ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Erwin Kawata City & County of Honolulu 630 South Beretania Street Public Service Bldg. Room 310 Honolulu, Hawaii 96843

Generated 12/12/2023 5:29:14 PM

JOB DESCRIPTION

RED-HILL

JOB NUMBER

380-52637-2

Eurofins Eaton Analytical Pomona 941 Corporate Center Drive Pomona CA 91768-2642

Eurofins Eaton Analytical Pomona

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Eaton Analytical, LLC Project Manager.

Compliance Statement

- 1. Laboratory is accredited in accordance with TNI 2016 Standards and ISO/IEC 17025:2017.
- 2. Laboratory certifies that the test results meet all TNI 2016 and ISO/IEC 17025:2017 requirements unless noted under the individual analysis
- 3. Test results relate only to the sample(s) tested.
- 4. This report shall not be reproduced except in full, without the written approval of the laboratory.
- 5. Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. (DW,Water matrices)

Authorization

Generated 12/12/2023 5:29:14 PM

Authorized for release by Rachelle Arada, Project Manager Rachelle.Arada@et.eurofinsus.com (626)386-1106

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	9
QC Sample Results	12
QC Association Summary	17
Lab Chronicle	19
Method Summary	20
Sample Summary	21
Subcontract Data	22
Chain of Custody	84
Receipt Checklists	86

9

4

C

8

9

11

13

14

1

Definitions/Glossary

Client: City & County of Honolulu

Job ID: 380-52637-2 Project/Site: RED-HILL

Qualifiers

Subcontract

Qualifier **Qualifier Description**

This analyte was not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Eurofins Eaton Analytical Pomona

Case Narrative

Client: City & County of Honolulu

Job ID: 380-52637-2 Project/Site: RED-HILL

Job ID: 380-52637-2

Laboratory: Eurofins Eaton Analytical Pomona

Narrative

Job Narrative 380-52637-2

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 6/28/2023 9:40 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.4°C, 1.6°C, 3.1°C and 7.5°C

Receipt Exceptions

One or more containers for the following sample was received broken or leaking: AIEA WELLS PUMPS 1&2 (260) P2 (380-52637-3). Two out of four received 8015 vials from site AIEA WELLS PUMPS 1&2 (260) P2 were received broken.

The following samples were received at the laboratory outside the required temperature criteria: This does not meet regulatory requirements. The client was contacted regarding this issue, and the laboratory was instructed to cancel analysis.

One out of four coolers arrived out of the required temperature criteria. All of the selected containers associated with this particular cooler are below.

OVER TEMP - affected samples and their methods: Moanalua Wells - Method 625 Aiea Gulch Wells Pump 2 - Method 625 Aiea Wells Pump P2 - Method 8015 Halawa Wells Unit P1 - Method 625 and 8015

This does not meet regulatory requirements. The client was contacted regarding this issue, and the laboratory was instructed to cancel analysis.

Subcontract Work

Methods 8015 Gas (Purgeable) LL (EAL), 8015 LL DRO/MRO/JP5/JP8: These methods were subcontracted to EMAX Laboratories Inc. The subcontract laboratory certifications are different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

Method 625 PAH Physis LL (EAL) + TICs: This method was subcontracted to Physis Environmental Laboratories. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

Detection Summary

Project/Site: RED-HILL

Client Sample ID: MOANALUA WELLS

No Detections.

Client Sample ID: AIEA GULCH WELLS PUMP 2

No Detections.

Client Sample ID: AIEA WELLS PUMPS 1&2 (260) P2

No Detections.

Client Sample ID: TB MOANALUA WELLS

No Detections.

Client Sample ID: TB MOANALUA WELLS

No Detections.

Client Sample ID: TB AIEA GULCH WELLS PUMP 2

Lab Sample ID: 380-52637-5

No Detections.

Client Sample ID: TB AIEA GULCH WELLS PUMP 2

Lab Sample ID: 380-52637-6

12

5

Job ID: 380-52637-2

14

1

Client: City & County of Honolulu

No Detections.

Client: City & County of Honolulu Project/Site: RED-HILL

Client Sample ID: MOANALUA WELLS

Date Collected: 06/26/23 10:18 Date Received: 06/28/23 09:40 Lab Sample ID: 380-52637-1

Lab Sample ID: 380-52637-2

Prepared

Matrix: Drinking Water

Analyzed

Matrix: Drinking Water

hozylenA

Method: 8015 Gas (Purgeable) LI	L (EAL) - SW846 8015B	Gasoline	Range Organics
Analyto	Popult Qualifier	DI	MDI Unit

Allalyte	ixesuit	Qualifiei	INL	MIDE	Oilit	_	riepaieu	Allalyzeu	Diriac	
GASOLINE	ND	U	0.02		mg/L			06/29/23 15:34	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
BROMOFLUOROBENZENE	88		60 - 140					06/29/23 15:34	1	

Method: 8015 LL DRO/MRO/JP5/JP8 - 8015 - TPH DRO/ORO

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DIESEL	ND	U	0.028		mg/L			07/07/23 22:06	1
JP5	ND	U	0.055		mg/L			07/07/23 22:06	1
JP8	ND	U	0.055		mg/L			07/07/23 22:06	1
MOTOR OIL	ND	U	0.055		mg/L			07/07/23 22:06	1

Surrogate	%Recovery	Qualifier	Limits	Prepared A	Analyzed	Dil Fac
BROMOBENZENE	90		60 - 130	7//	/07/23 22:06	1
HEXACOSANE	115		60 - 130	07/	/07/23 22:06	1

Client Sample ID: AIEA GULCH WELLS PUMP 2

Date Collected: 06/26/23 11:41 Date Received: 06/28/23 09:40

Analyte

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics MDL Unit

Result Qualifier

GASOLINE	ND	U	0.02	mg/L		06/29/23 17:23	1	
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
RPOMOELLIOPORENZENE	80		60 140			06/20/23 17:23		

Method:	8015 LL	DRO/MRO/JI	P5/JP8 -	8015 -	TPH DRO/	ORO

Analyzed	Dil Fac
07/07/23 22:25	1
07/07/23 22:25	1
07/07/23 22:25	1
07/07/23 22:25	1
	07/07/23 22:25 07/07/23 22:25 07/07/23 22:25

Surrogate	%Recovery	Qualifier	Limits	Prepared Anal	yzed	Dil Fac
BROMOBENZENE	87		60 - 130	07/07/2	3 22:25	1
HEXACOSANE	107		60 - 130	07/07/2	3 22:25	1

Client Sample ID: AIEA WELLS PUMPS 1&2 (260) P2

Lab Sample ID: 380-52637-3 Date Collected: 06/26/23 11:14 **Matrix: Drinking Water** Date Received: 06/28/23 09:40

Method: 625 PAH Physis LL (EAL) + TICs	- EPA 625 Base/Neutral and Acid Organics i
--	--

modical ozo i / m i myolo zz	(L/(L) · 1100 L1/(020)	iz) · 1100 Zi / 1020 Zuco/ 10uti ui ui u / 10iu Oi gui iloo i						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND ND	0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
1-Methylphenanthrene	ND	0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
2,3,5-Trimethylnaphthalene	ND	0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
2,6-Dimethylnaphthalene	ND	0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
2-Methylnaphthalene	ND	0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
Acenaphthene	ND	0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
Acenaphthylene	ND	0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
Anthracene	ND	0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1

Eurofins Eaton Analytical Pomona

Page 7 of 86 12/12/2023

Dil Fac

Client Sample ID: AIEA WELLS PUMPS 1&2 (260) P2

Date Collected: 06/26/23 11:14 Date Received: 06/28/23 09:40 Lab Sample ID: 380-52637-3

Matrix: Drinking Water

Job ID: 380-52637-2

Result ND	Qualifier	0.005 0.005 0.005 0.005 0.005	0.001 0.001 0.001		<u>D</u>		Analyzed 07/15/23 03:04 07/15/23 03:04	Dil Fac
ND ND ND ND		0.005 0.005	0.001 0.001	μg/L		06/29/23 00:00		1
ND ND ND		0.005	0.001	. •			07/15/23 03:04	1
ND ND				ua/l				
ND		0.005		m 9' =		06/29/23 00:00	07/15/23 03:04	1
			0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
ND		0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
		0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
ND		0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
ND		0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
ND		0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
ND		0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
ND		0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
ND		0.1	0.05	μg/L		06/29/23 00:00	07/15/23 03:04	1
ND		0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
ND		0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
ND		0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
ND		0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
ND		0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
ND		0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
ND		0.005	0.001	μg/L		06/29/23 00:00	07/15/23 03:04	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
78		27 - 133				06/29/23 00:00	07/15/23 03:04	1
78		43 - 129				06/29/23 00:00	07/15/23 03:04	1
102		52 - 144				06/29/23 00:00	07/15/23 03:04	1
66		36 - 161				06/29/23 00:00	07/15/23 03:04	1
	ND N	ND N	ND 0.005 ND 0.205 ND 0.205	ND 0.005 0.001 ND 0.005 0.001 ND 0.005 0.001 ND 0.005 0.001 ND 0.01 0.05 ND 0.005 0.001 ND 0.202 0.001 ND 0.203 0.001 ND 0.205 0.201 ND 0.205 0.201 ND 0.205 0.2	ND 0.005 0.001 μg/L ND 0.1 0.05 μg/L ND 0.005 0.001 μg/L	ND 0.005 0.001 µg/L SRecovery Qualifier Limits 78 27 - 133 78 43 - 129 102 52 - 144	ND 0.005 0.001 μg/L 06/29/23 00:00 ND 0.1 0.05 μg/L 06/29/23 00:00 ND 0.005 0.001 μg/L 06/29/23 00:00	ND 0.005 0.001 µg/L 06/29/23 00:00 07/15/23 03:04 ND 0.1 0.05 µg/L 06/29/23 00:00 07/15/23 03:04 ND 0.005 0.001 µg/L 06/29/23 00:00 07/15/23 03:04 <

Client Sample ID: TB MOANALUA WELLS

Date Collected: 06/26/23 10:18 Date Received: 06/28/23 09:40

(d8-Naphthalene)

Lab Sample ID: 380-52637-5 Matrix: Water

Lab Sample ID: 380-52637-6

06/29/23 00:00 07/15/23 03:04

Method: 8015 Gas (Purgeal	ble) LL (EAL) -	SW846 80	15B Gasolin	e Range	Organi	cs			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
GASOLINE	ND	U	0.02		mg/L			06/29/23 19:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
BROMOFLUOROBENZENE	87		60 - 140			-		06/29/23 19:12	1

25 - 125

Client Sample ID: TB AIEA GULCH WELLS PUMP 2

Date Collected: 06/26/23 11:41

Date Received: 06/28/23 09:40

Method: 8015 Gas (Purgeable)) LL (EAL) -	SW846 80	15B Gasoline	e Range Organics				
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
GASOLINE	ND	U	0.02	mg/L	_		06/29/23 20:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
BROMOFLUOROBENZENE	90		60 - 140				06/29/23 20:25	1

Eurofins Eaton Analytical Pomona

Matrix: Water

Client: City & County of Honolulu

Project/Site: RED-HILL

Method: 625 PAH Physis LL (EAL) + TICs - EPA 625 Base/Neutral and Acid Organics i

Matrix: BlankMatrix Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance					
		Acenapht	Phenanth	CRY	NPT	PRY		
Lab Sample ID	Client Sample ID	(27-133)	(43-129)	(52-144)	(25-125)	(36-161)		
107835-B1	Method Blank	79	73	105	78	77		
107835-BS1	Lab Control Sample	89	69	102	82	79		
107835-BS2	Lab Control Sample Dup	91	68	100	83	79		
Surrogate Legend								

(d10-Acenaphthene) = (d10-Acenaphthene) (d10-Phenanthrene) = (d10-Phenanthrene)

CRY = (d12-Chrysene) NPT = (d8-Naphthalene) PRY = (d12-Perylene)

Method: 625 PAH Physis LL (EAL) + TICs - EPA 625 Base/Neutral and Acid Organics i

Matrix: Drinking Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		Acenapht	Phenanth	CRY	NPT	PRY		
Lab Sample ID	Client Sample ID	(27-133)	(43-129)	(52-144)	(25-125)	(36-161)		
380-52637-3	AIEA WELLS PUMPS 1&2 (260)	78	78	102	86	66		
Surrogate Legend								
(d10-Acenaphthene) =	(d10-Acenaphthene)							
(d10-Phenanthrene) = d	(d10-Phenanthrene)							

CRY = (d12-Chrysene) NPT = (d8-Naphthalene)

PRY = (d12-Perylene)

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics

Matrix: Drinking Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		BFB	
Lab Sample ID	Client Sample ID	(60-140)	
380-52637-1	MOANALUA WELLS	88	
380-52637-2	AIEA GULCH WELLS PUMP 2	80	
Surrogate Legend			

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		BFB	
Lab Sample ID	Client Sample ID	(60-140)	
380-52637-5	TB MOANALUA WELLS	87	
380-52637-6	TB AIEA GULCH WELLS PUMP 2	90	
Surrogate Legend			
BFB = BROMOFLUOR	ROBENZENE		

Eurofins Eaton Analytical Pomona

Page 9 of 86

Job ID: 380-52637-2

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics

Matrix: WATER Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		BFB	
Lab Sample ID	Client Sample ID	(60-140)	
23F197-01M	Matrix Spike	98	
23F197-01S	Matrix Spike Duplicate	101	
Surrogate Legend			

BFB = BROMOFLUOROBENZENE

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics

Matrix: WATER Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		BFB	
Lab Sample ID	Client Sample ID		
23VG39F14B	Method Blank		
Surrogate Legend	Į.		
BFB = BROMOFLU	JOROBENZENE		

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics

Matrix: WATER Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		BFB	
Lab Sample ID	Client Sample ID	(70-130)	
23VG39F14C	LCD	102	
23VG39F14L	Lab Control Sample	104	
Surrogate Legend			
BFB = BROMOFLU			

Method: 8015 LL DRO/MRO/JP5/JP8 - 8015 - TPH DRO/ORO

Matrix: Drinking Water Prep Type: Total/NA

			Percent S	Surrogate Recovery (Acceptance Limits)
		ВВ	XACOSA	
Lab Sample ID	Client Sample ID	(60-130)	(60-130)	
380-52637-1	MOANALUA WELLS	90	115	
380-52637-2	AIEA GULCH WELLS PUMP 2	87	107	
Surrogate Legend				
BB = BROMOBENZEN	E			
HEXACOSANE = HEXA	ACOSANE			

Method: 8015 LL DRO/MRO/JP5/JP8 - 8015 - TPH DRO/ORO

Matrix: WATER Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		BB	XACOSAI
Lab Sample ID	Client Sample ID		
23DSG006WB	Method Blank		
Surrogate Legend			
BB = BROMOBENZ	ZENE		
HEXACOSANE = H	IEXACOSANE		

