DECLILT

1904 E. Wright Circle, Anaheim CA 92806

Total

Total

Dibenzo[a,l]pyrene

Dibenzothiophene

main: (714) 602-5320

0.373

0.538

fax: (714) 602-5321

μg/L

μg/L

0.005

0.005

0.001

0.001

www.physislabs.com

0

0

75

108

0.5

0.5

info@physislabs.com

CA ELAP #2769

30

PASS

30 PASS

qcb - 6 of 7

Page 71 of 81 11/21/2023

50 - 150% PASS

46 - 126% PASS

2

3

4

QA CODEc

7

8

10

13

Project: RED-HILL Project # 38001111 Job # 380-55685-1

Innovative Solutions for Nature

Poly	ynuclear <i>i</i>	itic	Hydr	QUALITY CONTROL REPORT								
ANALYTE	FRACTION	RESULT	DF	MDL	RL	UNITS	SPIKE	SOURCE	Α	CCURACY	PRI	ECISION QA CODEc
							LEVEL	RESULT	%	LIMITS	%	LIMITS
Fluoranthene	Total	0.624	1	0.001	0.005	μg/L	0.5	0	125	60 - 146% PASS	2	30 PASS
Fluorene	Total	0.471	1	0.001	0.005	μg/L	0.5	0	94	58 - 131% PASS	7	30 PASS
Indeno[1,2,3-cd]pyrene	Total	0.458	1	0.001	0.005	μg/L	0.5	0	92	50 - 151% PASS	1	30 PASS
Naphthalene	Total	0.375	1	0.001	0.005	μg/L	0.5	0	75	41 - 126% PASS	8	30 PASS
Perylene	Total	0.449	1	0.001	0.005	μg/L	0.5	0	90	48 - 141% PASS	1	30 PASS
Phenanthrene	Total	0.484	1	0.001	0.005	μg/L	0.5	0	97	67 - 127% PASS	2	30 PASS
Pyrene	Total	0.573	1	0.001	0.005	μg/L	0.5	0	115	54 - 156% PASS	0	30 PASS

3

7

8

_

11

1 5

Page 72 of 81 11/21/2023

Page 73 of 81 11/21/2023

Sample ID: Lab Blank B1_42002

	Area				
Retention	(% of	Concentration			Match Quality
Time	total)	(ng/L)	Library/ID	Cas Number	(%)
34.8252	0.7753	1111	Anthracene-D10-	1719-06-8	90
10.1805	32.7253	46897	Cyclohexane, 1-methyl-2-propyl-	4291-79-6	94
10.2311	4.5384	6504	Octane, 3-methyl-6-methylene-	74630-07-2	87
10.0591	3.5477	5084	Sulfurous acid, di(cyclohexylmethyl) ester	1010309-22-7	89
16.1897	0.5736	822	1-Ethynylcyclododecanol	1000484-40-4	86
10.3852	0.4561	654	Cyclopentanone, 3-(3-hydroxy-1-propenyl)-	74473-08-8	87
11.2302	0.2970	426	2-Isopropenyl-5-methylhex-4-enal	75697-98-2	87
16.0114	0.2393	343	2-Dodecen-1-yl(-)succinic anhydride	19780-11-1	81
45.2984	0.1544	221	1,4-Benzenedicarboxylic acid, bis(2-methylpropyl) ester	18699-48-4	87
60.9755	0.1318	189	Mono(2-ethylhexyl) phthalate	4376-20-9	81

Concentration estimated using the response for Anthracene-d10

6

J

7

8

4.0

12

13

4 -

Sample ID: 108520

	Area				
Retention	(% of	Concentration			Match Quality
Time	total)	(ng/L)	Library/ID	Cas Number	(%)
34.8207	0.9833	1111	Anthracene-D10	1517-22-2	88
10.1791	24.7157	27930	Cyclohexane, 1-methyl-3-propyl-	4291-80-9	93
10.1217	17.1440	19373	Octane, 3-methyl-6-methylene-	74630-07-2	87
10.1217	16.6325	18795	1-Hexene, 4,5-dimethyl-	16106-59-5	91
10.0596	2.8030	3168	Sulfurous acid, di(cyclohexylmethyl) ester	1010309-22-7	88
10.3852	0.5400	610	Cyclohexane, nitro-	1122-60-7	85

Concentration estimated using the response for Anthracene-d10

1 0

1 %

941 Corporate Center Drive

Eurofins Eaton Analytical Pomona

Pomona, CA 91768-2642

Chain of Custody Record

eurofins :

