
Emergency Action Plan (EAP) for

MAUNAOLU RESERVOIR

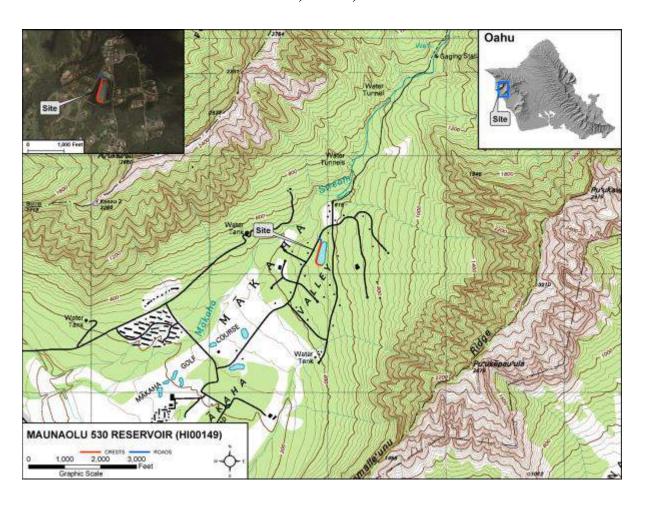
State ID # OA-0149

Makaha, Oahu, Honolulu

Submitted By:			
Michael Matsuo, P.E., Land Administrator			
	Conv	of	

EAP for MAUNAOLU RESERVOIR

(OA-0149)


Instructions for use in preparing hard copy EAP binders

- 1. Obtain ½"~1" white view binder.
- 2. Print one copy of EAP for each report set.
- 3. Sign both copies of cover sheet and fill in copy number
- 4. Cut out binder spine and insert into binder spin.
- 5. Insert one copy of coversheet in binder cover view.
- 6. Collate EAP tabs and EAP report together.
- 7. Insert into binder and distribute.

Emergency Action Plan (EAP) for MAUNAOLU RESERVOIR

State ID # OA-0149

Makaha, Oahu, Honolulu

Submitted By:				
Submitted By: Michael Matsuo, P.E., Land Administrator				
		Copy	of	

Table of Contents

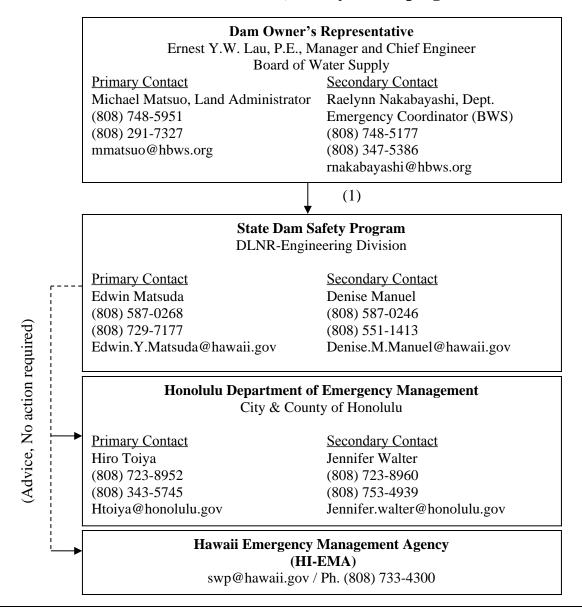
- I. Introduction
 - a. Purpose of EAP
 - b. Roles and Responsibilities
- II. Level 1 (Non-Emergency) Notification
- III. Level 2 (Emergency Potential Dam Failure) Notification
- IV. Level 3 (Emergency Imminent or In-Progress Dam Failure) Notification
- V. Evacuation Map
 - a. Evacuation Map
 - b. Hazard Assessment Report
- VI. Facility Information
 - a. 2-page Data sheet
 - b. Vicinity/Area map
 - c. Site plan
 - d. Cross section or Drawing
 - e. Spillway Capacity Curve
 - f. Outlet Capacity Curve
 - g. Reservoir Drainage Chart
 - h. Key Elevations
 - i. Other Dam Info/Operation
- VII. Directions to Site
 - a. Directions to Site
 - b. Street Map
- VIII. Emergency Detection
 - IX. Local Resources
 - X. Contacts
 - XI. EAP Holders
- XII. Appendix A Testing and Updating
- XIII. Appendix B Forms
- XIV. Appendix C Mitigative and Preparedness Actions
- XV. Appendix D Dam Owner Additional Information
- XVI. Terms & Conditions

I. Introduction

Purpose

This EAP outlines procedures to minimize risks to life and property when the integrity of the subject dam facility may be in jeopardy. This EAP considers unusual and emergency situations, both natural and manmade, and identifies appropriate responses and details roles and responsibilities before, during and following an emergency event. This EAP was specifically developed for the named facility only, and is not intended for use with any other facility.

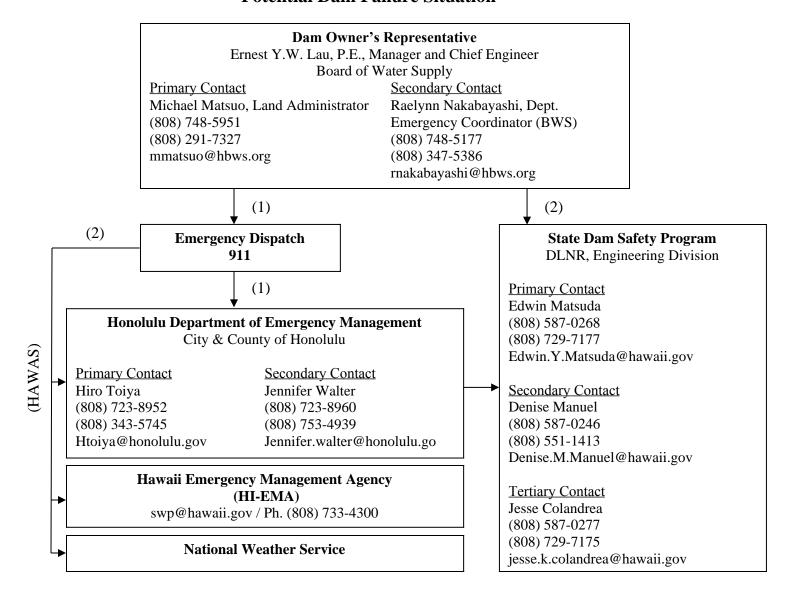
Categories of unusual and emergency situations that may trigger activation of this EAP include (but are not limited to):