Page 10 of 86

12/12/2023

Surrogate Summary

Client: City & County of Honolulu Job ID: 380-52637-2

Project/Site: RED-HILL

Method: 8015 LL DRO/MRO/JP5/JP8 - 8015 - TPH DRO/ORO

Matrix: WATER Prep Type: Total/NA

			Percent Surrogat	e Recovery (Acceptance Limits)
		BB	XACOSAI	
Lab Sample ID	Client Sample ID	(60-130)	(60-130)	
23DSG006WC	LCD	87	109	
23DSG006WL	Lab Control Sample	78	110	
23J5G006WC	LCD	85	107	
23J5G006WL	Lab Control Sample	71	115	
23J8G006WC	LCD	97	106	
23J8G006WL	Lab Control Sample	98	108	
Surrogate Legend				

HEXACOSANE = HEXACOSANE

Client: City & County of Honolulu Job ID: 380-52637-2

Project/Site: RED-HILL

Method: 625 PAH Physis LL (EAL) + TICs - EPA 625 Base/Neutral and Acid Organics i

Lab Sample ID: 107835-B1 Client Sample ID: Method Blank Matrix: BlankMatrix Prep Type: Total/NA Analysis Batch: O-41122 Prep Batch: O-41122_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
1-Methylphenanthrene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
2,3,5-Trimethylnaphthalene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
2,6-Dimethylnaphthalene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
2-Methylnaphthalene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Acenaphthene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Acenaphthylene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Anthracene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Benz[a]anthracene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Benzo[a]pyrene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Benzo[b]fluoranthene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Benzo[e]pyrene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Benzo[g,h,i]perylene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Benzo[k]fluoranthene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Biphenyl	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Chrysene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Dibenz[a,h]anthracene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Dibenzo[a,l]pyrene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Dibenzothiophene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Disalicylidenepropanediamine	ND		0.1	0.05	μg/L		06/29/23 00:00	07/14/23 18:00	1
Fluoranthene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Fluorene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Indeno[1,2,3-cd]pyrene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Naphthalene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Perylene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Phenanthrene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1
Pyrene	ND		0.005	0.001	μg/L		06/29/23 00:00	07/14/23 18:00	1

	Blank	Blank				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
(d10-Acenaphthene)	79		27 - 133	06/29/23 00:00	07/14/23 18:00	1
(d10-Phenanthrene)	73		43 - 129	06/29/23 00:00	07/14/23 18:00	1
(d12-Chrysene)	105		52 - 144	06/29/23 00:00	07/14/23 18:00	1
(d12-Perylene)	77		36 - 161	06/29/23 00:00	07/14/23 18:00	1
(d8-Naphthalene)	78		25 - 125	06/29/23 00:00	07/14/23 18:00	1

Lab Sample ID: 107835-BS1 Matrix: BlankMatrix Analysis Batch: O-41122

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: O-41122_P

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1-Methylnaphthalene	0.5	0.487		μg/L		97	31 - 128	
1-Methylphenanthrene	0.5	0.363		μg/L		73	66 - 127	
2,3,5-Trimethylnaphthalene	0.5	0.406		μg/L		81	55 - 122	
2,6-Dimethylnaphthalene	0.5	0.424		μg/L		85	48 - 120	
2-Methylnaphthalene	0.5	0.517		μg/L		103	47 - 130	
Acenaphthene	0.5	0.447		μg/L		89	53 - 131	
Acenaphthylene	0.5	0.434		μg/L		87	43 - 140	
Anthracene	0.5	0.431		μg/L		86	58 - 135	

Eurofins Eaton Analytical Pomona

Page 12 of 86

Client: City & County of Honolulu Project/Site: RED-HILL

Method: 625 PAH Physis LL (EAL) + TICs - EPA 625 Base/Neutral and Acid Organics i (Continued)

Lab Sample ID: 107835-BS1 Matrix: BlankMatrix **Analysis Batch: O-41122**

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: O-41122_P

7 that you battom o 41122							iop Batoin o Ti	
•	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benz[a]anthracene	0.25	0.253		μg/L		101	55 - 145	
Benzo[a]pyrene	0.5	0.387		μg/L		77	51 - 143	
Benzo[b]fluoranthene	0.5	0.309		μg/L		62	46 - 165	
Benzo[e]pyrene	0.5	0.362		μg/L		72	42 - 152	
Benzo[g,h,i]perylene	0.5	0.386		μg/L		77	63 - 133	
Benzo[k]fluoranthene	0.5	0.357		μg/L		71	56 - 145	
Biphenyl	0.5	0.596		μg/L		119	56 - 119	
Chrysene	0.25	0.247		μg/L		99	56 - 141	
Dibenz[a,h]anthracene	0.5	0.296		μg/L		59	55 - 150	
Dibenzo[a,l]pyrene	1	1.2		μg/L		120	50 - 150	
Dibenzothiophene	0.5	0.372		μg/L		74	46 - 126	
Disalicylidenepropanediamine	10	7.7		μg/L		77	50 - 150	
Fluoranthene	0.5	0.426		μg/L		85	60 - 146	
Fluorene	0.5	0.387		μg/L		77	58 - 131	
Indeno[1,2,3-cd]pyrene	0.5	0.282		μg/L		56	50 - 151	
Naphthalene	0.5	0.441		μg/L		88	41 - 126	
Perylene	0.5	0.45		μg/L		90	48 - 141	
Phenanthrene	0.5	0.388		μg/L		78	67 - 127	
Pyrene	0.5	0.412		μg/L		82	54 - 156	

LCS LCS

Surrogate	%Recovery Qua	alifier Limits
(d10-Acenaphthene)	89	27 - 133
(d10-Phenanthrene)	69	43 - 129
(d12-Chrysene)	102	52 - 144
(d12-Perylene)	79	36 - 161
(d8-Naphthalene)	82	25 - 125

Lab Sample ID: 107835-BS2

Matrix: BlankMatrix **Analysis Batch: O-41122** **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

Prep Batch: O-41122 P

Alialysis Dalcii. 0-41122							ep batch	. 0-411	22_P
	Spike	LCS DUP	LCS DUP				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1-Methylnaphthalene	0.5	0.483		μg/L		97	31 - 128	0	30
1-Methylphenanthrene	0.5	0.337		μg/L		67	66 - 127	9	30
2,3,5-Trimethylnaphthalene	0.5	0.41		μg/L		82	55 - 122	1	30
2,6-Dimethylnaphthalene	0.5	0.407		μg/L		81	48 - 120	5	30
2-Methylnaphthalene	0.5	0.514		μg/L		103	47 - 130	0	30
Acenaphthene	0.5	0.434		μg/L		87	53 - 131	2	30
Acenaphthylene	0.5	0.422		μg/L		84	43 - 140	4	30
Anthracene	0.5	0.395		μg/L		79	58 - 135	8	30
Benz[a]anthracene	0.25	0.24		μg/L		96	55 - 145	5	30
Benzo[a]pyrene	0.5	0.39		μg/L		78	51 - 143	1	30
Benzo[b]fluoranthene	0.5	0.313		μg/L		63	46 - 165	2	30
Benzo[e]pyrene	0.5	0.336		μg/L		67	42 - 152	7	30
Benzo[g,h,i]perylene	0.5	0.358		μg/L		72	63 - 133	7	30
Benzo[k]fluoranthene	0.5	0.364		μg/L		73	56 - 145	3	30
Biphenyl	0.5	0.561		μg/L		112	56 - 119	6	30
Chrysene	0.25	0.239		μg/L		96	56 - 141	3	30

Eurofins Eaton Analytical Pomona

Page 13 of 86

Client: City & County of Honolulu Project/Site: RED-HILL

Method: 625 PAH Physis LL (EAL) + TICs - EPA 625 Base/Neutral and Acid Organics i (Continued)

Lab Sample ID: 107835-BS2 Matrix: BlankMatrix			C	lient Sa	ample	ID: Lab	Control Prep Ty		
Analysis Batch: O-41122						P	rep Batch	•	
Analysis Batom S 41122						•	•	. •	_
	Spike	LCS DUP	LCS DUP				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dibenz[a,h]anthracene	0.5	0.294		μg/L		59	55 - 150	0	30
Dibanas fa Ilanas	4	1 2		/1		120	EO 1EO	0	20

	Spike	LCS DUP	LCS DUP				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dibenz[a,h]anthracene	0.5	0.294		μg/L		59	55 - 150	0	30
Dibenzo[a,I]pyrene	1	1.3		μg/L		130	50 - 150	8	30
Dibenzothiophene	0.5	0.336		μg/L		67	46 - 126	10	30
Disalicylidenepropanediamine	10	10.4		μg/L		104	50 - 150	30	30
Fluoranthene	0.5	0.377		μg/L		75	60 - 146	12	30
Fluorene	0.5	0.361		μg/L		72	58 - 131	7	30
Indeno[1,2,3-cd]pyrene	0.5	0.264		μg/L		53	50 - 151	6	30
Naphthalene	0.5	0.415		μg/L		83	41 - 126	6	30
Perylene	0.5	0.413		μg/L		83	48 - 141	8	30
Phenanthrene	0.5	0.377		μg/L		75	67 - 127	4	30
Pyrene	0.5	0.385		μg/L		77	54 - 156	6	30

	LCS DUP	LCS DUP	
Surrogate	%Recovery	Qualifier	Limits
(d10-Acenaphthene)	91		27 - 133
(d10-Phenanthrene)	68		43 - 129
(d12-Chrysene)	100		52 - 144
(d12-Perylene)	79		36 - 161
(d8-Naphthalene)	83		25 - 125

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics

Lab Sample ID: 23VG39F14B **Client Sample ID: Method Blank Matrix: WATER** Prep Type: Total/NA

Analysis Batch: 23VG39F14

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
GASOLINE	ND	U	0.02		mg/L			06/29/23 13:44	1
	MB	MB							
Surrogate BROMOFLUOROBENZENE	%Recovery	Qualifier	Limits			-	Prepared	Analyzed 06/29/23 13:44	Dil Fac

Lab Sample ID: 23VG39F14L **Client Sample ID: Lab Control Sample Matrix: WATER**

100 100

Analysis Batch: 23VG39F14

	Spike	LUS	LUS				/orec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
GASOLINE	0.5	0.446		mg/L		89	60 - 130	

Snika

	LCS LCS	
Surrogate	%Recovery Qualifier	Limits
BROMOELLIOROBENZENE	104	70 130

Client Sample ID: Matrix Spike Lab Sample ID: 23F197-01M Matrix: WATER Prep Type: Total/NA

Analysis Batch: 23VG39F14

	Sample	Sample	Spike	MS	MS					%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	I	כ	%Rec	Limits		
GASOLINE	ND		0.5	0.451		mg/L		_	90	50 - 130	 	_

Eurofins Eaton Analytical Pomona

Page 14 of 86

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client: City & County of Honolulu

Project/Site: RED-HILL

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics (Continued)

Client Sample ID: Matrix Spike Duplicate

Lab Sample ID: 23F197-01M **Client Sample ID: Matrix Spike**

Matrix: WATER

Analysis Batch: 23VG39F14

MS MS

%Recovery Qualifier Surrogate Limits BROMOFLUOROBENZENE 98 60 - 140

Lab Sample ID: 23F197-01S

Matrix: WATER

Analysis Batch: 23VG39F14

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Limits RPD Analyte Result Qualifier Unit %Rec Limit GASOLINE ND 0.5 0.457 mg/L 91 50 - 130 30

MSD MSD

Surrogate %Recovery Qualifier Limits BROMOFLUOROBENZENE 60 - 140 101

Method: 8015 LL DRO/MRO/JP5/JP8 - 8015 - TPH DRO/ORO

Lab Sample ID: 23DSG006WB Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: WATER

Analysis Batch: 23DSG006W

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac DIESEL П 0.025 07/07/23 19:55 ND mg/L JP5 ND U 0.05 mg/L 07/07/23 19:55 JP8 ND U 0.05 mg/L 07/07/23 19:55 MOTOR OIL ND U 0.05 mg/L 07/07/23 19:55

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac **BROMOBENZENE** 07/07/23 19:55 **HEXACOSANE** 07/07/23 19:55

Lab Sample ID: 23DSG006WL **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: WATER

Analysis Batch: 23DSG006W

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits DIESEL 2.5 2.24 mg/L 50 - 130

LCS LCS

%Recovery Qualifier Surrogate I imits BROMOBENZENE 60 - 130 78 **HEXACOSANE** 110 60 - 130

Lab Sample ID: 23J5G006WL **Client Sample ID: Lab Control Sample Matrix: WATER** Prep Type: Total/NA

Analysis Batch: 23DSG006W

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
JP5	2.5	1.92		mg/L		77	30 - 160	

12/12/2023

QC Sample Results

Client: City & County of Honolulu Job ID: 380-52637-2

Project/Site: RED-HILL

Method: 8015 LL DRO/MRO/JP5/JP8 - 8015 - TPH DRO/ORO (Continued)

Client Sample ID: Lab Control Sample Lab Sample ID: 23J5G006WL Prep Type: Total/NA

Matrix: WATER

Analysis Batch: 23DSG006W

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
BROMOBENZENE	71		60 - 130
HEXACOSANE	115		60 - 130

Lab Sample ID: 23J8G006WL **Client Sample ID: Lab Control Sample Matrix: WATER**

Prep Type: Total/NA

Analysis Batch: 23DSG006W

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits JP8 2.5 30 - 160 2.15 mg/L 86

LCS LCS

Surrogate	%Recovery Qualif	ier Limits
BROMOBENZENE	98	60 - 130
HEXACOSANE	108	60 - 130

QC Association Summary

Client: City & County of Honolulu Job ID: 380-52637-2

Project/Site: RED-HILL

Subcontract

Analysis Batch: O-41122

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-52637-3	AIEA WELLS PUMPS 1&2 (260) P2	Total/NA	Drinking Water	625 PAH Physis	O-41122_P
				LL (EAL) + TICs	
107835-B1	Method Blank	Total/NA	BlankMatrix	625 PAH Physis	O-41122_P
				LL (EAL) + TICs	
107835-BS1	Lab Control Sample	Total/NA	BlankMatrix	625 PAH Physis	O-41122_P
				LL (EAL) + TICs	
107835-BS2	Lab Control Sample Dup	Total/NA	BlankMatrix	625 PAH Physis	O-41122_P
				LL (EAL) + TICs	

Analysis Batch: 23DSG006W

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-52637-1	MOANALUA WELLS	Total/NA	Drinking Water	8015 LL DRO/MRO/JP5/J P8	
380-52637-2	AIEA GULCH WELLS PUMP 2	Total/NA	Drinking Water	8015 LL DRO/MRO/JP5/J P8	
23DSG006WB	Method Blank	Total/NA	WATER	8015 LL DRO/MRO/JP5/J P8	
23DSG006WL	Lab Control Sample	Total/NA	WATER	8015 LL DRO/MRO/JP5/J P8	
23J5G006WL	Lab Control Sample	Total/NA	WATER	8015 LL DRO/MRO/JP5/J P8	
23J8G006WL	Lab Control Sample	Total/NA	WATER	8015 LL DRO/MRO/JP5/J P8	