Environment Testing

Project Name: RED-HILL Empty Kit Relinquished by: Note: Since laboratory eccreditations are subject to change, Eurofins Eaton Analytical, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not ourrently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Eaton Analytical, LLC alternation immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compilance to Eurofins Eaton Analytical, LLC. State, Zip: CA, 92806 Relinquished by: Deliverable Requested: I, II, III, IV, Other (specify) Possible Hazard Identification Sample Identification - Client ID (Lab ID) Honolulu BWS Sites Physis Environmental Laboratories Anaheim elinquished by: VIEA WELLS PUMPS 1&2 (260) (380-55685-1) 1904 Wright Circle Shipping/Receiving Client Information (Sub Contract Lab) Phone: 626-386-1100 Custody Seals Intact: inquished by: Yes A No Custody Seal No.: Date/Time: Project #: 38001111 Due Date Requested: 8/3/2023 Primary Deliverable Rank: 2 WO# Phone: PO# TAT Requested (days): Sample Date 7/18/23 Date: Hawaiian (3)40 G=grab) (C=comp Preservation Code: Type Company Matrix Water Rachelle.Arada@et.eurofinsus.com Arada, Rachelle Time: Field Filtered Sample (Yes or No) State - Hawaii Accreditations Required (See note): Special Instructions/QC Requirements: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Perform MS/MSD (Yes or No) SUB (625 PAH Physis LL (EAL) + TICs)/ 625 PAH Cooler Temperature(s) °C and Other Remarks Received by: × Physis LL (EAL) + TICs Analysis Requested Carrier Tracking No(s): Hawaii State of Origin thod of Shipment 2 Total Number of containers (338 J-Di Water K-EDTA L-EDA A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid Page: Page 1 of 1 COC No: 380-64962.1 See Attached Instructions Preservation Codes: 380-55685-13 Special Instructions/Note: U - Acetone
V - MCAA
W - pH 4-5
Y - Trizma
Z - other (specify) M. Hexane N. None O. AsNaO2 P. Na2O4S Q. Na2SO3 R. Na2S2C3 S. H2SO4 T-TSP Dodec Ver: 06/08/2021 Months

Sample Receipt Summary

ENVIRONMENTAL LABIDHATORIES fortunative Soluçions for Notice

Project Iteration ID: 1407003-424

Client Name: Eurofii

Eurofins Eaton Analytical

Project Name:

RED-HILL Project # 38001111 Job

380-5565-1

COC Page Number: 2 of 2
Bottle Label Color: NA

1. Initials Received By: AG

2. Date Received: 7/2/23

3. Time Received: 13:38
4. Client Name: Eurofine

5. Courier Information: (Please circle)

Client

UPS

FedEx

GSO/GLS

Area Fast Ontrac

DRS

PAMS

PHYSIS Driver:

i. Start Time:______ii. End Time:____

iii. Total Mileage: _____iv. Number of Pickups: ____

Container Information: (Please put the # of containers or circle none)

• ___ Cooler

Styrofoam Cooler

___ Boxes

None Other

Carboy(s)
 Carboy Trash Can(s)
 What type of ice was used: (Please circle any that apply)

• Wet Ice

Blue Ice

Dry Ice

Water

Carboy Cap(s)

None

8. Randomly Selected Samples Temperature (°C): 4-7

Used I/R Thermometer # __/

Inspection Info

1. Initials Inspected By: _____

R6 H

Sample Integrity Upon Receipt:

2. All samples listed on COC(s) are present

Notes:

Monrovia, CA (Suite 100) 750 Royal Oaks Drive Suite 100 Monrovia, CA 91016 Phone (626) 386-1100