- Earthquake
- Sudden Reservoir Level Rise
- Flow through Spillway
- Embankment Overtopping
- Seepage
- Sinkholes
- Piping
- Damage of Spillway or Outlet Works
- Embankment Cracks
- Embankment Movement
- Abnormal Instrumentation Readings
- Security Threat
- Sabotage or Vandalism
- Hurricane or Heavy Rain Storm Event

Roles and Responsibilities

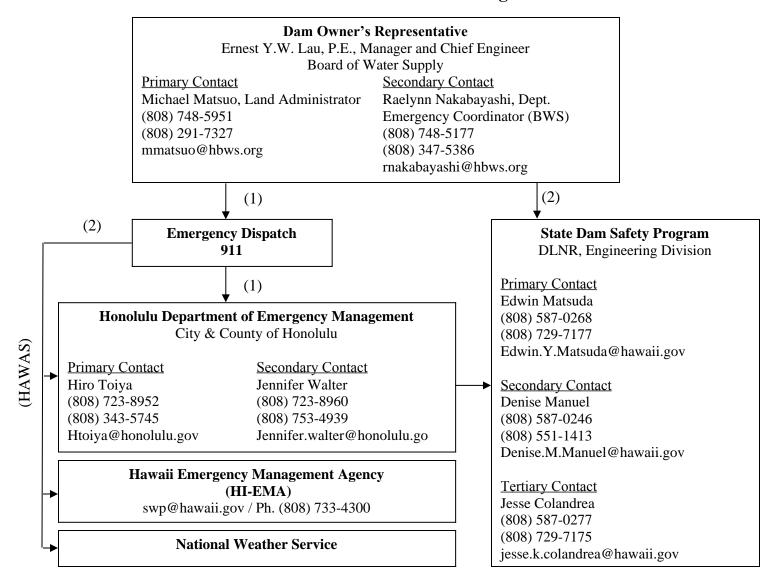
The following roles and responsibilities have been assigned for implementation of this EAP:

Person or Agency	Responsibility
Dam Owner / Dam Owner's Representative	Inspect, monitor and operate dam. Detect unusual/emergency situation. Determine Notification Level for situation. Notify appropriate agencies by activating EAP. Monitor/Remediate situation. Provide status updates to other agencies. Develop EAP. Initiate and coordinate update and testing of EAP. Provide technical advice for the owner.
911 Dispatch / State Warning Point	Notify emergency responders of notifications received from owner or other sources. Participate in update and testing of EAP.
Police Department	Open communication with Department of Emergency Management/Civil Defense Agency, and other agencies pertinent to an emergency. Participate in update and testing of EAP.
Fire Department	Open communication with Department of Emergency Management/Civil Defense Agency, and other agencies pertinent to an emergency. Participate in update and testing of EAP.
Honolulu Department of Emergency Management, Kauai/Maui County Emergency Management Agency, County of Hawaii Civil Defense	Open communication with other agencies pertinent to an emergency. Terminate Level 2/3 (Emergency) event. Participate in update and testing of EAP.
Hawaii Emergency Management Agency (Hawaii State Civil Defense)	Operate State Warning Point. Assist local community as necessary. Participate in update and testing of EAP.
State Dam Safety Program	Assist agencies as necessary. Assess restrictions or other actions when deemed appropriate. Terminate Level 1 (Non-Emergency) event. Participate in update and testing of EAP.


Level 1 Notifications NON-EMERGENCY Unusual Event; Slowly Developing

Suggested Pre-Scripted Statement – Level 1 - Dam Owner to State Dam Safety Program:

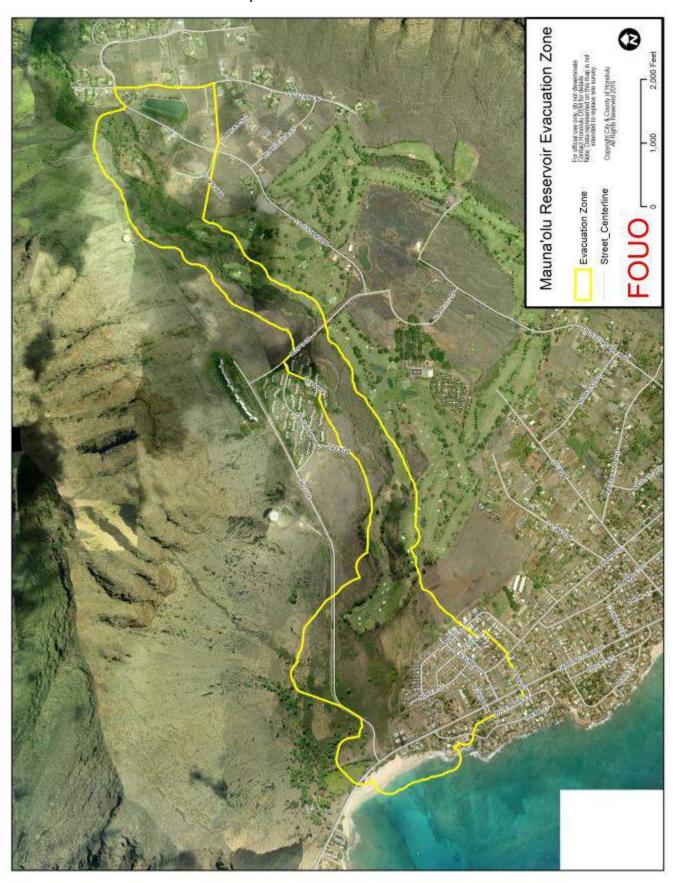
- This is [Name of Caller] from [Company you represent].
- We have a LEVEL 1 Non-Emergency, Non-Failure situation at [MAUNAOLU RESERVOIR, OA-0149]
- The type of unusual event is [describe unusual situation, i.e. maintenance work, change of outlet].
- The dam is located in [description of location, town neighborhood, address].
- The unusual event is expected to last [provide how long, i.e. week, month] and we will advise you of any changes to the status and when we are completed.
- My name is [Name of Caller] and I may be reached at [phone number] or alternate phone number [phone number].