Analysis Batch: 23VG39F14

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-52637-1	MOANALUA WELLS	Total/NA	Drinking Water	8015 Gas	
				(Purgeable) LL	
				(EAL)	
380-52637-2	AIEA GULCH WELLS PUMP 2	Total/NA	Drinking Water	8015 Gas	
				(Purgeable) LL	
				(EAL)	
380-52637-5	TB MOANALUA WELLS	Total/NA	Water	8015 Gas	
				(Purgeable) LL	
				(EAL)	
380-52637-6	TB AIEA GULCH WELLS PUMP 2	Total/NA	Water	8015 Gas	
				(Purgeable) LL	
				(EAL)	
23VG39F14B	Method Blank	Total/NA	WATER	8015 Gas	
				(Purgeable) LL	
22) (020544)	Lab Cantral Canada	T-4-1/NIA	WATED	(EAL)	
23VG39F14L	Lab Control Sample	Total/NA	WATER	8015 Gas	
				(Purgeable) LL	
23F197-01M	Matrix Spike	Total/NA	WATER	(EAL) 8015 Gas	
23F 197 -0 11VI	Matrix Spike	IOIai/INA	WATER	(Purgeable) LL	
				(EAL)	
23F197-01S	Matrix Spike Duplicate	Total/NA	WATER	8015 Gas	
201 101 010	mann opino Baphouto	15.60/14/1	**************************************	(Purgeable) LL	
				(EAL)	

Page 17 of 86

QC Association Summary

Client: City & County of Honolulu Project/Site: RED-HILL Job ID: 380-52637-2

Subcontract

Prep Batch: O-41122_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-52637-3	AIEA WELLS PUMPS 1&2 (260) P2	Total/NA	Drinking Water	EPA_625	
107835-B1	Method Blank	Total/NA	BlankMatrix	EPA_625	
107835-BS1	Lab Control Sample	Total/NA	BlankMatrix	EPA_625	
107835-BS2	Lab Control Sample Dup	Total/NA	BlankMatrix	EPA_625	

Client Sample ID: MOANALUA WELLS

DRO/MRO/JP5/JP8

Date Collected: 06/26/23 10:18 Date Received: 06/28/23 09:40

Lab	Samp	ole	ID:	380)-52	637	-1
	I	Vlat	rix:	Drin	king	Wat	е

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015 Gas (Purgeable) LL (EAL)		1	23VG39F14	SCerva		06/29/23 15:34
Total/NA	Analysis	8015 LL		1	23DSG006W	SDees		07/07/23 22:06

Client Sample ID: AIEA GULCH WELLS PUMP 2

Date Collected: 06/26/23 11:41 Date Received: 06/28/23 09:40

Lab Sam	ple ID: 380-52637-2
	Matrix: Drinking Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015 Gas (Purgeable) LL (EAL)		1	23VG39F14	SCerva		06/29/23 17:23
Total/NA	Analysis	8015 LL DRO/MRO/JP5/JP8		1	23DSG006W	SDees		07/07/23 22:25

Client Sample ID: AIEA WELLS PUMPS 1&2 (260) P2 Lab Sample ID: 380-52637-3

Date Collected: 06/26/23 11:14 Date Received: 06/28/23 09:40

Matrix: Drinking Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	EPA_625		1	O-41122_P			06/29/23 00:00
Total/NA	Analysis	625 PAH Physis LL (EAL) + TICs		1	O-41122	YC		07/15/23 03:04

Lab Sample ID: 380-52637-5 **Client Sample ID: TB MOANALUA WELLS Matrix: Water**

Date Collected: 06/26/23 10:18 Date Received: 06/28/23 09:40

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Analyst	Lab	Prepared or Analyzed
Total/NA	Analysis	8015 Gas (Purgeable) LL (EAL)		1	23VG39F14	SCerva		06/29/23 19:12

Client Sample ID: TB AIEA GULCH WELLS PUMP 2 Lab Sample ID: 380-52637-6

Date Collected: 06/26/23 11:41 Date Received: 06/28/23 09:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015 Gas		1	23VG39F14	SCerva		06/29/23 20:25
		(Purgeable) II (EAL)						

Laboratory References:

= Physis Environmental Laboratories, 1904 Wright Circle, Anaheim, CA 92806

Matrix: Water

Method Summary

Client: City & County of Honolulu

Project/Site: RED-HILL

Job ID: 380-52637-2

Method	Method Description	Protocol	Laboratory
625	EPA 625 Base/Neutral and Acid Organics i	EPA	
8015	8015 - TPH DRO/ORO	EPA	
8015B	SW846 8015B Gasoline Range Organics	SW846	

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

= Physis Environmental Laboratories, 1904 Wright Circle, Anaheim, CA 92806

7

8

11

12

14

1

Sample Summary

Client: City & County of Honolulu Project/Site: RED-HILL

Job ID: 380-52637-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
380-52637-1	MOANALUA WELLS	Drinking Water	06/26/23 10:18	06/28/23 09:40
380-52637-2	AIEA GULCH WELLS PUMP 2	Drinking Water	06/26/23 11:41	06/28/23 09:40
380-52637-3	AIEA WELLS PUMPS 1&2 (260) P2	Drinking Water	06/26/23 11:14	06/28/23 09:40
380-52637-5	TB MOANALUA WELLS	Water	06/26/23 10:18	06/28/23 09:40
380-52637-6	TB AIEA GULCH WELLS PUMP 2	Water	06/26/23 11:41	06/28/23 09:40

October 27, 2023

Rachelle Arada Eurofins Eaton Analytical 750 Royal Oaks Drive Suite 100 Monrovia, CA 91016-

Project Name: RED-HILL Project # 38001111 Job # 380-52637-1

Physis Project ID: 1407003-411

Dear Rachelle,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 6/29/2023. A total of 4 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Organics						
Polynuclear Aromatic Hydrocarbons by EPA 625.1						
Disalicylidenepropanediamine by EPA 625.1						
Dibenzo [a,l] Pyrene w/ PAHs by EPA 625.1						

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Misty Mercier 714 602-5320 Extension 202

mistymercier@physislabs.com

4

4

6

Q

9

11

12

14

1

PROJECT SAMPLE LIST

Eurofins Eaton Analytical

RED-HILL Project # 38001111 Job # 380-52637-1

PHYSIS Project ID: 1407003-411

Total Samples: 1

PHYSIS ID	Sample ID	Description	Date	Time	Matrix	Sample Type
107838 AIEA	WELLS PUMPS 1&2 (260) P2	380-52637-3	6/26/2023	11:14	Samplewater	Not Specified

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS2	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

14

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

i - 4 of 6

CA ELAP #2769

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
E	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

i - 6 of 6

CASE NARRATIVE

QUALIFIER NOTES

In addition to the use of analyte specific Physis Qualifier Codes where applicable, the following were also noted.

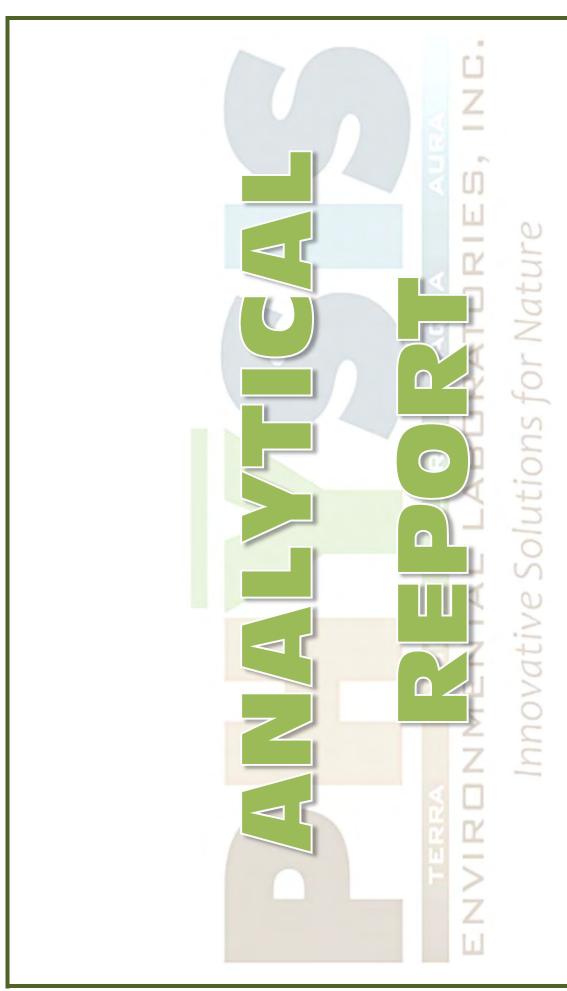
ND

MDL is listed due to report format restrictions; it is not used in reporting. Analytical results reported are ND at the RL.

3

А

5


6

8

. .

12

13

Project: RED-HILL Project # 38001111 Job # 380-52637-1

Innovative Solutions for Nature

ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE Batch ID	Date Processed	Date Analyzed
Sample ID: 107838-R1 AIEA WELLS PUMPS 1&2 (260) P2 3 Matrix: Samplewater							Sampled:	26-Jun-23 11:14	Received:	29-Jun-23
Disalicylidenepropanediamine	EPA 625.1	μg/L	ND	1	0.05	0.1	Total	O-41122	29-Jun-23	15-Jul-23

12/12/2023

Project: RED-HILL Project # 38001111 Job # 380-52637-1

Innovative Solutions for Nature

Polynuclear Aromatic Hydrocarbons

ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE Batch ID	Date Processed	Date Analyzed
Sample ID: 107838-R1	AIEA WELLS PUMPS 18	k2 (260) P2 3 M	atrix: Sampl	ewateı			Sampled:	26-Jun-23 11:14	Received:	29-Jun-23
(d10-Acenaphthene)	EPA 625.1	% Recovery	78	1			Total	O-41122	29-Jun-23	15-Jul-23
(d10-Phenanthrene)	EPA 625.1	% Recovery	78	1			Total	O-41122	29-Jun-23	15-Jul-23
(d12-Chrysene)	EPA 625.1	% Recovery	102	1			Total	O-41122	29-Jun-23	15-Jul-23
(d12-Perylene)	EPA 625.1	% Recovery	66	1			Total	O-41122	29-Jun-23	15-Jul-23
(d8-Naphthalene)	EPA 625.1	% Recovery	86	1			Total	O-41122	29-Jun-23	15-Jul-23
1-Methylnaphthalene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-41122	29-Jun-23	15-Jul-23
1-Methylphenanthrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-41122	29-Jun-23	15-Jul-23
2,3,5-Trimethylnaphthalene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-41122	29-Jun-23	15-Jul-23
2,6-Dimethylnaphthalene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-41122	29-Jun-23	15-Jul-23
2-Methylnaphthalene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-41122	29-Jun-23	15-Jul-23
Acenaphthene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-41122	29-Jun-23	15-Jul-23
Acenaphthylene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-41122	29-Jun-23	15-Jul-23
Anthracene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-41122	29-Jun-23	15-Jul-23
Benz[a]anthracene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-41122	29-Jun-23	15-Jul-23
Benzo[a]pyrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-41122	29-Jun-23	15-Jul-23
Benzo[b]fluoranthene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-41122	29-Jun-23	15-Jul-23
Benzo[e]pyrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-41122	29-Jun-23	15-Jul-23
Benzo[g,h,i]perylene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-41122	29-Jun-23	15-Jul-23
Benzo[k]fluoranthene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-41122	29-Jun-23	15-Jul-23
Biphenyl	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-41122	29-Jun-23	15-Jul-23
Chrysene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-41122	29-Jun-23	15-Jul-23
Dibenz[a,h]anthracene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-41122	29-Jun-23	15-Jul-23
Dibenzo[a,l]pyrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-41122	29-Jun-23	15-Jul-23
Dibenzothiophene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-41122	29-Jun-23	15-Jul-23

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

ar - 2 of 3

12/12/2023

Page 31 of 86

Project: RED-HILL Project # 38001111 Job # 380-52637-1

Innovative Solutions for Nature

Polynuclear Aromatic Hydrocarbons													
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE Batch ID	Date Processed	Date Analyzed			
Fluoranthene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-41122	29-Jun-23	15-Jul-23			
Fluorene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-41122	29-Jun-23	15-Jul-23			
Indeno[1,2,3-cd]pyrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-41122	29-Jun-23	15-Jul-23			
Naphthalene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-41122	29-Jun-23	15-Jul-23			
Perylene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-41122	29-Jun-23	15-Jul-23			
Phenanthrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-41122	29-Jun-23	15-Jul-23			
Pyrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-41122	29-Jun-23	15-Jul-23			

14

a i

Page 32 of 86 12/12/2023

Project: RED-HILL Project # 38001111 Job # 380-52637-1

Base/Neutral Extractable Compounds

QUALITY CONTROL REPORT

						•				•				
ANALYTE	FRACT	ION	RESULT	DF	MDL	RL	UNITS	SPIKE	SOURCE	Α	ACCURACY	PF	RECISION	QA CODEc
								LEVEL	RESULT	%	LIMITS	%	LIMITS	
Sample ID: 1078	35-B1	QAQC	Procedur	al Blar	nk		Matrix:	BlankMatri	ix Sa	mpled:			Received:	
		Metho	d: EPA 625.1				Batch ID:	0-41122	Р	repared: 2	29-Jun-23		Analyzed:	14-Jul-23
Disalicylidenepropanediamir	n Tota	1 1	ND	1	0.05	0.1	μg/L							
Sample ID: 1078	35-BS1	QAQC	Procedur	al Blar	nk		Matrix:	BlankMatri	ix Sa	mpled:			Received:	
		_ , ,												
•		Metho	d: EPA 625.1				Batch ID:	0-41122	Р	repared: 2	29-Jun-23		Analyzed:	14-Jul-23
Disalicylidenepropanediamir			d: EPA 625.1 7.7	1	0.05	0.1	Batch ID: µg/L	O-41122 10	0 0	repared: 2	29-Jun-23 50 - 150% PASS		Analyzed:	14-Jul-23
Disalicylidenepropanediamir Sample ID: 1078	n Tota	I	_	1 al Blar		0.1	μg/L	•	0	•			Analyzed:	14-Jul-23
^	n Tota	QAQC	7.7	1 al Blar		0.1	μg/L	10 BlankMatri	o ix Sa	77	50 - 150% PASS			