Chain

of Custody Record	de eurofins	Environment Testing America

Client Information	Sampler:	son No	eleanot	0 4	ab PN Arada	M: a, Ra	chelle	е					Carrier Tracking No(s):						COC No: 380-27941-2757.2	
Client Contact: Dr. Ron Fenstermacher	Phone: 808-748-5840			E	-Mail:	:			01150	nious				State o	f Origin:				Page:	
Company:	808-748-5840		PWSID:	<u> </u>	kacn	elle.A	Arada	œet.	euro	nisus	s.com	1						_	Page 2 of 2 Job #:	
City & County of Honolulu					_	_		_	_	_		sis	Rec	uest	ed		_	_		
Address: 630 South Beretania Street; Chemistry Lab	Due Date Request	ted:					7		3	1	2								Preservation Cod A - HCL	M - Hexane
City: Honolulu	TAT Requested (d	ays):			٦		8		or Oil		-								B - NaOH C - Zn Acetate	N - None O - AsNaO2 P - Na2O4S
State, Zip: HI, 96843	Compliance Proje	ct: A No			\dashv		I E	(EAL	Mot		- (EAL)								D - Nitric Acid E - NaHSO4	Q - Na2SQ3 R - Na2S2Q3
Phone: 808-748-5091 (tel)	PO#: C20525101 exp	05312023			┑		EAL	1	(EAL) and Motor	20	Gas (Purgeable) LL								F - MeOH G - Amchior	S - H2SO4 T - TSP Dodecahydrate
Email:	WO #:	00012020			\dashv	or No	sis LL	rgable	E	T SU-	ırgeal	, .							H - Ascorbic Acid I - Ice J - DI Water	U - Acetone V - MCAA
rfenstemacher@hbws.org Project Name:	Project #:					12	Phy.	s (Pu	Sell	ld sn	IS (Pu	1						ners	K - EDTA	W - pH 4-5 Y - Trizma
RED-HILL/HBWS sites Event Desc: RUSH Weekly Red Hill Site:	38001111				_	mple (Yes	S PAH	15 Ga	15 Die	525p		7.1 F						ontai	L - EDA Other:	Z - other (specify)
Site:	SSOW#:					Sami	L - 62	r - 80	F- 89	(QQ)	r - 80	C - 53	100					of cor	Other:	
Sample Identification	Sample Date	Sample Time		Matrix (W=water S=solid, 0=waste/o BT=Tissue, A:	r, ell, =Air)	Field Filtered	SUBCONTRACT - 625 PAH Physis LL (EAL) + TICs	SUBCONTRACT - 8015 Gas (Purgable) LL (EAL)	-	525.2_PREC - (MOD) 525plus PLUS TICs	SUBCONTRACT - 8015	537.1_DW_PREC - 537.1 Full List	Z 533 - All Analytes					Total Number	Special In	structions/Note:
MOANALUA WELLS			rieserv	Water	-	ᢡ	1	K	IKA	-	IN	1	IN					M		
			-	-	\rightarrow	+	+	\vdash	\vdash	\vdash	-	-		+	+	++	+			
AIEA GULCH WELLS PUMP2	70			Water	\rightarrow	+	-	-	_	-	ļ.,			\vdash	-	++	+		-	
AIEA WELLS PUMPS 1&2 (260)	7/18/23	1330	G	Water		4	2	_	2	2	4			Ш		\perp	1		Pump 2	
HALAWA WELLS UNITS 1&2				Water											\perp					
FB MOANALUA WELLS				Water	r										W	MARS.	2			
FB AIEA GULCH WELLS PUMP2				Water	-	T	Т									W				
FB AIEA WELLS PUMPS 1&2 (260)	7/18/23			Water	7	\top					2				-	4	8			
FB HALAWA WELLS UNITS 1&2				Water		T	T								380-	.55685 C	COC			
					T		T	T							1	1 1	ī			
		-			7	\top	T								\top	\Box	1			
Possible Hazard Identification Non-Hazard Flammable Skin Irritant P	oison B Unkr	nown 🗆	Radiologica	a/		Sa		e Dis				may [ssesse Disposa					ed longer than 1 ive For	month)Months
Deliverable Requested: I, II, III, IV, Other (specify)						Sp	ecial	Instr	ructio	ns/Q	C Re	quire	emen	its:					0 7727 86	504 8199
Empty Kit Relinquished by:		Date:			T	Time:		A						M	ethod o	f Shipment	FED	EX	2772785	
Relinquished by:	Date/Time: 7/1	9/23 1	500	Company			Rec	eiyed t	by:	1	-	ne		ER		Date/Tin	ge: /			Company
Relinquished by:	Date/Time:	11-5		Company		(Rec	ejved t	by:	V	0	RE	11/1	010		Date/Tin		Ve.	1075	Company
* £4n	Date/Time:			Company		-	Reci	eived b	by:							Date/Tin	ne:	_		Company
											n Over	16"	41.5	- 1 2		<u></u>			1	
							Cool	er Ten	npera	ture(s)	C ar	a Oth	er Rer	marks				10	06 -11	