Level 2 Notifications EMERGENCY EVENT Potential Dam Failure Situation

Suggested Pre-Scripted Statement – Level 2 – Dam Owner to 911 Dispatch

- This is [Name of Caller] from [Company you represent].
- We have a LEVEL 2 Emergency, Potential Dam Failure at [MAUNAOLU RESERVOIR, OA-0149]
- The type of emergency concern is [describe failure mode i.e. overtopping or seepage/embankment failure problem].
- The dam is located in [description of location, town neighborhood, address].
- The dam is being monitored by our staff [provide how often continuously or hourly/every 2hours].
- My name is [Name of Caller] and I may be reached at [phone number] or alternate phone number [phone number].

Level 3 Notifications URGENT EMERGENCY EVENT Dam Failure is Imminent or In-Progress


Suggested Pre-Scripted Statement – Level 3 – Dam Owner to 911 Dispatch

- This is [Name of Caller] from [Company you represent].
- We have a LEVEL 3 Emergency, Imminent or In-Progress Dam Failure at [MAUNAOLU RESERVOIR, OA-0149]
- The type of emergency concern is [describe failure mode i.e. overtopping or seepage/embankment failure problem].
- The dam is located in [description of location, town neighborhood, address].
- The dam is being monitored by our staff [provide how often continuously or hourly/every 2hours].
- My name is [Name of Caller] and I may be reached at [phone number] or alternate phone number [phone number].

V.

Evacuation Map

a. Evacuation Map

EAP MAUNAOLU RESERVOIR (OA-0149)

Individual Assessment Report

1 Identification

Name of Dam: Maunaolu 530 Reservoir

National Id: OA-149

Island: Oahu

Nearest City/Town: Makaha

Name of affected stream: Makaha Stream

Current DLNR risk classification: TBD

Owner: Data Not Available

2 Background

Location (latitude/longitude): 21.486136N 158.189584W

Miles to nearest city: 2

Year completed: Data Not Available

Purpose/use: Data Not Available

3 Characteristics

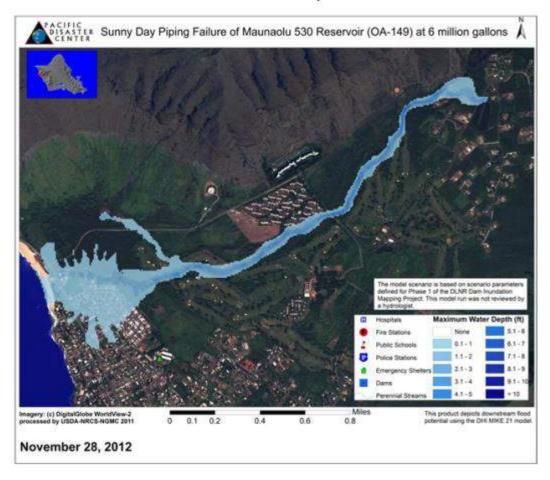
Dam type: Earthen Dam

Max. storage capacity (acre feet): 18.41

Dam height (feet): 27

Dam length (feet): 156

Confidential OA-149 Maunaolu 530 Reservoir 11/29/2012


1

4 Consequence Analysis

4.1 Scenario Parameters

Parameters	Value	Unit of Measure
Reservoir volume prior to breach:	18.41	acre-feet
Duration of breach:	7.17	minutes
Breach width:	31.4	feet
Distance from dam to ocean:	2.35	miles
Type of dam:	Earthen Dam	n/a
Type of breach:	Piping breach originating from spillway	n/a

4.2 MIKE 21 Model Results - Inundation Map*

Confidential

OA-149 Maunaolu 530 Reservoir

11/29/2012

2

"While the best available GIS data have been utilized as input to the model and in visualizing model output, due to variations in their currency and accuracy, final product results should be interpreted as "best available estimates" only and not definitive in establishing inundation boundaries.

4.3 Model Assumptions

It is assumed that each dam fails by piping while at maximum capacity, It is further assumed that 1) the piping failure originates halfway up the dam face, 2) the dam fails under sunny day conditions with dry conditions downstream of the reservoir, and 3) no water is discharged from the spillway. The outflow (discharge hydrograph) from the breached reservoir is modeled using the NWS' DAMBRK model (within the Danish Hydrological Institute's MIKE 11 model), and data from historical breaches is used to estimate parameters controlling breach development. The DHI MIKE 21 model is used to route the reservoir discharge down the valley into the ocean. MIKE 21 routes unsteady two dimensional flows using the full Saint-Venant equations. Topography is described by USGS standard 10 meter DEMs with a vertical accuracy of ±7 to 15 meters. The inundation maps produced by MIKE 21 represent the maximum water depth experienced at any given location. The inundation maps are not snapshots in time because different locations experience maximum flooding at different times. MIKE 21 also provides information on the time of flooding and water velocities.

5 Model Output Statistics

Inhabited Areas Or Landmarks	Distance from breach (miles)*	Time from beginning of breach to first inundation (minutes)	Time from beginning of breach to maximum water depth (minutes)	Maximum flood depth (feet)
Maunaolu rd	0.04	1.25	7.68	2.52
first residential structure	0.08	2.5	7.99	0.92
second residential structure	0.17	4	8.47	2.5
golf course	0.50	8.75	10.8	3.71
Huipu rd	0.98	13.75	14.46	3.57
golf course	1.49	18.75	19.4	2.32
Kili road	1.97	31.25	32.28	0.4
residential neighborhood	2.01	27.5	27.46	0.52

Confidential

OA-149 Maunaolu 530 Reservoir

11/29/2012

Farrington	2.28	35	35.45	0.37
ocean	2.35	37.5	39.91	0.65

^{*} Distance determined by Euclidean method defined as the straight line distance between two points.