12/12/2023

Project: RED-HILL Project # 38001111 Job # 380-52637-1

Innovative Solutions for Nature

Polynuclear Aromatic Hydrocarbons

QUALITY CONTROL REPORT

ANALYTE	FRACTIC	ON RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	<i>F</i> %	CCURACY LIMITS		PRECISI	ON MITS	QA CODEc
Sample ID: 10783	35-B1 (QAQC Procedu	ral Blar	nk		Matrix: Bla			npled:			Rece		
	1	Method: EPA 625.	I			Batch ID: O-4	1122	Pro	epared: :	29-Jun-23		Ana	lyzed: 1	4-Jul-23
(d10-Acenaphthene)	Total	79	1			% Recovery	100		79	27 - 133%	PASS			
(d10-Phenanthrene)	Total	73	1			% Recovery	100		73	43 - 129%	PASS			
(d12-Chrysene)	Total	105	1			% Recovery	100		105	52 - 144%	PASS			
(d12-Perylene)	Total	77	1			% Recovery	100		77	36 - 161%	PASS			
(d8-Naphthalene)	Total	78	1			% Recovery	100		78	25 - 125%	PASS			
1-Methylnaphthalene	Total	ND	1	0.001	0.005	μg/L								
1-Methylphenanthrene	Total	ND	1	0.001	0.005	μg/L								
2,3,5-Trimethylnaphthalene	Total	ND	1	0.001	0.005	μg/L								
2,6-Dimethylnaphthalene	Total	ND	1	0.001	0.005	μg/L								
2-Methylnaphthalene	Total	ND	1	0.001	0.005	μg/L								
Acenaphthene	Total	ND	1	0.001	0.005	μg/L								
Acenaphthylene	Total	ND	1	0.001	0.005	μg/L								
Anthracene	Total	ND	1	0.001	0.005	μg/L								
Benz[a]anthracene	Total	ND	1	0.001	0.005	μg/L								
Benzo[a]pyrene	Total	ND	1	0.001	0.005	μg/L								
Benzo[b]fluoranthene	Total	ND	1	0.001	0.005	μg/L								
Benzo[e]pyrene	Total	ND	1	0.001	0.005	μg/L								
Benzo[g,h,i]perylene	Total	ND	1	0.001	0.005	μg/L								
Benzo[k]fluoranthene	Total	ND	1	0.001	0.005	μg/L								
Biphenyl	Total	ND	1	0.001	0.005	μg/L								
Chrysene	Total	ND	1	0.001	0.005	μg/L								
Dibenz[a,h]anthracene	Total	ND	1	0.001	0.005	μg/L								
Dibenzo[a,l]pyrene	Total	ND	1	0.001	0.005	μg/L								
Dibenzothiophene	Total	ND	1	0.001	0.005	μg/L								

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

qcb - 2 of 7

12/12/2023

1904 E. Wright Circle, Anaheim CA 92806

PHYSIS Project ID: 1407003-411 Client: Eurofins Eaton Analytical

Project: RED-HILL Project # 38001111 Job # 380-52637-1

Polynuclear Aromatic Hydrocarbons

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

Q	UAL	.ITY	CONT	ΓROL	REP	ORT
---	------------	------	------	------	-----	-----

•									-				
ANALYTE	FRACTION	RESULT	DF	MDL	RL	UNITS	SPIKE	SOURCE		ACCURACY	PRE	CISION	QA CODEc
							LEVEL	RESULT	%	LIMITS	%	LIMITS	
Fluoranthene	Total	ND	1	0.001	0.005	μg/L							
Fluorene	Total	ND	1	0.001	0.005	μg/L							
Indeno[1,2,3-cd]pyrene	Total	ND	1	0.001	0.005	μg/L							
Naphthalene	Total	ND	1	0.001	0.005	μg/L							
Perylene	Total	ND	1	0.001	0.005	μg/L							
Phenanthrene	Total	ND	1	0.001	0.005	μg/L							
Pyrene	Total	ND	1	0.001	0.005	μg/L							

qcb - 3 of 7

Page 36 of 86 12/12/2023

CA ELAP #2769

info@physislabs.com

PHYSIS Project ID: 1407003-411 **Client: Eurofins Eaton Analytical**

Project: RED-HILL Project # 38001111 Job # 380-52637-1

Polynuclear Aromatic Hydrocarbons

QUALITY CONTROL REPORT

ANALYTE	FRACTION	I RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	A %	CCURACY LIMITS		PRECISION % LIMITS	QA CODEc
Sample ID: 10783	35-BS1 Q/	AQC Procedur	al Blaı	nk		Matrix: Bla	ankMatr	ix Sar	npled:			Received:	
	Me	ethod: EPA 625.1				Batch ID: O-4	1122	Pr	epared: 2	.9-Jun-23		Analyzed:	14-Jul-23
(d10-Acenaphthene)	Total	89	1			% Recovery	100	0	89	27 - 133%	PASS		
(d10-Phenanthrene)	Total	69	1			% Recovery	100	0	69	43 - 129%	PASS		
(d12-Chrysene)	Total	102	1			% Recovery	100	0	102	52 - 144%	PASS		
(d12-Perylene)	Total	79	1			% Recovery	100	0	79	36 - 161%	PASS		
(d8-Naphthalene)	Total	82	1			% Recovery	100	0	82	25 - 125%	PASS		
1-Methylnaphthalene	Total	0.487	1	0.001	0.005	μg/L	0.5	0	97	31 - 128%	PASS		
1-Methylphenanthrene	Total	0.363	1	0.001	0.005	μg/L	0.5	0	73	66 - 127%	PASS		
2,3,5-Trimethylnaphthalene	Total	0.406	1	0.001	0.005	μg/L	0.5	0	81	55 - 122%	PASS		
2,6-Dimethylnaphthalene	Total	0.424	1	0.001	0.005	μg/L	0.5	0	85	48 - 120%	PASS		
2-Methylnaphthalene	Total	0.517	1	0.001	0.005	μg/L	0.5	0	103	47 - 130%	PASS		
Acenaphthene	Total	0.447	1	0.001	0.005	μg/L	0.5	0	89	53 - 131%	PASS		
Acenaphthylene	Total	0.434	1	0.001	0.005	μg/L	0.5	0	87	43 - 140%	PASS		
Anthracene	Total	0.431	1	0.001	0.005	μg/L	0.5	0	86	58 - 135%	PASS		
Benz[a]anthracene	Total	0.253	1	0.001	0.005	μg/L	0.25	0	101	55 - 145%	PASS		
Benzo[a]pyrene	Total	0.387	1	0.001	0.005	μg/L	0.5	0	77	51 - 143%	PASS		
Benzo[b]fluoranthene	Total	0.309	1	0.001	0.005	μg/L	0.5	0	62	46 - 165%	PASS		
Benzo[e]pyrene	Total	0.362	1	0.001	0.005	μg/L	0.5	0	72	42 - 152%	PASS		
Benzo[g,h,i]perylene	Total	0.386	1	0.001	0.005	μg/L	0.5	0	77	63 - 133%	PASS		
Benzo[k]fluoranthene	Total	0.357	1	0.001	0.005	μg/L	0.5	0	71	56 - 145%	PASS		
Biphenyl	Total	0.596	1	0.001	0.005	μg/L	0.5	0	119	56 - 119%	PASS		
Chrysene	Total	0.247	1	0.001	0.005	μg/L	0.25	0	99	56 - 141%	PASS		
Dibenz[a,h]anthracene	Total	0.296	1	0.001	0.005	μg/L	0.5	0	59	55 - 150%	PASS		
Dibenzo[a,l]pyrene	Total	1.2	1	0.001	0.005	μg/L	1	0	120	50 - 150%	PASS		
Dibenzothiophene	Total	0.372	1	0.001	0.005	μg/L	0.5	0	74	46 - 126%	PASS		

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

qcb - 4 of 7

Page 37 of 86 12/12/2023

PHYSIS Project ID: 1407003-411
Client: Eurofins Eaton Analytical

Project: RED-HILL Project # 38001111 Job # 380-52637-1

Innovative Solutions for Nature

Total

0.412

0.001

0.005

Pyrene

Polynuclear Aromatic Hydrocarbons QUALITY CONTROL REPORT QA CODEc **ANALYTE FRACTION** RESULT DF MDL RL SPIKE SOURCE **ACCURACY** UNITS **PRECISION** LEVEL **RESULT** % LIMITS LIMITS Total 0.426 0.001 0.005 0.5 0 60 - 146% PASS Fluoranthene μg/L 85 0.005 58 - 131% PASS Fluorene Total 0.387 0.001 μg/L 0.5 0 77 Indeno[1,2,3-cd]pyrene Total 0.282 0.001 0.005 μg/L 0.5 0 56 50 - 151% PASS 0.005 Naphthalene Total 0.441 0.001 μg/L 0.5 0 88 41 - 126% PASS Perylene Total 0.45 0.001 0.005 μg/L 0.5 0 90 48 - 141% PASS Phenanthrene Total 0.388 0.001 0.005 μg/L 0.5 0 78 67 - 127% PASS

μg/L

0.5

0

82

54 - 156% PASS

2

5

6

0

10

13

14

PHYSIS Project ID: 1407003-411 **Client: Eurofins Eaton Analytical**

Project: RED-HILL Project # 38001111 Job # 380-52637-1

Polynuclear Aromatic Hydrocarbons

QUALITY CONTROL REPORT

ANALYTE	FRACTI	ON RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL		A %	CCURACY LIMITS		PRE %	CISION LIMITS	QA CODEc
Sample ID: 10783	5-BS2	QAQC Procedu	ral Bla	nk		Matrix: Bl	ankMatı	rix San	npled:			R	eceived:	
		Method: EPA 625.	1			Batch ID: O-4	11122	Pr	epared: 2	9-Jun-23			Analyzed: 1	4-Jul-23
(d10-Acenaphthene)	Total	91	1			% Recovery	100	0	91	27 - 133%	PASS	2	30 PAS	3
(d10-Phenanthrene)	Total	68	1			% Recovery	100	0	68	43 - 129%	PASS	1	30 PAS	3
(d12-Chrysene)	Total	100	1			% Recovery	100	0	100	52 - 144%	PASS	2	30 PAS	3
(d12-Perylene)	Total	79	1			% Recovery	100	0	79	36 - 161%	PASS	0	30 PAS	3
(d8-Naphthalene)	Total	83	1			% Recovery	100	0	83	25 - 125%	PASS	1	30 PAS	3
1-Methylnaphthalene	Total	0.483	1	0.001	0.005	μg/L	0.5	0	97	31 - 128%	PASS	0	30 PAS	3
1-Methylphenanthrene	Total	0.337	1	0.001	0.005	μg/L	0.5	0	67	66 - 127%	PASS	9	30 PAS	3
2,3,5-Trimethylnaphthalene	Total	0.41	1	0.001	0.005	μg/L	0.5	0	82	55 - 122%	PASS	1	30 PAS	3
2,6-Dimethylnaphthalene	Total	0.407	1	0.001	0.005	μg/L	0.5	0	81	48 - 120%	PASS	5	30 PAS	3
2-Methylnaphthalene	Total	0.514	1	0.001	0.005	μg/L	0.5	0	103	47 - 130%	PASS	0	30 PAS	3
Acenaphthene	Total	0.434	1	0.001	0.005	μg/L	0.5	0	87	53 - 131%	PASS	2	30 PAS	3
Acenaphthylene	Total	0.422	1	0.001	0.005	μg/L	0.5	0	84	43 - 140%	PASS	4	30 PAS	3
Anthracene	Total	0.395	1	0.001	0.005	μg/L	0.5	0	79	58 - 135%	PASS	8	30 PAS	3
Benz[a]anthracene	Total	0.24	1	0.001	0.005	μg/L	0.25	0	96	55 - 145%	PASS	5	30 PAS	3
Benzo[a]pyrene	Total	0.39	1	0.001	0.005	μg/L	0.5	0	78	51 - 143%	PASS	1	30 PAS	3
Benzo[b]fluoranthene	Total	0.313	1	0.001	0.005	μg/L	0.5	0	63	46 - 165%	PASS	2	30 PAS	3
Benzo[e]pyrene	Total	0.336	1	0.001	0.005	μg/L	0.5	0	67	42 - 152%	PASS	7	30 PAS	3
Benzo[g,h,i]perylene	Total	0.358	1	0.001	0.005	μg/L	0.5	0	72	63 - 133%	PASS	7	30 PAS	3
Benzo[k]fluoranthene	Total	0.364	1	0.001	0.005	μg/L	0.5	0	73	56 - 145%	PASS	3	30 PAS	3
Biphenyl	Total	0.561	1	0.001	0.005	μg/L	0.5	0	112	56 - 119%	PASS	6	30 PAS	3
Chrysene	Total	0.239	1	0.001	0.005	μg/L	0.25	0	96	56 - 141%	PASS	3	30 PAS	3
Dibenz[a,h]anthracene	Total	0.294	1	0.001	0.005	μg/L	0.5	0	59	55 - 150%	PASS	0	30 PAS	3
Dibenzo[a,l]pyrene	Total	1.3	1	0.001	0.005	μg/L	1	0	130	50 - 150%	PASS	8	30 PAS	3
Dibenzothiophene	Total	0.336	1	0.001	0.005	μg/L	0.5	0	67	46 - 126%	PASS	10	30 PAS	3

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

qcb - 6 of 7

Page 39 of 86 12/12/2023

PHYSIS Project ID: 1407003-411 Client: Eurofins Eaton Analytical

Project: RED-HILL Project # 38001111 Job # 380-52637-1

Innovative Solutions for Nature

Total

0.385

0.001

0.005

Pyrene

Polynuclear Aromatic Hydrocarbons QUALITY CONTROL REPORT ANALYTE FRACTION RESULT DF MDL RL SPIKE SOURCE **ACCURACY** QA CODEc UNITS **PRECISION** LEVEL **RESULT** % LIMITS LIMITS 0.377 0.001 0.005 30 PASS Fluoranthene Total μg/L 0.5 0 75 60 - 146% PASS 12 Fluorene Total 0.361 0.001 0.005 μg/L 0.5 0 72 58 - 131% PASS 30 PASS Indeno[1,2,3-cd]pyrene Total 0.264 0.001 0.005 0.5 0 50 - 151% PASS 30 PASS μg/L 53 30 PASS Naphthalene Total 0.415 0.001 0.005 μg/L 0.5 0 83 41 - 126% PASS Perylene Total 0.413 0.001 0.005 μg/L 0.5 0 83 48 - 141% PASS 30 PASS Phenanthrene Total 0.377 0.001 0.005 μg/L 0.5 75 67 - 127% PASS 30 PASS

μg/L

0.5

0

77

54 - 156% PASS

2

5

O

O

10

1'