750 Royal Oaks Drive Suite 100 Monrovia, CA 91016 Phone (626) 386-1100

Chain of Custody Record

eurofins	Environment lesting	
	Environment Test America	ing

1 Holle (626) 666 1166	-																		
Client Information	Sampler: Bry	ion Nal	econot	Lai Ar	b PM: ada, R	Rache	lle						Carrier Track	ting No(s):			COC No: 380-27941-2757,2		
Client Contact: Dr. Ron Fenstermacher	Phone: 808-748-5840			E-N	Mail: achelle	Arac	la@e	euro	nisus	s com	,		State of Orig	in:			Page: Page 2 of 2		
Company:	0001100010		PWSID:	110	T	,, trot	Te (exc	curo				D					Job#:		
City & County of Honolulu Address:	Due Date Request	ed:	<u> </u>				_	T	TA	naiy	/SIS	Red	uested				Preservation Cod	ies:	
630 South Beretania Street; Chemistry Lab City:	TAT Requested (d	avel.			-11	ш.											A - HCL	M - Hexane N - None	
Honolulu	IAT Requested (d	ays).			ш	Ш,	v,	i o		7							B - NaOH C - Zn Acetate	O - AsNaO2 P - Na2O4S	
State, Zip: HI, 96843	Compliance Proje	ct: A No			-11	1	EAL)	Motor		(EAL)							D - Nitric Acid E - NaHSO4	Q - Na2SO3 R - Na2S2O3	
Phone:	PO#:				ш		LL (EAL) + IIC3	an	8	e) LL							F - MeOH G - Amchlor	S - H2SO4	
808-748-5091 (tel) Email:	C20525101 exp	05312023			2			(EAL	JS TI	geabl							H - Ascorbic Acid I - Ice	T - TSP Dodecahydrate U - Acetone	
rfenstemacher@hbws.org Project Name:	David Market				s or	(oN	(Purg	를	s PLUS	Gas (Purgeable)	List					ST.	J - DI Water K - EDTA	V - MCAA W - pH 4-5	
RED-HILL/HBWS sites Event Desc: RUSH Weekly Red Hill	Project #: 38001111				e (Ye	es or	Gas	8915 Diesel LL (EAL)	25plu		- 537.1 Full List					containe	L - EDA	Y - Trizma Z - other (specify)	
Site:	SSOW#:				amp	2	- 623 FAR PRIYSIS - 8015 Gas (Purga	- 8915	(MOD) 525plus	- 8016	- 537	ایا			1	of cor	Other:		
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W=water, S=solid, O=waste/oil, BT=Tissue, A=A	Field Filtered S	Perform MS/M	SUBCONTRACT - 8015 Gas	SUBCONTRACT	525.2_PREC - (M	SUBCONTRACT - 8015	537.1_DW_PREC	533 - All Analytes				Total Number of	Special In	structions/Note:	
	><	><	Preserva	ation Code:	X	Χı	RR	RA	1	RA	Y	N				X			
MOANALUA WELLS				Water	Ш														
AIEA GULCH WELLS PUMP2				Water															
AIEA WELLS PUMPS 1&2 (260)	7/18/23	1330	G	Water	П						3	3					Pump 2		
HALAWA WELLS UNITS 1&2				Water	П	Т	T												
					П			T											
FB MOANALUA WELLS				Water	П														
FB AIEA GULCH WELLS PUMP2				Water	П								\Box						
FB AIEA WELLS PUMPS 1&2 (260)	7/18/23			Water	T						1	1							
FB HALAWA WELLS UNITS 1&2				Water	T		T												
					П														
					П														
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poi											nay	\neg					d longer than 1		
Poliverable Requested: I, II, III, IV, Other (specify)	son B — Unkn	own - I	Radiologica	1	5		Retur				quire		s <i>posal By</i> s:	Lab		Archi	ive For	Months	
Empty Kit Relinquished by:	7	Date:			Time	e:	/		_		_		Method	of Shipmer	it: FEA	6x	0 7727 85		
Relinquished by: Bryn Zult	Date/Time: 4/19	123 1	500	Company HBWS	_	Re	ceived	by:	d	6	0			Date/Ti	me: /20/2	1		Company	
Relinquished by:	Date/Time:	1-1	-	Company		Re	ceived	by:	V	0	112	0111	IER	Date/Ti		WC.	ישו בי	Company	
Relinquished by:	Date/Time:			Company		Re	ceived	by:						Date/Ti	me:	_		Company	
Custody Seals Intact: Custody Seal No.:					Cooler Temperature(s) °C and Other Remarks							Remarks				/			
, , , , , , , , , , , , , , , , , , , ,					Cooler Temperature(s) °C and Other						521	4 (1)5	1'-0.	20=4	9	(2)31-0.	2=290		

Login Sample Receipt Checklist

Client: City & County of Honolulu Job Number: 380-55685-2

Login Number: 55685 List Source: Eurofins Eaton Analytical Pomona

List Number: 1

Creator: Elyas, Matthew

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Samples do not require splitting or compositing.	True	
Container provided by EEA	True	

3

4

5

7

9

10

12

13

a