5.1 Impact on Bridges

Distance Affected from breach Bridges (miles)*		Time from beginning of breach to first inundation (minutes)	Time from beginning of breach to maximum water depth (minutes)	Maximum flood depth (feet)
573	2.36	45	50.68	0.18
572	2.28	35	74.37	0.7

5.2 Hydrologist's Significant Observations and Comments

The model scenario is based on scenario parameters defined for Phase I of the DLNR Dam Inundation Mapping Project. This model run was not reviewed by a hydrologist.

6 Potential Scenario Consequences for OA-149 – Maunaolu 530 Reservoir

Dam Location: 21.486136N 158.189584W

Dam Owner: Data Not Available

The following table summarizes the estimated population and infrastructure potentially at risk as a result of the modeled dam break scenario, which assumes dam failure at maximum capacity.

141.2
1345
314
\$105,931,100
\$100,997,000
0
0
0

Confidential OA-149 Maunaolu 530 Reservoir 11/29/2012

Potential Scenario Consequences**	Value
d. Fire Station total	0
e. Police total	0
f. Government total	0
g. Airports and Seaports total	0
Emergency Operation Centers affected (total number):	0
Shelters affected (total number):	0
7. Infrastructure Affected:	
a. Number of Bridges	2
b. Length of Roads (miles)	1.52

^{**}Refer to Final Report for methodology used to derive values.

7 References

Data Sheet – Maunaolu Reservoir (UMA-2014 – Dam Inventory System vr. 1.204 – Dec 16, 2008

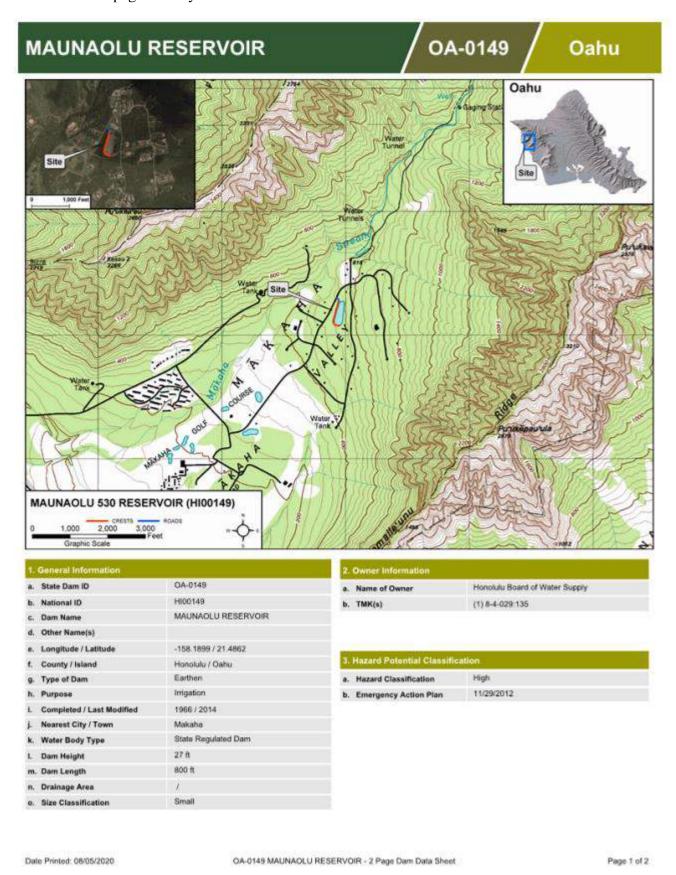
Hawaii Dasymetric Population Data (PDC), Jan 01, 2010

Oahu, Hawaii Tax Assessor Parcel Data, June 01, 2004

Disclaimer

The dam break scenarios depicted in the reports utilize DHI's MIKE 21model. Best available data have been utilized in the reports and as input to the model, however, due to variations in data currency and accuracy, final products should be interpreted as "best available estimates" only.

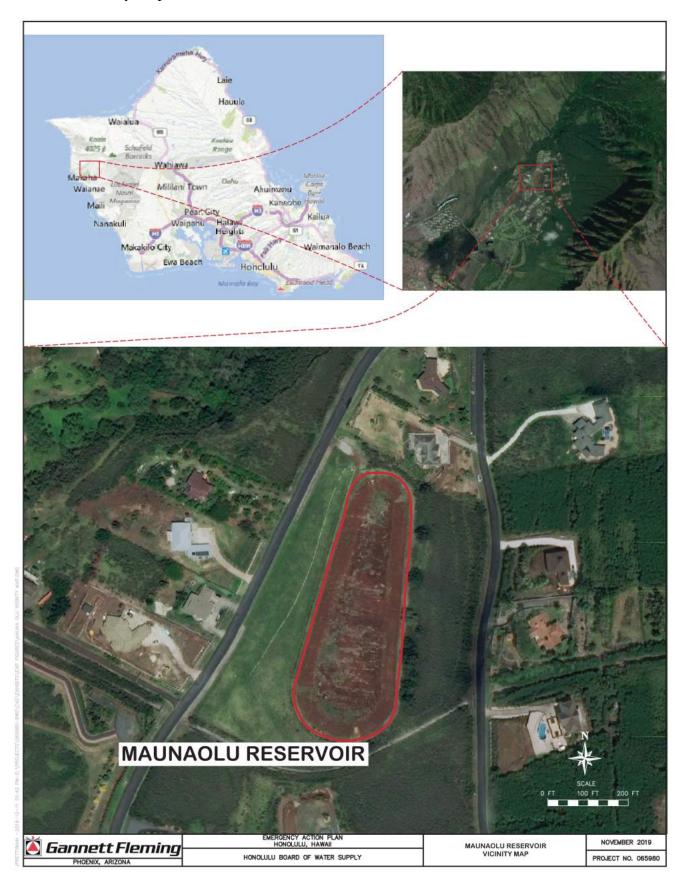
The Pacific Disaster Center (PDC) does not assume any legal liability or responsibility for the information, apparatus, product, or process disclosed in this report or represent that its use would not infringe on privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement or recommendation. No warranty, expressed or implied, is made by the PDC as to the accuracy of the data or the functioning of the software beyond what is expressed by the original vendor(s). The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the PDC in the use of these data, software, or related materials.