14

15

30 PASS

Page 41 of 86

12/12/2023

Sample ID: 107838

	Area				
Retention	(% of	Concentration			Match Quality
Time	total)	(ng/L)	Library/ID	Cas Number	(%)
34.8541	3.5652	1111	Anthracene-D10	1517-22-2	88
10.1848	3.5478	1106	m-Menthane, (1S,3S)-(+)-	13837-67-7	87
10.3885	2.1549	672	Furan, 2,5-dihydro-2,5-dimethyl-	59242-27-2	84
10.0413	0.7178	224	Hydroperoxide, 1-ethylbutyl	24254-56-6	85
10.7617	0.3720	116	2-Pentene, 4,4-dimethyl-, (Z)-	762-63-0	80

Concentration estimated using the response for Anthracene-d10

Ŏ

Sample ID: Lab Blank B1_41122

	Area				
Retention	(% of	Concentration			Match Quality
Time	total)	(ng/L)	Library/ID	Cas Number	(%)
34.8584	3.5445	1111	Anthracene-D10	1517-22-2	87
10.1865	1.6593	520	m-Menthane, (1S,3S)-(+)-	13837-67-7	87
10.3922	1.6065	504	Furan, 2,5-dihydro-2,5-dimethyl-	59242-27-2	85
26.9957	1.5081	473	Diethyl Phthalate	84-66-2	89
10.0431	0.5184	163	Hydroperoxide, 1-ethylbutyl	24254-56-6	87

Concentration estimated using the response for Anthracene-d10

Ö

941 Corporate Center Drive

Pomona, CA 91768-2642

Eurofins Eaton Analytical Pomona

Chain of Custody Record

eurofins :

Environment Testing

Empty Kit Relinquished by: State, Zip: CA, 92806 Deliverable Requested: I, II, III, IV, Other (specify) Possible Hazard Identification Anaheim HALAWA WELLS UNITS 1 & 2 P1 (380-52637-4) AIEA WELLS PUMPS 1&2 (260) P2 (380-52637-3) AIEA GULCH WELLS PUMP 2 (380-52637-2) Sample Identification - Client ID (Lab ID) Physis Environmental Laboratories Shipping/Receiving Client Information Phone: 626-386-1100 MOANALUA WELLS (380-52637-1) RED-HILL elinquished by: tote: Since laboratory accreditations are subject to change, Eurofins Eaton Analytical, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not urrently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Eaton Analytical, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Eaton Analytical, LLC. Ionolulu BWS Sites 1904 Wright Circle, linquished by: elinquished by Custody Seals Intact: roject Name ent Contact: (Sub Contract Lab) Custody Seal No.: Primary Deliverable Rank: 2 WO# Phone: Date/Time PO# Due Date Requested: 7/13/2023 SSOW#: 38001111 TAT Requested (days): Sample Date 6/26/23 6/26/23 6/26/23 6/26/23 Hawaiian 11:14 Hawaiian 10:50 Hawaiian 11:41 Hawaiian Sample Time 10:18 G=grab) (C=comp, Sample Type Preservation Code: Company Water Water Water Water Matrix E-Mail: Rachelle.Arada@et.eurofinsus.com Arada, Rachelle Lab PM: Time: Field Filtered Sample (Yes or No) State - Hawaii Accreditations Required (See note): Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Monte Perform MS/MSD (Yes or No) Special Instructions/QC Requirements SUB (625 PAH Physis LL (EAL) + TICs)/ 625 PAH Physis LL (EAL) + TICs Cooler Temperature(s) °C and Other Remarks: Received by: × × × × Analysis Requested Hawaii Carrier Tracking No(s): State of Origin Date/Time: **Total Number of containers** 2 2 A - HCL B - NaOH C - Zn Acetale D - Nitric Acid E - NaHSO4 F - MeOH G - Amchlor H - Ascorbic Acid I - Ice J - DI Water K - EDTA COC No: 380-60322.1 Page: Page 1 of 1 See Attached Instructions See Attached Instructions See Attached Instructions See Attached Instructions Preservation Codes: 380-52637-1 Special Instructions/Note: M - Hexane
N - None
O - AsNaco2
P - Na2O4S
Q - Na2SO3
R - Na2SO3
S - H2SO4
T - TSP Dodecahydrate
U - Acetone
V - MCAA
V - pH 4-5
Y - Trūrma
Z - other (specify) Company Ver: 06/08/2021 Months

Sample Receipt Summary

PHYSI ENVIRONMENTAL LABORATORIES, INC. tonowatrie Solutions for Nature

Project Iteration	ID:	1407003-41
-------------------	-----	------------

Client Name: Eurofins Eaton Analytical

Project Name: RED-HILL Project # 38001111 Job

380-52637-1

COC Page Number: 2 of 2

Bottle Label Color: NA

Receiv	ring Info	Bottle Label Color: NA	
1.	Initials Received By: VW		
2.	Date Received: 4129		
3.	Time Received: 1145		
4.	Client Name: Euro fins		
5.	Courier Information: (Please circle)		
1	Client	Area Fast DR	S
	FedEx GSO/GLS	Ontrac PA	MS
	PHYSIS Driver:		
	i. Start Time:	iii. Total Mileage:	
	ii. End Time:		
6.	Container Information: (Please put the # of container Information)		
	Cooler •Styrofoam Cooler	Boxes None	
	Carboy(s) •Carboy Trash Can(s		
7			
-	What type of ice was used: (Please circle any the Wet Ice • Blue Ice •		None
	Randomly Selected Samples Temperature (°C):		None
		osed i/R Thermometer # 1	
Inspec	tion Info		
1.	Initials Inspected By:		
Sample	Integrity Upon Receipt:	^	
1.	COC(s) included and completely filled out		
2.	All sample containers arrived intact		
3.	All samples listed on COC(s) are present		
4.	Information on containers consistent with info		
5.	Correct containers and volume for all analyses	indicated /ES / No	

Notes:

6. All samples received within method holding time.....

7. Correct preservation used for all analyses indicated.....

Name of sampler included on COC(s)...... Yes

P:\Sample Logistics (SL)\SRS

Page 1 of 1

No

No

3051 Fujita Street Torrance, CA 90505 Tel: (310)-618-8889

Date: 12-12-2023 EMAX Batch No.: 23F197_R1

Attn: Jackie Contreras

Eurofins Eaton Analytical 750 Royal Oaks Dr., Suite 100 Monrovia, CA 91016-3629

Subject: Revised Laboratory Report Project: 380-52637

Enclosed is the Revised Laboratory report for samples received on 06/29/23. The data reported relate only to samples listed below :

Sample ID	Control # Col Date	Matrix	Analysis
380-52637-1	F197-01 06/26/23	WATER	TPH GASOLINE TPH
380-52637-2	F197-02 06/26/23	WATER	TPH GASOLINE TPH
380-52637-5 380-52637-6 380-52637-1MS 380-52637-1MSD	F197-05 06/26/23 F197-06 06/26/23 F197-01M 06/26/23 F197-01S 06/26/23	WATER WATER WATER WATER	TPH GASOLINE TPH GASOLINE TPH GASOLINE TPH GASOLINE

Note: Report was revised to remove Lab sample IDs: 23F197-03, -04, -07, and -08.

The results are summarized on the following pages.

Please feel free to call if you have any questions concerning these results.

Sincerely yours,

Caspar J∖ Pang Laboratory Director

This report is confidential and intended solely for the use of the individual or entity to whom it is addressed. This report shall not be reproduced except in full or without the written approval of EMAX.

 ${\tt EMAX}$ certifies that results included in this report meets all TNI & DOD requirements unless noted in the Case Narrative.

NELAP Accredited Certificate Number CA002912022-24 ANAB Accredited DoD ELAP and ISO/IEC 17025 Certificate Number L2278 Testing California ELAP Accredited Certificate Number 2672

Chain of Custody Record 13F 197

Eurofins Eaton Analytical Pomona

Environment Testing	1	
Chain of Custody Record 23년19기 두	4	
941 Corporate Center Drive	Pomona CA 91768-2642	DI 000 308 4100

🕏 eurofins

Proceedings Procession Pr	941 Colporate Cerrei Diive	פֿבּ	n or charged income	1 1 1 1 1 1	200	Silving Tributant Control of the Con
Client Information (Sub Contract Lab) Prove. Client Information (Sub Contract Lab Prove.	Politolia, CA 31 00 2012 Phone: 626-386-1100			, and a second	Carrier Tracking No(s):	COC No:
Page 1 Page 1 Page 2 Page 3 P	(de toestano d. 8) = :3	Sampler:	An	o rw. ada, Rachelle		380-60319.1
Page 1 of 1	Client Intormation (Sub Contract Law)	Ohono	V-3	Mail:	State of Origin:	Page:
State - Hawaii and a control of the control of th	Client Contact:	<u> </u>	Ra	achelle.Arada@et.eurofinsus.com	Hawaii	Page 1 of 1
State - Hawaii Characterist Ch	Shipping/Receiving			Accreditations Required (See note):		100 #:
Automatical Column	Company:			State - Hawaii		380-52637-1 Bangarioting Codes:
1719/2023 1719	Address:	Due Date Requested:			10000	
Comparison	Address. 13051 Fujita Street.	7/13/2023		Analysis ne	daesica	
Sample Care	City: Torrance	TAT Requested (days):		5		ø _
Figure F	State, Zip: CA 90505					
Project Name: Sample According BWS Sites Project Name: Project Name: Sample According BWS Sites Project Name: Sample According BWS Sites Accor	Phone:	PO #.		08 /((T		Acid
Project Name Project Name SSOW## SSOW### SSOW## SSOW## SSOW## SSOW## SSOW## SSOW## SSOW### SSOW#### SSOW#### SSOW#### SSOW#### SSOW#### SSOW#### SSOW#### SSOW#### SSOW##### SSOW###################################	Email:	WO#:		(ON -	SJOI	J - DI Water K - EDTA
Sample Gample Matrix Sample Cacomp. Sam	Project Name: RFD-HILL	Project #: 38001111		res or	Tistno	L - EDA Other:
Sample Identification - Client ID (Lab ID) Sample Date Alexandra Type (Second) (Lab ID) Sample (Carcom) (Carcom) (Carcom) Sample (Carcom) Carcom) Sample (Carcom) Carcom) Sample (Carcom) Carcom) Sample (Carcom) Carcom) Sample (Carcom) Sample (Carcom	Site: Honolulu BWS Sites	:#XOSS		(Purg (Purg (EAL)	o Jo Je	n Sellah S
Sample Date Time of Capacity Capacity in American Capacity in American Early in American Capacity in American			Sample Type	d Filtered form MS/I 1 (8015 Gas 1 (8015 LL	dmuN let	
Sample Identification - Ciriem ID Ltab ID) Jample Identification - Ciriem ID Ltab ID) Jample Identification - Ciriem ID Ltab ID) Jample ID Ltab ID			G=grab)	Fiel Per SUE SUE SUE	OI	
MOANALUA WELLS (380-52637-1) 6/26/23 10:18 Hawaiian Water X <	Sample Identification - Client ID (Lab ID)	1	Preserva	X	<u> </u>	
MOANALUA WELLS (380-52637-1) 6/26/23 Hawaiian Water X </td <td></td> <td></td> <td>+</td> <td></td> <td></td> <td>2.77</td>			+			2.77
AIEA GULCH WELLS PUMP 2 (380-52637-2) 6/26/23 Hawaiian Hawaiian Alexanian Water X X X X X A 4 AIEA WELLS PUMPS 182 (260) P2 (380-52637-3) 6/26/23 Hawaiian 10:50 Hawaiian Water X X X X X A	MOANALUA WELLS (380-52637-1)			×		3.0
AIEA WELLS PUMPS 18.2 (260) P2 (380-52637-3) 6/26/23 11:14 Hawaiian Water X				×	9	
HALAWA WELLS UNITS 1 & 2 P1 (380-52637-4) 6/26/23 10:50 Hawaiian Water X </td <td></td> <td></td> <td></td> <td>×</td> <td>7</td> <td>75000</td>				×	7	75000
TB AIEA WELLS (380-52637-5) TB AIEA WELLS PUMPS 1&2 P1 (380-52637-8) TB AIEA WELLS PUMPS 1&2 P1 (380-52637-8) TB AIEA WELLS UNITS 1 & 2 P1 (380-52637-8) TB AIEA WELLS UNITS 1 & 2 P1 (380-52637-8) TB AIEA WELLS UNITS 1 & 2 P1 (380-52637-8) TB AIEA Weter TB Water Water				×	Ψ	
TB AIEA GULCH WELLS PUMP 2 (380-52637-6) 6/26/23 Hawaiian Water X					2	
TB AIEA WELLS PUMPS 1&2 (260) (380-52637-7) 6/26/23 Hawaiian Water X					5	
TB HALAWA WELLS UNITS 1 & 2 P1 (380-52637-8) 6/26/23 10:50 Water X						

Note: Since laboratory accreditations are subject to change, Eurofins Eaton Analytical, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratory or other instructions will be provided. Any changes to accreditation status should be brought to currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Eaton Analytical, LLC aboratory or other instructions will be provided. Any changes to accreditations status should be brought to currently maintain accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Eaton Analytical, LLC. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

		Betum To Client Disposal By Lab	3v Lab Archive For	Months
Unconfirmed				
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	Special Instructions/QC Requirements:		
Empty Kit Relinquished by:	Date:	Time:	Method of Shipment:	
בוויסנא ואני ואפייויק מיפיים באי		Docoprod by:	Date/Time: ,	Company
Relinquished by:	Date/Time:	Received by:	16:01 51/01/3	EMICK
	2	1		Company
Relinquished by:	Date/Time: Company	Received by:	Date/ IIme:	Company
				Company
Relinquished by:	Date/Time: Company	Received by:	Date/ Ime:	ging and
		Cooler Temperature(s) °C and Other Remarks:		,
Custody Seals Intact: Custody Seal No.:			Trmp. 2.9 12.7 *CF.	*(F: -0:07
NET WIRE INVOZUIT 197				100/80/90 I