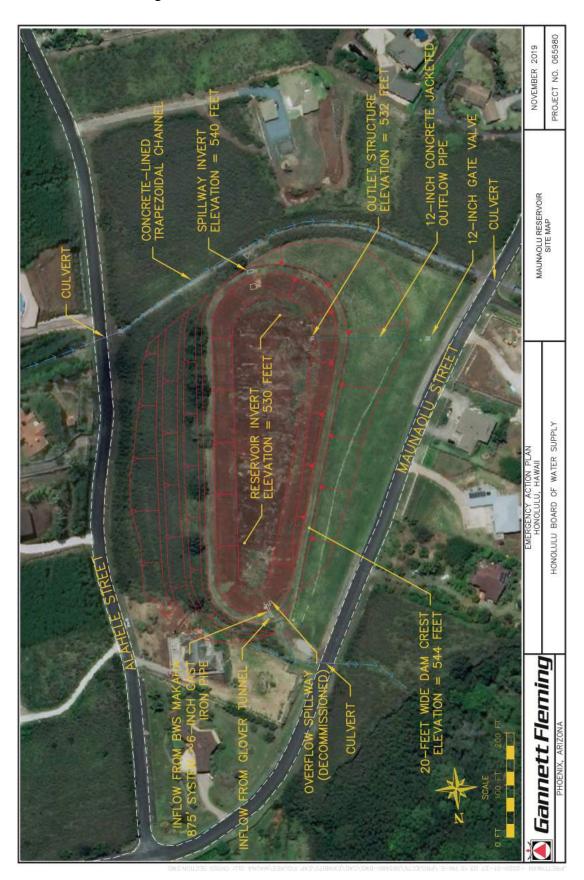

Confidential

OA-149 Maunaolu 530 Reservoir

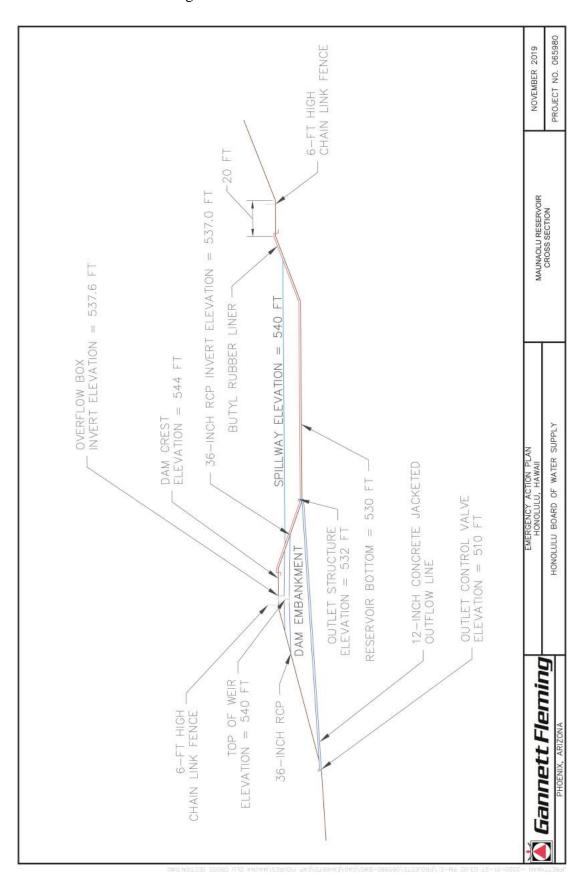
11/29/2012

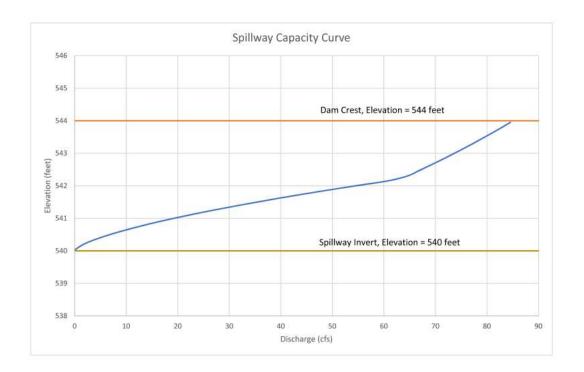
VI. Facility Information


a. 2-page Facility Data Sheet



EAP MAUNAOLU RESERVOIR (OA-0149)


b. Vicinity Map

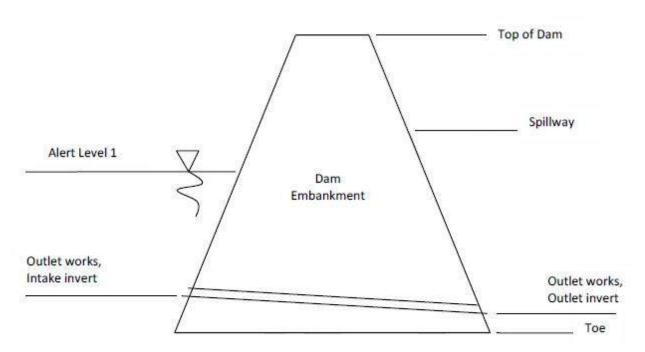

c. Site Plan or Drawing

d Cross Section or Drawing

e. Spillway Capacity Curve

Elevation	Discharge
(feet)	(cfs)
540.0	0.00
540.5	6.81
541.0	19.29
541.5	35.41
542.0	54.48
542.5	67.26
543.0	73.68
543.5	79.59
544.0	85.09

Values from Bills Engineering Inc, Drainange Study for Maunaolu 530 Non-potable Reservoir Drainage Improvements , 2014.


f. Outlet Capacity Curve

NOT AVAILABLE

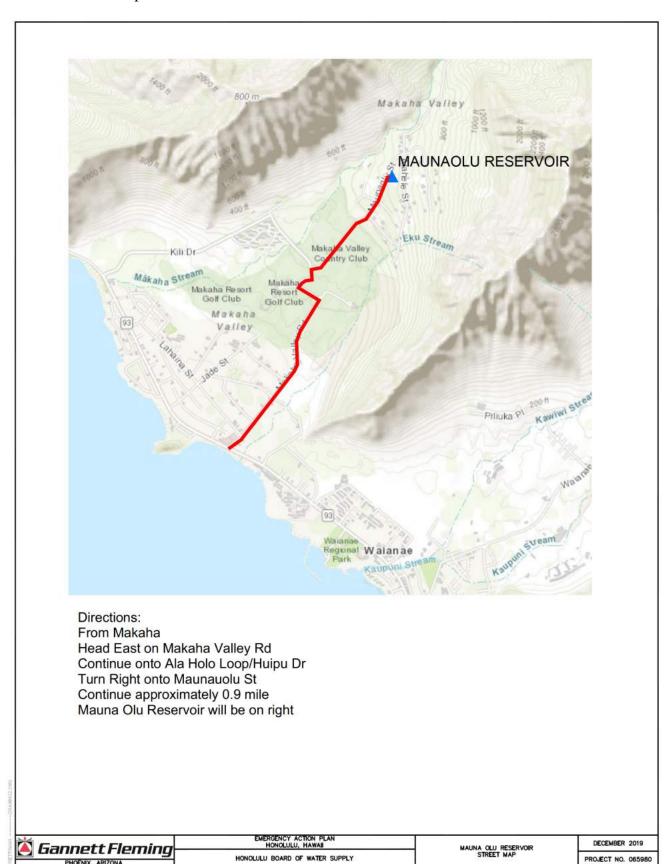
NOT AVAILABLE

$\label{eq:confidence} \textbf{CONFIDENTIAL} - \textbf{For Official Use Only}$

h. Key Elevations

	Fill in Elevations for:	Elevation	Staff Gage
1	Top of Dam	544	14
2	Invert of Overflow Box	537.6	7.6
3	Overflow Box Weir Crest	540	10
4	Reservoir Bottom	530	0
5	Outlet works, Intake invert	532	2
6	Outlet works, Outlet invert	510	-
7	Toe	517	-
8	*PMF level (See other dam info on next page)	544.6	-
9	EAP Alert Level 3 (See Section VIII)	544	14
10	EAP Alert Level 2 (See Section VIII)	543	13
11	EAP Alert Level 1		

i. Other Dam Info/Operation


*Updated Probable Maximum Flood (PMF) analysis was completed by Gannett Fleming in November 2019. This analysis indicated that during a large flood event, such as the PMF, the drainage systems intended to divert water from the adjacent hillside will be overwhelmed and may spill into Maunaolu Reservoir. During the PMF, the analysis shows that the dam crest will be overtopped by about 0.6 feet due to these additional inflows.

VII. Directions to Site

a. Directions to Dam Facility Site

From Honolulu, take Interstate H-1 Highway west, then H1-93 (Farrington Highway) north. From Farrington Highway, turn right onto Makaha Valley Road. From Makaha Valley Road turn left onto Ala Holo Loop. From Ala Holo Loop turn left onto Huipu Drive. From Huipu Drive turn right onto Maunaolu Street. Proceed along Maunaolu Street for approximately 0.90 miles. Mauna Olu 530 Reservoir is on the right. Entry to the reservoir site is via a cable gate secured by a combination lock. To obtain the combination to the cable lock, call the Board of Water Supply (BWS) Security Center at (808) 748-5911. Visitors to the reservoir site must also pass through the security check-point for the Mauna Olu Estates subdivision. Prior to entry to the reservoir site, authorization is required from the BWS Land Administrator by calling (808) 748-5951.

b. Street Map

VIII. Emergency Detection

Guidance for Determining the Event Level at MAUNAOLU RESERVOIR

Note: This is a site-specific guide developed for use at the named facility only!

Level 1: Non-Emergency, Unusual Event, Slowly Developing

Level 2: Emergency, Potential Dam Failure Situation

Level 3: Urgent Emergency; Imminent or In-progress Dam Failure

Event	Situation	Ev	ent L	evel
Earthquake	Earthquake resulting in uncontrolled release of water from the dam			3
Earthquake	Earthquake resulting in visible damage to the dam or appurtenances that could result in an uncontrolled release of water from the dam		2	
Earthquake	An earthquake has been felt or is reported to have occurred in the area with Richter Magnitude (M) of 4.0M or greater within a 30-mile distance of the epicenter, 5.0M or greater within 60 miles, or 6.0M or greater within a 120 mile radius of the site. Look up magnitude here: https://earthquake.usgs.gov/earthquakes/map/	1		
Embankment Cracking / Movement	Sudden or rapidly proceeding slides of the embankment slopes resulting in an uncontrolled release of water			3
Embankment Cracking / Movement	Sudden or rapidly proceeding slides of the embankment slopes that do not result in an uncontrolled release of water but could if movement continues		2	
Embankment Cracking / Movement	New cracks in the embankment with seepage flowing through the crack (see section on "Seepage")		2	
Embankment Cracking / Movement	Visible evidence of movement/slippage of the embankment slope	1		
Embankment Cracking / Movement	New cracks in the embankment greater than 1-inch wide without seepage	1		
Sabotage / Vandalism / Security Threat	Sabotage/damage to dam or appurtenances that has resulted in uncontrolled water release			3
Sabotage / Vandalism / Security Threat	Sabotage/damage to dam or appurtenances that may result in uncontrolled water release		2	
Sabotage / Vandalism / Security Threat	Modification to the dam or appurtenances that could adversely impact the functioning of the dam	1		
Seepage / Low Water Level	Uncontrollable, erratic, or rapidly increasing flow from seepage area with transport of sediment			3
Seepage / Low Water Level	Reservoir water level is falling without apparent cause		2	
Seepage / Low Water Level	Observation of boils or seepage areas with cloudy discharge possibly transporting sediment		2	
Sinkholes or Whirlpools	Rapidly enlarging sinkhole on dam or abutments to extent that failure appears imminent			3
Sinkholes or Whirlpools	Whirlpool or other evidence indicating that reservoir is draining rapidly through dam or foundation			3
Sinkholes or Whirlpools	Observation of new sinkhole in reservoir area or on embankment		2	
Spillway Flow / Overtopping	Water from the reservoir is flowing over the top (crest) of the dam			3
Spillway Flow / Overtopping	Significant flow from adjacent drainage channels is spilling into the reservoir, overwhelming the spillway and causing the reservoir level to rise			3