REFERENCE: EMAX-SM02 Rev. 12 SAMPLE RECEIPT FORM 1

Type of De	livery		Airbill / Trackir	ng Number	ECN 23F197	
	□ Others					more
□ EMAX Courier Client Deliv					Date 06/29/23	Time 10:36
COC INSPECTION .	Client PM/EC		☐ Sampler Name	Sampling Date/Time	Sample ID	Matrix
Client Name	Client PM/FC		☐ Courier Signature	Analysis Required	☐ Preservative (if any)	STAT
Address	□Tel#/Fax#			☐ Rad screening required		`
Safety Issues (if any)	☐ High concentrations expe	cted	☐ From Superfund Site	□ Rad sereening required		
Note:						
	. ,					
PACKAGING INSPECTIO	N					
Container	** Cooler		□ Box	☐ Other		
Condition Correction	☐ Custody Seal		☐ Intact	☐ Damaged		
Packaging factor:	Bubble Pack		☐ Styrofoam	☐ Popcorm	☐ Sufficient	<u> </u>
(00.01	** Cooler 1 2.9/2.7°C	□ Coc	oler 2 °C	☐ Cooler 3°C	Cooler 4°C	□ Cooler 5 "C
Temperatures (Cool, ≤6 °C but not frozen) - 0 · 2	□ Cooler 6°C		oler 7°C	☐ Cooler 8°C	☐ Cooler 9°C	□ Cooler 10°C
Thermometer:	(A) S/N 221852768		B - S/N 12/925379	C - S/N	D - S/N	
Comments: Temperature is ou		d IMM	EDIATELY.			
Note:						
					<u> </u>	
DICCORPUNCIES						
DISCREPANCIES	LabSampleContainerID	Code	ClientSample La	abel ID / Information	Corrective	e Action
LabSampleID			JPS/JP8 not		NX	
1-4	5,6,11,12,15,16,	DI.	113/118 NOT	- 5/1 (VC	120	,
	21,72		i) a 1 = / :	. 15' 6/1212	PI	
6,7,8	25 - 28 , 30	022	2nd orteltime	reads: 6/13/23		
				11.33		
			<u> </u>			
					1/12	
		<u> </u>			V	10/00
□ pH holding time requiremen	nt for water samples is 15 m	ins. W	ater samples for pH anal	lysis are received beyond 1	5 minutes from sampling time.	145 (15/2)
						· · · · · · · · · · · · · · · · · · ·
NOTES/OBSERVATIONS						
SAMPLE MATRIX IS DRINKING	G WATER? □ YES □ NO					
					☐ Continue to next [1906
LEGEND:			2		• •	
Code Description-Sample Man	nagement		Description-Sample Mar	nagement	Code Description-Sample Ma	
(D1) Analysis is not indicated in	tabel Coc		Out of Holding Time		. / \	
Analysis mismatch COC v	s label 1/1 6/29/23	D14	Bubble is >6mm		R2 Refer to attached instructio	ni
D3 Sample ID mismatch COC	·	D15	No trip blank in cooler		R3 Cancel the analysis	
D4 Sample ID is not indicated		D16	Preservation not indicated	d in	R4 Use vial with smallest bubb	
D5 Container -[improper] [lea		DI	Preservation mismatch Co	OC vs label	R5 Log-in with latest sampling	date and time+1 min
D6 Date/Time is not indicated			Insufficient chemical pres		R6 Adjust pH as necessary	A
D7 Date/Time mismatch COC			Insufficient Sample		R7 Filter and preserved as nece	essary (*
			No filtration info for disse	olved analysis	R8 Mornie	a went
D8 Sample listed in COC is not D9 Sample received is not list			No sample for moisture dete		R9	· I
			2rd dateltime		⊥ R10 V	
		D23		.,	R11	
		D24		Ω	R12	
D12 Container size mismatch C REVIEWS:	· 1/1. 1	7	·	///	\	OR
Sample Labelin	o rivera While	la	SF	or Ulula		M CIVI
	e 06/29/23 P 19/5	[3	Ďa	ite 6,29/25	D	ate

REPORT ID: 23F197

EMAX Laboratories, Inc. 3051 Fujita St., Torrance, CA 90505
Page 49 of 86

Page 3 of 37, 12/2023

DATA QUALIFIERS:

Lab Qualifier	AFCEE Qualifier	Description
J	F	Indicates that the analyte is positively identified and the result is less than RL but greater than MDL.
N		Indicates presumptive evidence of a compound.
В	В	Indicates that the analyte is found in the associated method blank as well as in the sample at above QC level.
E	J	Indicates that the result is above the maximum calibration range or estimated value.
*	*	Out of QC limit.

Note: The above qualifiers are used to flag the results unless the project requires a different set of qualification criteria.

ACRONYMS AND ABBREVIATIONS:

CRDL	Contract Required Detection Limit
RL	Reporting Limit
MRL	Method Reporting Limit
PQL	Practical Quantitation Limit
MDL	Method Detection Limit
DO	Diluted out

DATES

The date and time information for leaching and preparation reflect the beginning date and time of the procedure unless the method, protocol, or project specifically requires otherwise.

3

4

6

Q

4.0

11

13

14

LABORATORY REPORT FOR

EUROFINS EATON ANALYTICAL

380-52637

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

SDG#: 23F197

REPORT ID: 23F197

CASE NARRATIVE

Client: EUROFINS EATON ANALYTICAL

Project: 380-52637

SDG : 23F197

METHOD 5030B/8015B
TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

A total of eight(4) water samples were received on 06/29/23 to be analyzed for Total Petroleum Hydrocarbons by Purge and Trap in accordance with Method 5030B/8015B and project specific requirements.

Holding Time

Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried out on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details. MRL was analyzed as required by the project. Refer to MRL summary form for details.

Method Blank

Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one (1) method blank was analyzed. VG39F14B - result was compliant to project requirement. Refer to sample result summary form for details.

Lab Control Sample

Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of LCS/LCD was analyzed. VG39F14L/VG39F14C were within LCS limits. Refer to LCS summary form for details.

Matrix QC Sample

Matrix spike sample was prepared and analyzed at a frequency required by the project. For this SDG, one (1) set of MS/MSD was analyzed. Gasoline was within MS QC limits in F197-01M/F197-01S. Refer to Matrix QC summary form for details.

Surrogate

Surrogate was added on QC and field samples. All surrogate recoveries were within QC limits. Refer to sample result summary forms for details.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

								Instrument ID : GCIU39
				WATER	紐			
Client	Laboratory	Dilution	9-6	Analysis	Extraction	Sample	Calibration Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch Notes
: : : : : : : : : : : : : : : : : : : :		:	:				:	
MBLK1W	VG39F14B	Н	¥	06/29/2313:44	06/29/2313:44	EF29005A	EF29004A	23VG39F14 Method Blank
MIS31	VG39F14L	Н	¥	06/29/2314:20	06/29/2314:20	EF29006A	EF29004A	23VG39F14 Lab Control Sample (LCS)
WIGO I	VG39F14C	П	¥	06/29/2314:57	06/29/2314:57	EF29007A	EF29004A	23VG39F14 LCS Duplicate
380-52637-1	F197-01	П	¥	06/29/2315:34	06/29/2315:34	EF29008A	EF29004A	23VG39F14 Field Sample
380-52637-1MS	F197-01M	1	¥	06/29/2316:11	06/29/2316:11	EF29009A	EF29004A	23VG39F14 Matrix Spike Sample (MS)
380-52637-1MSD	F197-01S	1	¥	06/29/2316:47	06/29/2316:47	EF29010A	EF29004A	23VG39F14 MS Duplicate (MSD)
380-52637-2	F197-02	1	¥	06/29/2317:23	06/29/2317:23	EF29011A	EF29004A	23VG39F14 Field Sample
380-52637-5	F197-05	Н	¥	06/29/2319:12	06/29/2319:12	EF29014A	EF29004A	23VG39F14 Field Sample
380-52637-6	F197-06	,1	¥	06/29/2320:25	06/29/2320:25	EF29016A	EF29015A	23VG39F14 Field Sample
FN · Filename * Moist · Percent Moisture ab 22 by 98 by 62 by 62 by 64 by 65 b								

SAMPLE RESULTS

2

2

-/

5

6

R

9

10

12

. . .

1 4

Client : EUROFINS EAT	ON ANALYTICAL		Collected:		10:18
Project : 380-52637			Received:		
Batch No. : 23F197			Extracted:		
Sample ID : 380-52637-1		Date	: Analyzed:	06/29/23	15:34
Lab Samp ID: F197-01		Diluti	on Factor:	1	
Lab File ID: EF29008A			Matrix:	WATER	
Ext Btch ID: 23VG39F14		2	Moisture:	NA	
Calib. Ref.: EF29004A		Inst	rument ID:	39	
PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)		
GASOLINE	ND	0.020	0.010		
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LII	MIT
Bromofluorobenzene	0.0352	0.0400	88	60-1	40

Notes:

H-C Range Parameter

Gasoline C6-C10
Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 5ml Final Volume : 5ml

Prepared by : SCerva Analyzed by : SCerva

Date Collected: 06/26/23 11:41 : EUROFINS EATON ANALYTICAL Client Project : 380-52637 Date Received: 06/29/23 Batch No. : 23F197 Date Extracted: 06/29/23 17:23 Sample ID : 380-52637-2 Date Analyzed: 06/29/23 17:23 Dilution Factor: 1 Lab Samp ID: F197-02 Lab File ID: EF29011A Matrix: WATER % Moisture: NA Ext Btch ID: 23VG39F14 Instrument ID: 39 Calib. Ref.: EF29004A RLMDL RESULTS (mg/L)**PARAMETERS** (mg/L) (mg/L) 0.010 GASOLINE 0.020 QC LIMIT RESULT SPK_AMT %RECOVERY SURROGATE PARAMETERS 80 60-140 0.0321 0.0400 Bromofluorobenzene

Notes:

Parameter

H-C Range

C6-C10 Gasoline

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 5ml

Final Volume : 5ml

Prepared by : SCerva Analyzed by : SCerva

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

Client :	EUROFINS EATON ANALYTICAL	Date Collected:	06/26/23 10:18
Project :	380-52637	Date Received:	06/29/23
Batch No. :	23F197	Date Extracted:	06/29/23 19:12
Sample ID :	380-52637-5	Date Analyzed:	06/29/23 19:12
Lab Samp ID:	F197-05	Dilution Factor:	1
Lab File ID:	EF29014A	Matrix:	WATER
Ext Btch ID:	23VG39F14	% Moisture:	NA

Instrument ID: 39

87

60-140

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
GASOLINE	ND	0.020	0.010	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT

0.0348

Notes:

Parameter H-C Range

Bromofluorobenzene

Calib. Ref.: EF29004A

Gasoline C6-C10
Reported ND at RL quantitated per pattern recognition.

0.0400

Detection limits are reported relative to sample result significant figures.

Sample Amount : 5ml Final Volume : 5ml

Prepared by : SCerva Analyzed by : SCerva Prepared by : SCerva

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

Client : EUROFINS EATON ANALYTICAL Date Collected: 06/26/23 11:41 380-52637 Date Received: 06/29/23 Project Date Extracted: 06/29/23 20:25 Batch No. : 23F197 Date Analyzed: 06/29/23 20:25 Sample ID : 380-52637-6

Lab Samp ID: F197-06 Dilution Factor: 1 Lab File ID: EF29016A Matrix: WATER Ext Btch ID: 23VG39F14 Calib. Ref.: EF29015A % Moisture: NA Instrument ID: 39

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
GASOLINE	ND	0.020	0.010	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromofluorobenzene	0.0359	0.0400	90	60-140

Notes:

H-C Range Parameter

Gasoline C6-C10

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 5ml

Final Volume : 5ml

Prepared by : SCerva Analyzed by : SCerva

REPORT ID: 23F197

QC SUMMARIES

.

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

Client : EUROFINS EATON /	ANALYTICAL Date Collected:	06/29/23 13:44
Project : 380-52637	Date Received:	06/29/23
Batch No. : 23F197	Date Extracted:	06/29/23 13:44
Sample ID : MBLK1W	Date Analyzed:	06/29/23 13:44
Lab Samp ID: VG39F14B	Dilution Factor:	1
Lab File ID: EF29005A	Matrix:	WATER
Ext. Btch ID: 23VG39F14	% Moisture:	NA

Ext Btch ID: 23VG39F14 Calib. Ref.: EF29004A Instrument ID: 39 DECLII TO мпі

Bromofluorobenzene	0.0336	0.0400	84	60-140
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
GASOLINE	ND	0.020	0.010	
PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	

Notes:

H-C Range Parameter Gasoline C6-C10

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 5ml Final Volume : 5ml

Final Volume : 5ml Analyzed by : SCerva

Prepared by : SCerva

CLIENT

: EUROFINS EATON ANALYTICAL

PROJECT BATCH NO. : 380-52637

METHOD

: 23F197 : 5030B/8015B

MATRIX : WATER DILUTION FACTOR: 1 SAMPLE ID

CALIBRATION REF: EF29004A

LAB FILE ID

PREP BATCH

: MBLK1W LAB SAMPLE ID : VG39F14B

: 23VG39F14

: EF29005A DATE PREPARED : 06/29/23 13:44 DATE ANALYZED : 06/29/23 13:44 LCS1W VG39F14L

EF29006A 06/29/23 14:20 06/29/23 14:20 23VG39F14 EF29004A

% MOISTURE:NA

LCD1W

EF29004A

VG39F14C EF29007A 06/29/23 14:57 06/29/23 14:57 23VG39F14

ACCESSION:

LCDResult LCDRec RPD QCLimit MaxRPD LCSResult LCSRec SpikeAmt MBResult SpikeAmt (mg/L) **PARAMETERS** (mg/L)(mg/L) (%) (mg/L) (mg/L) (%) (%) (%) 91 60-130 30 0.500 0.454 2 ND 0.500 0.446 89 Gasoline

SURROGATE PARAMETER	SpikeAmt	LCSResult	LCSRec	SpikeAmt	LCDResult	LCDRec	QCLimit
	(mg/L)	(mg/L)	(%)	(mg/L)	(mg/L)	(%)	(%)
Bromofluorobenzene	0.0400	0.0416	104	0.0400	0.0408	102	70-130

MB: Method Blank sample LCS: Lab Control Sample LCD: Lab Control Sample Duplicate

EMAX QUALITY CONTROL DATA MS/MSD ANALYSIS

CLIENT

: EUROFINS EATON ANALYTICAL

PROJECT

: 380-52637

BATCH NO. METHOD

: 23F197 : 5030B/8015B

MATRIX : WATER

DILUTION FACTOR: 1 SAMPLE ID

: 380-52637-1 LAB SAMPLE ID : F197-01

LAB FILE ID : EF29008A

DATE PREPARED : 06/29/23 15:34 DATE ANALYZED : 06/29/23 15:34 PREP BATCH : 23VG39F14 CALIBRATION REF: EF29004A

% MOISTURE:NA

380-52637-1MS F197-01M EF29009A 06/29/23 16:11 06/29/23 16:11

23VG39F14

EF29004A

380-52637-1MSD F197-01S EF29010A 06/29/23 16:47 06/29/23 16:47 23VG39F14

EF29004A

ACCESSION:

PARAMETERS	PSResult (mg/L)	SpikeAmt (mg/L)	MSResult (mg/L)	(%)	SpikeAmt (mg/L)	MSDResult (mg/L)	MSDRec (%)	RPD (%)	QCLimit (%)	MaxRPD (%)
Gasoline	ND	0.500	0.451	90	0.500	0.457	91	1	50-130	30

SURROGATE PARAMETER	SpikeAmt	MSResult	MSRec	SpikeAmt	MSDResult	MSDRec	QCLimit
	(mg/L)	(mg/L)	(%)	(mg/L)	(mg/L)	(%)	(%)
Bromofluorobenzene	0.0400	0.0393	98	0.0400	0.0402	101	60-140

PS: Parent Sample MS: Matrix Spike MSD: Matrix Spike Duplicate

LABORATORY REPORT FOR

EUROFINS EATON ANALYTICAL

380-52637

METHOD 3520C/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

SDG#: 23F197

Client: EUROFINS EATON ANALYTICAL

Project: 380-52637

SDG : 23F197

METHOD 3520C/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

A total of four(2) water samples were received on 06/29/23 to be analyzed for Total Petroleum Hydrocarbons by Extraction in accordance with Method 3520C/8015B and project specific requirements.