Event	Situation		Event Level	
Spillway Flow /	Spillway is flowing with high rate of rise of reservoir water surface elevation (concern that		2	
Overtopping	spillway may be inadequate for incoming flood flows)		2	
Spillway Flow /	The spillway is clogged/obstructed with debris during a period of heavy or sustained precipitation,		2	
Overtopping	resulting in an elevated/increasing reservoir level		_	
Spillway Flow /	Spillway flow could result in flooding of downstream roadways and/or inhabited structures if		2	
Overtopping	reservoir level continues to rise			

IX. Local Resources

Local Resources Available at MAUNAOLU RESERVOIR

Note: This is a site-specific list developed for use at the named facility only!

The following owner/operator resources are available in the event of an emergency:

Quantity	Equipment/Resources	Contact Name/Telephone No.(s)
1	Sump Pump 8 Inch 3240 GPM	Board of Water Supply (BWS)
2	Sump Pump 4 Inch 1200 GPM	BWS
2	Sump Pump 6 Inch 1400 GPM	BWS

Other locally available resources include:

Resources	Suppliers	Telephone No.(s)	
Heavy Equipment	C&R Enterprise Inc.	(808) 239-9248	
Service and Rental			
Sand and Gravel Supply	Ameron Hawaii Kapaa Quarry	(808) 266-2660	
Ready-Mix Concrete	West Hawaii Concrete Administration	(808) 329-3561	
Supply			
Sand Bags	Honolulu Bag Supply	(808) 841-8333	
Pumps	Engineered Systems Inc.	(808) 263-2232	
Driving Contractor	Advanced Towing and Recovery	(808) 456-8697	
Lighting	Board of Water Supply, FO Division	(808) 748-5000	
Generator	Board of Water Supply, FO Division	(808) 748-5000	
Piping	Board of Water Supply, FO Division	(808) 748-5000	

X. Contacts

Contact Names and Numbers for MAUNAOLU RESERVOIR

Role & Responsibility	Primary Contact	Office Phone No.	Alternate Phone	Agency or Organization	Address
Dam Owner's Representatives:					
Primary EAP Contact	Michael Matsuo, Land Administrator	(808) 748-5951	(808) 291-7327	Board of Water Supply	630 South Beretania Street Honolulu, HI 96843
Secondary EAP Contact	Raelynn Nakabayashi, Dept. Emergency Coordinator (BWS)	(808) 748-5177	(808) 347-5386	Board of Water Supply	630 South Beretania Street Honolulu, HI 96843
Dam Owner	Ernest Y.W. Lau, P.E., Manager and Chief Engineer	(808) 748-5061		Board of Water Supply	630 South Beretania Street Honolulu, HI 96843
Dam Owner	Ellen Kitamura, Deputy Manager and Chief Engineer	(808) 748-5066		Board of Water Supply	630 South Beretania Street Honolulu, HI 96843
Dam Lessee					
Dam Operator	Kevin Ihu, Program Administrator, Water Systems Operations Division	(808) 748-5800	(808) 225-8446	Board of Water Supply	630 South Beretania Street Honolulu, HI 96843
Dam Technical Representative	Nancy Matsumoto, Chief Hydro-Geologist (BWS)	(808) 748-5938		Board of Water Supply	630 South Beretania Street Honolulu, HI 96843
State Dam Safety Pro	gram:				
State Dam Safety Program	Edwin Matsuda	(808) 587-0268	(808) 729-7177	State DLNR	1151 Punchbowl St. Room 221 Honolulu, HI 96813
State Dam Safety Program	Denise Manuel	(808) 587-0246	(808) 551-1413	State DLNR	1151 Punchbowl St. Room 221 Honolulu, HI 96813
State Dam Safety Program	Jesse Colandrea	(808) 587-0277	(808) 729-7175	State of Hawaii DLNR	1151 Punchbowl Street, rm 221 Honolulu, HI 96813
Honolulu Department	t of Emergency Mana	gement– City &	& County of Ho		,
Honolulu Department of Emergency Management	Hiro Toiya	(808) 723-8952	(808) 343-5745	Honolulu Department of Emergency Management	650 South King Street Honolulu, HI 96813
Honolulu Department of Emergency Management	Jennifer Walter	(808) 723-8960	(808) 753-4939	Honolulu Department of Emergency Management	650 South King Street Honolulu, HI 96813
Hawaii Emergency M	anagement Agency (l	Hawaii State Ci	ivil Defense):		
Hawaii Emergency Management Agency	Luke P. Meyers	(808) 733-4300		Hawaii Emergency Management Agency	3949 Diamond Head Road Honolulu, HI 96816
County Emergency Responders:					
Police Department	Dispatch	911		Honolulu Police Department	801 South Beretania Street Honolulu, HI 96813
Police Department	Susan Ballard, Chief of Police	(808) 723-8782		Honolulu Police Department	801 South Beretania Street Honolulu, HI 96813
Fire Department	Manuel P. Neves, Fire Chief	(808) 723-7101		Honolulu Fire Department	636 South Street Honolulu, HI 96813