Holding Time

Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried out on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details. MRL was analyzed as required by the project. Refer to MRL summary form for details.

Method Blank

Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one (1) method blank was analyzed. DSG006WB result was compliant to project requirement. Refer to sample result summary form for details.

Lab Control Sample

Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of LCS/LCD was analyzed. DSG006WL/DSG006WC were within LCS limits. Refer to LCS summary form for details.

Matrix QC Sample

No matrix QC sample was provided on this SDG.

Surrogate

Surrogates were added on QC and field samples. All surrogate recoveries were within QC limits. Refer to sample result summary forms for details.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

CASE NARRATIVE

Client: EUROFINS EATON ANALYTICAL

Project: 380-52637

SDG : 23F197

METHOD 3520C/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

A total of four(2) water samples were received on 06/29/23 to be analyzed for Petroleum Hydrocarbons by Extraction in accordance with Method 3520C/8015B and project specific requirements.

Holding Time

Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried out on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details. MRL was analyzed as required by the project. Refer to MRL summary form for details.

Method Blank

Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one(1) method blank was analyzed. DSG006WB result was compliant to project requirement. Refer to sample result summary form for details.

Lab Control Sample

Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of LCS/LCD was analyzed. J5G006WL/J5G006WC were within LCS limits. Refer to LCS summary form for details.

Matrix QC Sample

No matrix QC sample was provided on this SDG.

Surrogate

Surrogates were added on QC and field samples. All surrogate recoveries were within QC limits. Refer to sample result summary forms for details.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

Client : EUROFINS EATON ANALYTICAL

Project: 380-52637

SDG : 23F197

METHOD 3520C/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

A total of four(2) water samples were received on 06/29/23 to be analyzed for Petroleum Hydrocarbons by Extraction in accordance with Method 3520C/8015B and project specific requirements.

Holding Time

Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried out on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details. MRL was analyzed as required by the project. Refer to MRL summary form for details.

Method Blank

Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one(1) method blank was analyzed. DSG006WB result was compliant to project requirement. Refer to sample result summary form for details.

Lab Control Sample

Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of LCS/LCD was analyzed. J8G006WL/J8G006WC were within LCS limits. Refer to LCS summary form for details.

Matrix QC Sample

No matrix QC sample was provided on this SDG.

Surrogate

Surrogates were added on QC and field samples. All surrogate recoveries were within QC limits. Refer to sample result summary forms for details.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

Page 20 qf,37_{/2023}

: 23F197 : D5

SDG NO. Instrument ID

23DSG006W Lab Control Sample (LCS)
23DSG006W LCS Duplicate
23DSG006W Field Sample
23DSG006W Field Sample

LG07003A LG07003A LG07003A LG07003A LG07003A

LG07010A LG07011A LG07016A LG07017A

07/06/2312:00 07/06/2312:00 07/06/2312:00 07/06/2312:00 07/06/2312:00

07/07/2319:55 07/07/2320:14 07/07/2320:32 07/07/2322:06

≨ **≨** ≸

DSG006WB DSG006WL DSG006WC F197 - 01 F197 - 02

LCS1W LCD1W 380-52637-1 380-52637-2

FN - Filename % Moist - Percent Moisture

23DSG006W Method Blank

Notes

Batch

:

LG07009A

Calibration Prep. Data FN Batch

Sample Data FN

Extraction DateTime

Analysis DateTime

Moist ≨

Factor

Sample ID

Sample ID

Client

MBLK1W

Laboratory Dilution

: EUROFINS EATON ANALYTICAL : 380-52637

Project

Client

WATER

: 23F197 : D5

SDG NO. Instrument ID

23DSG006W Lab Control Sample (LCS)
23DSG006W LCS Duplicate
23DSG006W Field Sample
23DSG006W Field Sample

LG07004A LG07004A LG07004A LG07004A

LG07009A LG07012A LG07013A LG07016A LG07017A

07/06/2312:00 07/06/2312:00 07/06/2312:00 07/06/2312:00

07/07/2319:55 07/07/2320:51 07/07/2321:10 07/07/2322:06 07/07/2322:25

≨ ≨ ≨ ≸

DSG006WB J5G006WL J5G006WC F197-01 F197-02

380-52637-1 380-52637-2

FN - Filename % Moist - Percent Moisture

23DSG006W Method Blank

LG07004A

Batch

Calibration Prep. Data FN Batch

Sample Data FN :

Extraction DateTime

Analysis DateTime

Moist

Factor

Sample ID

Client Sample ID

MBLK1W LCS1W LCD1W

Laboratory Dilution

: EUROFINS EATON ANALYTICAL : 380-52637

Client Project

WATER

Page 68 of 86

12/12/2023

: 23F197 : D5

SDG NO. Instrument ID

23DSG006W Lab Control Sample (LCS)
23DSG006W LCS Duplicate
23DSG006W Field Sample
23DSG006W Field Sample

LG07005A LG07005A LG07005A LG07005A LG07005A

LG07014A LG07015A LG07016A LG07017A

07/06/2312:00 07/06/2312:00 07/06/2312:00 07/06/2312:00

07/07/2319:55 07/07/2321:28 07/07/2321:47 07/07/2322:06 07/07/2322:25

≨≨≨≨

J8G006WL J8G006WC F197-01 F197-02

380-52637-1 380-52637-2

FN · Filename % Moist · Percent Moisture

-----Analysis DateTime

:

Moist ¥

Factor :

Sample ID

Sample ID

Client

MBLK1W

LCS1W LCD1W

DSG006WB

Laboratory Dilution

: EUROFINS EATON ANALYTICAL : 380-52637

Project

Client

23DSG006W Method Blank

LG07009A

Calibration Prep. Data FN Batch

Sample Data FN

Extraction DateTime

WATER

12/12/2023

Page 69 of 86

SAMPLE RESULTS

METHOD 3520C/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

Date Collected: 06/26/23 10:18 Client : EUROFINS EATON ANALYTICAL Project : 380-52637 Date Received: 06/29/23 Date Extracted: 07/06/23 12:00 Batch No. : 23F197 Sample ID : 380-52637-1 Date Analyzed: 07/07/23 22:06 Lab Samp ID: 23F197-01 Lab File ID: LG07016A Dilution Factor: 1 Matrix: WATER % Moisture: NA Ext Btch ID: 23DSG006W Calib. Ref.: LG07003A Instrument ID: D5

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
Diesel	ND	0.028	0.014	
Motor Oil	ND	0.055	0.028	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromobenzene	0.497	0.550	90	60-130
Hexacosane	0.158	0.138	115	60-130

Notes:

Parameter H-C Range C10-C24 Diesel C24-C36 Motor 0il

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 910ml

: POreto

Final Volume : 5ml

Prepared by

Analyzed by : SDeeso

REPORT ID: 23F197

METHOD 3520C/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

Client :	EUROFINS EATON ANALYTICAL	Date Collected:	06/26/23 11:41
Project :	380-52637	Date Received:	06/29/23
Batch No. :	23F197	Date Extracted:	07/06/23 12:00
Sample ID :	380-52637-2	Date Analyzed:	07/07/23 22:25
Lab Samp ID:	23F197-02	Dilution Factor:	1
Lab File ID:		Matrix:	WATER
Ext Btch ID:	23DSG006W	% Moisture:	NA
Calib. Ref.:	LG07003A	Instrument ID:	D5

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
Diesel	ND	0.025	0.012	
Motor Oil	ND	0.050	0.025	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromobenzene	0.433	0.500	87	60-130
Hexacosane	0.134	0.125	107	60-130

Notes:

H-C Range C10-C24 Parameter Diesel C24-C36 Motor Oil

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures. Sample Amount : 1000 ml Final Volume : 5 ml

Prepared by : POreto Final Volume : 5ml Analyzed by : SDeeso

Client : EUROFINS EATON ANALYTICAL Date Collected: 06/26/23 10:18

: 380-52637 Date Received: 06/29/23 Project

Date Extracted: 07/06/23 12:00 Batch No. : 23F197 Sample ID : 380-52637-1 Lab Samp ID: 23F197-01 Date Analyzed: 07/07/23 22:06

Dilution Factor: 1 Matrix: WATER Lab File ID: LG07016A % Moisture: NA Ext Btch ID: 23DSG006W Calib. Ref.: LG07004A Instrument ID: D5

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
JP5	ND	0,055	0.028	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromobenzene Hexacosane	0.497 0.158	0.550 0.138	90 115	60-130 60-130

RL : Reporting Limit H-C Range Parameter C8-C18

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 910ml
Prepared by : POreto : POreto

Final Volume : 5ml

Analyzed by : SDeeso

Client : EUROFINS EATON ANALYTICAL Date Collected: 06/26/23 11:41 Date Received: 06/29/23

: 380-52637 Project Date Extracted: 07/06/23 12:00 Batch No. : 23F197 Sample ID : 380-52637-2 Date Analyzed: 07/07/23 22:25

Lab Samp ID: 23F197-02 Dilution Factor: 1 Matrix: WATER Lab File ID: LG07017A % Moisture: NA Ext Btch ID: 23DSG006W Calib. Ref.: LG07004A Instrument ID: D5

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
JP5	ND	0.050	0.025	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromobenzene Hexacosane	0.433 0.134	0.500 0.125	87 107	60-130 60-130

Notes:

: Reporting Limit H-C Range Parameter C8-C18 JP5

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 1000ml

Final Volume : 5ml

: POreto Prepared by

Analyzed by : SDeeso

Client : EUROFINS EATON ANALYTICAL Date Collected: 06/26/23 10:18

 Project
 : 380-52637
 Date Received: 06/29/23

 Batch No.
 : 23F197
 Date Extracted: 07/06/23 12:00

 Sample ID
 : 380-52637-1
 Date Analyzed: 07/07/23 22:06

 Lab Samp ID: 23F197-01
 Dilution Factor: 1

 Lab File ID: LG07016A
 Matrix: WATER

 Ext Btch ID: 23DSG006W
 % Moisture: NA

 Calib. Ref.: LG07005A
 Instrument ID: D5

PARAMETERS JP8	RESULTS (mg/L) ND	RL (mg/L) 0.055	MDL (mg/L) 0.28	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromobenzene Hexacosane	0.497 0.158	0.550 0.138	90 115	60-130 60-130

Notes:

RL: Reporting Limit
Parameter H-C Range
JP8 C8-C18

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 910ml Prepared by : POreto Final Volume : 5ml

Analyzed by : SDeeso

2

5

7

10

111

13

14

Client : EUROFINS EATON ANALYTICAL Date Collected: 06/26/23 11:41

Project : 380-52637 Date Received: 06/29/23 Date Extracted: 07/06/23 12:00 Date Analyzed: 07/07/23 22:25 Batch No. : 23F197

Sample ID : 380-52637-2 Lab Samp ID: 23F197-02 Lab File ID: LG07017A Dilution Factor: 1 Matrix: WATER

% Moisture: NA Ext Btch ID: 23DSG006W Calib. Ref.: LG07005A Instrument ID: D5

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
JP8	ND	0.050	0.025	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromobenzene Hexacosane	0.433 0.134	0.500 0.125	87 107	60-130 60-130

Notes:

RL : Reporting Limit Parameter H-C Range C8-C18 JP8

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures. Sample Amount $\,:\,1000\text{ml}\,$ Final Volume $:\,5\text{ml}\,$

Prepared by : POreto

REPORT ID: 23F197

Analyzed by : SDeeso

Page 76 of 86

QC SUMMARIES

Δ

R

Client : EUROFINS EATON ANALYTICAL Date Collected: 07/06/23 12:00 : 380-52637 Date Received: 07/06/23 Project

Batch No. : 23F197 Date Extracted: 07/06/23 12:00 Date Analyzed: 07/07/23 19:55 Sample ID : MBLK1W

Lab Samp ID: DSG006WB Dilution Factor: 1 Lab File ID: LG07009A Matrix: WATER % Moisture: NA Ext Btch ID: 23DSG006W Instrument ID: D5 Calib. Ref.: LG07003A

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
Diesel	ND	0.025	0.012	
Motor Oil	ND	0.050	0.025	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromobenzene	0.394	0.500	79	60-130
Hexacosane	0.140	0.125	112	60-130

Notes:

Parameter H-C Range Diesel C10-C24 Motor Oil C24-C36

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 1000ml

Final Volume : 5ml

Prepared by : POreto Analyzed by : SDeeso

CLIENT

: EUROFINS EATON ANALYTICAL

PROJECT BATCH NO. : 380-52637

METHOD

: 23F197 : 3520C/8015B

MATRIX DILUTION FACTOR: 1

: WATER

% MOISTURE:NA

SAMPLE ID LAB SAMPLE ID : DSG006WB LAB FILE ID

: MBLK1W : LG07009A DATE PREPARED : 07/06/23 12:00 LCS1W DSG006WL LG07010A LCD1W DSG006WC LG07011A 07/06/23 12:00

DATE ANALYZED : 07/07/23 19:55 : 23DSG006W PREP BATCH CALIBRATION REF: LG07003A

07/06/23 12:00 07/07/23 20:14 23DSG006W LG07003A

07/07/23 20:32 23DSG006W LG07003A

ACCESSION:

PARAMETERS	MBResult	SpikeAmt	LCSResult	LCSRec	SpikeAmt	LCDResult	LCDRec	RPD	QCLimit	MaxRPD
	(mg/L)	(mg/L)	(mg/L)	(%)	(mg/L)	(mg/L)	(%)	(%)	(%)	(%)
Diesel	ND	2.50	2.24	90	2.50	2.33	93	4	50-130	30

SURROGATE PARAMETERS	SpikeAmt	LCSResult	LCSRec	SpikeAmt	LCDResult	LCDRec	QCLimit
	(mg/L)	(mg/L)	(%)	(mg/L)	(mg/L)	(%)	(%)
Bromobenzene	0.500	0.390	78	0.500	0.434	87	60-130
Hexacosane	0.125	0.138	110	0.125	0.136	109	60-130

MB: Method Blank sample LCS: Lab Control Sample LCD: Lab Control Sample Duplicate

: EUROFINS EATON ANALYTICAL Client Date Collected: 07/06/23 12:00

Project : 380-52637 Date Received: 07/06/23

Batch No. : 23F197 Date Extracted: 07/06/23 12:00 Sample ID : MBLK1W Date Analyzed: 07/07/23 19:55 Lab Samp ID: DSG006WB Lab File ID: LG07009A Dilution Factor: 1

Matrix: WATER % Moisture: NA Ext Btch ID: 23DSG006W Instrument ID: D5 Calib. Ref.: LG07004A

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
JP5	ND	0.050	0.025	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromobenzene Hexacosane	0.394 0.140	0.500 0.125	79 112	60-130 60-130

Notes:

: Reporting Limit Parameter H-C Range C8-C18 JP5

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 1000ml

Prepared by : POreto Final Volume : 5ml Analyzed by : SDeeso

CLIENT

: EUROFINS EATON ANALYTICAL

PROJECT BATCH NO. : 380-52637 : 23F197

METHOD

SAMPLE ID

LAB FILE ID

: 3520C/8015B

MATRIX : WATER DILUTION FACTOR: 1

: MBLK1W LAB SAMPLE ID : DSG006WB

: 23DSG006W

DATE ANALYZED : 07/07/23 19:55

CALIBRATION REF: LG07004A

: LG07009A DATE PREPARED : 07/06/23 12:00 LCS1W J5G006WL LG07012A 07/06/23 12:00 07/07/23 20:51 23DSG006W

LG07004A

% MOISTURE:NA LCD1W J5G006WC LG07013A

07/06/23 12:00 07/07/23 21:10 23DSG006W LG07004A

ACCESSION:

PREP BATCH

PARAMETERS	MBResult	SpikeAmt	LCSResult	LCSRec	SpikeAmt	LCDResult	LCDRec	RPD	QCLimit	MaxRPD
	(mg/L)	(mg/L)	(mg/L)	(%)	(mg/L)	(mg/L)	(%)	(%)	(%)	(%)
JP5	ND	2.50	1.92	77	2.50	2.07	83	8	30-160	30

	SpikeAmt	LCSResult		•	LCDResult	LCDRec	QCLimit
SURROGATE PARAMETERS	(mg/L)	(mg/L)	(%)	(mg/L)	(mg/L)	(%)	(%)
			• • • • • •				
Bromobenzene	0.500	0.354	71	0.500	0.427	85	60-130
Hexacosane	0.125	0.144	115	0.125	0.134	107	60-130

MB: Method Blank sample LCS: Lab Control Sample LCD: Lab Control Sample Duplicate

Client :	EUROFINS EATON ANALYTICAL	Date Collected:	07/06/23 12:00
Project :	380-52637	Date Received:	07/06/23
Batch No. :	23F197	Date Extracted:	07/06/23 12:00
Sample ID :	MBLK1W	Date Analyzed:	07/07/23 19:55
Lab Samp ID:	DSG006WB	Dilution Factor:	1
Lab File ID:	LG07009A	Matrix:	WATER
Ext Btch ID:	23DSG006W	% Moisture:	NA
Calib. Ref.:	LG07005A	Instrument ID:	D5

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
JP8	ND	0.050	0.025	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromobenzene Hexacosane	0.394 0.140	0.500 0.125	79 112	60-130 60-130

Notes:

: Reporting Limit Parameter H-C Range JP8 C8-C18

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 1000ml Final Volume : 5ml

Prepared by : POreto Analyzed by : SDeeso

Prepared by

CLIENT

: EUROFINS EATON ANALYTICAL

PROJECT

: 380-52637

BATCH NO. METHOD

: 23F197 : 3520C/8015B

MATRIX : WATER DILUTION FACTOR: 1

% MOISTURE:NA

SAMPLE ID

: MBLK1W LAB SAMPLE ID : DSG006WB : LG07009A LCS1W J8G006WL LG07014A LCD1W J8G006WC LG07015A

DATE PREPARED : 07/06/23 12:00 DATE ANALYZED : 07/07/23 19:55 PREP BATCH : 23DSG006W CALIBRATION REF: LG07005A

07/06/23 12:00 07/07/23 21:28 23DSG006W LG07005A

07/06/23 12:00 07/07/23 21:47 23DSG006W LG07005A

ACCESSION:

LAB FILE ID

PARAMETERS	MBResult (mg/L)	SpikeAmt (mg/L)	LCSResult (mg/L)	LCSRec (%)	SpikeAmt (mg/L)	LCDResult (mg/L)	LCDRec (%)	RPD (%)	QCLimit (%)	MaxRPD (%)
JP8	ND	2.50	2.15	86	2.50	2.27	91	5	30-160	30

SURROGATE PARAMETERS	SpikeAmt	LCSResult	LCSRec	SpikeAmt	LCDResult	LCDRec	QCLimit
	(mg/L)	(mg/L)	(%)	(mg/L)	(mg/L)	(%)	(%)
Bromobenzene	0.500	0.491	98	0.500	0.486	97	60-130
Hexacosane	0.125	0.135	108	0.125	0.132	106	60-130

MB: Method Blank sample LCS: Lab Control Sample LCD: Lab Control Sample Duplicate

Monrovia, CA (Suite 100)

750 Royal Oaks Drive Suite 100 Monrovia, CA 91016

Chain of Custody Record

💸 eurofins

Environment Testing America

Client Information	Sampler		Lab PM: Arada, Rachelle								Tracking N	√o(s).			COC No: 380-27941-2757.2		
Client Contact:	Phone:		E-Ma	il:							State of	Origin:				Page:	
Dr. Ron Fenstermacher Company:	808-748-5840 PWSID:			Rachelle.Arada@et.euronisus.com													Page 1 of 2 Job #:
City & County of Honolulu									An	alysi	s Req	ueste	ed				
Address: 630 South Beretania Street; Chemistry Lab	Due Date Request													138	Preservation Codes: M - Hexane		
City. Honolulu	TAT Requested (d	ays):				s,		roil									A - HCL N - None B - NaOH O - AsNaO2
State, Zip: H1, 96843	Compliance Proje	ot: △ No				+ TICs	(EAL)	Moto	1	EAL							D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3
Phone:	PO#:	21. 2 140				(EAL)) LL (F	and Motor Oil	S	크							F - MeOH R - Na2S2O3 F - MeOH S - H2SO4 G - Amchlor T TOD D-46
808-748-5091 (tel)	C20525101 exp	05312023			(0)	1	ple)	(EAL)	S TICs	eable						100	H - Ascorbic Acid U - Acetone
Email: rfenstemacher@hbws.org	WO #:				No)	ıysis	(Purgable	4	PLUS	Purg	1					S	J - DI Water W - pH 4-5
Project Name:	Project #:				(Yes		Gas (P	Diesel LL	525plus	8015 Gas (Purgeable) LL (EAL) - 537.1 Full List						iner	K - EDTA Y - Trizma L - EDA Z - other (specify)
RED-HILL/HBWS sites Event Desc: RUSH Weekly Red Hill Site:	38001111 SSOW#:				(Yes	25 P.	8015 G	37	52	8015 (onte	containe	Other:
					San				0	' '	es					of	
		Sample	Type (Natrix W=water, S≈solid, =waste/oil,	Field Filtered Perform MS/M	SUBCONTRACT	SUBCONTRACT	ONTR	525.2_PREC - (SUBCONTRACT -	A					Total Number	,
Sample Identification	Sample Date	Time	G=grab) BT=T		Pe Fie			-								£	Special Instructions/Note:
MOANALUA WELLS	26 Inn 2022	1/21/2	Preservation	Vater	\mathcal{M}	R	R	RA	-		YN			-			
	26-Jun-2023	1018	9			2			-	4		_		-			#11-7725 7598 3619 GEL-
AIEA GULCH WELLS PUMP2	26-Jun-2023	1141	G	Water	Ш	2		2	2	4							(752A) 180-0.20-1.60 FROZE
AIEA WELLS PUMPS 1&2 (260) PZ	26-Jun-2023	1114	G	Water		2		2	2	4							#2-7725 7598 3550
HALAWA WELLS UNITS 1&2 P	26-Jun-2023	1000	G	Water		2		2	2	4							(752A) 3.3° .0.2° -3.1° GEL-
												١.					#3-7725 7598 4615
							l						EV				(752A) 1.6" O.2"=1.4" FROZEN
TB MOANALUA WELLS	26-Jun-2023	1018	,	Vater						2			32				44-7725 7598 4648
TB AIEA GULCH WELLS PUMP2	26-Jun-2023	1141	,	Vater						2			50007	000	-		(752A) 7.7° -0.2° -7.5° GEL-
TB AIEA WELLS PUMPS 1&2 (260)	26-Jun-2023	1114	,	N ater						2		- 380)-52637	,			(17.1), 1.00
TB HALAWA WELLS UNITS 1&2	26-Jun-2023	1090	,	V ater						2							
Possible Hazard Identification					Sar	nple	Disp	osal	(Af	ee ma	y be as	sesse	ed if sar	nples	are re	taine	ed longer than 1 month)
	Poison B Unkr	iown -	Radiological					To C					l By Lab)		Arch	ive For Months
Deliverable Requested: I, II, III, IV, Other (specify)					Spe	ecial I	nstru	ctions	s/QC	Requ	iirement						
Empty Kit Relinquished by:		Date:			Time:		1	_	_			M	ethod of S	hipment	FE	n t	ox 4 coolers T
Relinquished by: BAIGY	TTIM	72	14(7) Com	pany /S		Rece	e by	+	1	C	PETT			Date/Tim			Company
Relinquished by.	Date/Time:		1100	pany	(Receiv	ed by		1	0	.1-011	100		Date/Tim		40	Company
Relinquished by:	Date/Time:		Com	pany		Receiv	ved by	ri .						Date/Tim	ne:		Сотрапу
			1										_				

2

_

4

7

8

10

12

14

Monrovia, CA (Suite 100)

750 Royal Oaks Drive Suite 100 Monrovia, CA 91016

Chain of Custody Record

eurofins

Environment Testing

Phone (626) 386-1100	Sampler:		Lab PN	Λ.							Carrier Tracking N	lo(s)		COC No:	
Client Information	GAILEY			da, Rachelle							Surrer Trucking I			380-27941-2757.2	
Client Contact: Dr. Ron Fenstermacher	Phone: 808-748-5840		E-Mail: Rach	elle.Ar	ada@	et.e	uronis	sus.co	<u>om</u>		State of Origin:			Page: Page 2 of 2	
Company: PWSID: City & County of Honolulu		PWSID:				Analysis Requ					uested			Job#:	
Address: 630 South Beretania Street; Chemistry Lab	Due Date Requested:	1		900					Ť	Τİ				Preservation Codes:	
City:	TAT Requested (days):		 											M - Hexane A - HCL N - None B - NaOH	
Honolulu State, Zip:					TICs	7	tor Oil		<u> </u>					C - Zn Acetate	
HI, 96843	Compliance Project: A No				+ 1	(EAL)	Diesel LL (EAL) and Motor	Ų	L (EAL)					E - NaHSO4 Q - Na2SO3 R - Na2SO3	
Phone: 808-748-5091 (tel)	PO #: C20525101 exp 05312023		(EAL					TICs	Gas (Purgeable) LL Full List				63	F - MeOH S - H2SO4 G - Amchlor T - TSP Dodecahydrate	
Email:	WO #:	,	-	<u>8</u>	is LL	gable	- (EA	PLUS T	t lgear					I - Ascorbic Acid U - Acetone I - Ice V - MCAA	
rfenstemacher@hbws.org	D :			No)	Phys	(Pur	e I	s PL	Lis Lis		S			J - DI Water W - pH 4-5	
Project Name: RED-HILL/HBWS sites Event Desc: RUSH Weekly Red Hill	Project #: 38001111			68 o	PAH Physis	Gas	Dies		1 Fu				containe	Y - Trizma L - EDA Z - other (specify)	
Site:	SSOW#:			SD (Y	- 625	- 8015	- 89		- 6013	S			of con	Other:	
Sample Identification	Sample Date Time	Sample Type (C=comp, G=grab) Preservation Co	vater, olid, ste/oil, e, A=Air)	X Field Filtered San	D SUBCONTRACT - 625	SUBCONTRACT	Ö	525.2_PREC - (MOD)	537.1_DW_PREC	533 - A			X Total Number	Special Instructions/Note:	
MOANALUA WELLS	26-Jun-2023 1019	G Wat	- 1	1					3	1				n. 1176 9500 2019	
AIEA GULCH WELLS PUMP2	26-Jun-2023 114.1	G Wat	iter						3	-			7	HI- 7725 7598 3619 (752A) 1.8'-0.2"-1.6" FEDTEN	
AIEA WELLS PUMPS 1&2 (260)	26-Jun-2023 [] 4	G Wat	iter	1					3	-				#2-7725 7598 3550	
HALAWA WELLS UNITS 1&2 Pl	26-Jun-2023 1050	G Wat	iter						3					(752A) 3.3" 0.2" 31" GEL-	
														#3-7725 7598 4615	
FB MOANALUA WELLS	26-Jun-2023 1018	Wat	iter						1	1				(752A) 1.6-0.20-1.4' FROZEN	
FB AIEA GULCH WELLS PUMP2	26-Jun-2023 1141	Wat	iter						1	1			1	44-7725 7598 4648	
FB AIEA WELLS PUMPS 1&2 (260)	26-Jun-2023 [1]4	Wat	iter						1	1				(752A) 7.7"-0.2" 7.5" GET-	
FB HALAWA WELLS UNITS 1&2	26-Jun-2023	Wat	iter						1	1					
Possible Hazard Identification				Car		Dia		(15-							
	son B Unknown	Radiological		Sal			To Cl		e may		sessed II san sposal By Lab			ed longer than 1 month) ive For Months	
Deliverable Requested: I, II, III, IV, Other (specify)		<u> </u>		Spe					Requi	remen	· · · · · · · · · · · · · · · · · · ·				
Empty Kit Relinquished by:	Date:		T	Time:		1	_	1			Method of S	hipment: FED	5	c 4 coolers 1	
Relinquished by BAILEY	2 TUNE 2023	AOO Company	ıy		Recei	Ad by	F	10	2.21	FITA	T.	Date/Time. 28 20		Company	
Relinquished by	Date/Time:	Compan	ıy		Recei	ved by		1		VI.10		Date/Time:		Company	
Relinquished by:	Date/Time:	Company	ıy		Recei	ved by	r:				[Date/Time:		Company	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No					Coole	r Tem	peratur	e(s) °C	and Ot	her Rem	arks: (7524	-0.7	p	GEL-FROZEN TOMOR	
		Page	85.0	ਪ 8 ਵ							6.70	110.0		12/12/2	

2

3

5

8

10

12

. .

Login Sample Receipt Checklist

Client: City & County of Honolulu Job Number: 380-52637-2

Login Number: 52637 List Source: Eurofins Eaton Analytical Pomona

List Number: 1 Creator: Elyas, Matthew

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	1/4 cooler's temperature outside required temperature criteria.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	False	Two 8015 vials from one site were received broken. Refer to NCM for details.
Sample collection date/times are provided.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Samples do not require splitting or compositing.	True	
Container provided by EEA	True	

3

4

6

8

10

12

10