EAP MAUNAOLU RESERVOIR (OA-0149) Revision August 5, 2020 X - Contacts 1 of 2

Other	Ross S. Sasamura, Director and Chief Engineer	(808) 768-3345	Department of Facility Maintenance, City and County of Honolulu Department of Facility 1000 Uluohia Street, Suite 215 Kapolei, HI 96707
Other	Wes Frysztacki, Director	(808) 768-8303	Dept. of Transportation Services, City & County of Honolulu 650 South King Street, 3rd Floor Honolulu, HI 96813
Other	James D. Howe, Jr., Director	(808) 723-7800	Department of Emergency Services, City and County of Honolulu Department of 3375 Koapaka Street, Suite H450 Honolulu, HI 96819
Other	Wes Frysztacki, Director	(808) 768-8303	Dept. of Transportation Services, City & County of Honolulu Transportation Services, City And County of Honolulu 650 South King Street, 3rd Floor Honolulu, HI 96813
Other	James D. Howe, Jr., Director	(808) 723-7800	Department of Emergency Services, City and County of Honolulu Department of 3375 Koapaka Street, Suite H450 Honolulu, HI 96819
Other	Ross S. Sasamura, Director and Chief Engineer	(808) 768-3345	Department of Facility Maintenance, City and County of Honolulu Department of Facility 1000 Uluohia Street, Suite 215 Kapolei, HI 96707

XI. <u>EAP Holders</u>

Official EAP Holders

Сору #	Organization	Person receiving copy	Concurrence Form Received
1 Primary EAP Contact	Board of Water Supply 630 South Beretania Street Honolulu, HI 96843	Michael Matsuo, Land Administrator	
2 Secondary EAP Contact	Board of Water Supply 630 South Beretania Street Honolulu, HI 96843	Raelynn Nakabayashi, Dept. Emergency Coordinator (BWS)	
3 Dam Owner	Board of Water Supply 630 South Beretania Street Honolulu, HI 96843	Ernest Y.W. Lau, P.E., Manager and Chief Engineer	
4 Dam Operator	Board of Water Supply 630 South Beretania Street Honolulu, HI 96843	Kevin Ihu, Program Administrator, Water Systems Operations Division	
5 Dam Technical Representative	Board of Water Supply 630 South Beretania Street Honolulu, HI 96843	Nancy Matsumoto, Chief Hydro-Geologist (BWS)	
6 Dam Owner	Board of Water Supply 630 South Beretania Street Honolulu, HI 96843	Ellen Kitamura, Deputy Manager and Chief Engineer	
7 Police Department	Honolulu Police Department 801 South Beretania Street Honolulu, HI 96813	Dispatch	
8 Fire Department	Honolulu Fire Department 636 South Street Honolulu, HI 96813	Manuel P. Neves, Fire Chief	
9 Police Department	Honolulu Police Department 801 South Beretania Street Honolulu, HI 96813	Susan Ballard, Chief of Police	
10 State Dam Safety Program	State DLNR 1151 Punchbowl St. Room 221 Honolulu, HI 96813	Edwin Matsuda	

$\label{eq:confidence} \textbf{CONFIDENTIAL}-\textbf{For Official Use Only}$

11 Honolulu Department of Emergency Management	Honolulu Department of Emergency Management 650 South King Street Honolulu, HI 96813	Hiro Toiya	
12 Hawaii Emergency Management Agency			

XII. Appendix A – Testing and Updating

a. Testing

Test Date	Test Type	Comments

b. Updating

Revision #	Date Published	Comments
2	10/31/2019	

1. Training of Dam Owner's Representative(s)

The people involved in the implementation of the EAP should receive training to ensure that they are thoroughly familiar with all elements of the plan, the available equipment, and their responsibilities and duties under the plan.

Technically qualified personnel should be trained in the incident management process, including detection, evaluation, notification, and appropriate response actions during all emergency level determinations. A sufficient number of people should be trained to ensure adequate coverage at all times.

2. Testing the EAP

Dam owners should exercise the Emergency Action Plan (EAP) in coordination with State, local and tribal emergency management authorities. Exercises promote prevention, preparedness, and response to incidents and emergencies and may also be extended to include recovery operations. Exercising also demonstrates the EAP's effectiveness in an actual situation and demonstrates the readiness levels of key personnel. Periodic exercises result in an improved EAP as lessons learned are incorporated into the updated EAP document.

Dam owners should include State, local and tribal emergency authorities in exercise activities. This includes, but is not limited to, entities listed on the Notification Flowchart. To facilitate the participation of emergency management authorities, dam safety exercises also can be coordinated with, or integrated into, other event exercise scenarios for earthquakes, floods, hurricanes, and other hazards.

Exercise Type	Brief Description	Frequency
Seminar	Review EAP with staff and local emergency responders	Annual
Drill	Review EAP with principle staff and O&M personnel	Annual
	Review of Contact List & Phone Numbers	
	• Review of Critical deficiencies and notify plan holders if	
	Level 1 exists	
	Review EAP Guidance for Determination levels	
Table Top	Drill several different scenarios, in a classroom type setting	Every 3-4
_	All plan holders should participate	years
Functional		As required
Other	Review Hazard Assessment Classification	Every 5 years
	Downstream Public Awareness Campaign	As required

Summary of Exercises

There are various types of exercises to test the plans, discussion-based exercises and operations-based exercises. Discussion-based exercises familiarize participants with current plans, policies, agreements, and procedures, or may be used to develop new plans, policies, agreements, and procedures. Operations-based exercises validate plans, policies, agreements and procedures; clarify roles and responsibilities; and identify resource gaps in an operational

environment. The seminar, drill, tabletop exercise, and functional exercise should receive the most emphasis in an EAP exercise program.

- **Seminar.** A seminar is an informal discussion designed to orient participants to new or updated plans, policies, or procedures (e.g., a seminar to review a new Evacuation Standard Operating Procedure). Seminars should include internal discussions as well as coordination with emergency management authorities and other organizations with a role in EAP implementation.
- **Drill.** A drill is a coordinated, supervised activity usually employed to test a single operation or function within a single entity, such as testing sirens and warning systems, calling suppliers, checking material on hand, and conducting a call-down drill of those listed on the Notification Flowchart.
- **Tabletop Exercise.** A tabletop exercise involves key personnel discussing simulated scenarios in an informal setting. Tabletop exercises can be used to assess plans, policies, and procedures.
- Functional Exercise. A functional exercise examines and/or validates the coordination, command, and control between various multi-agency coordination centers, such as Emergency Operation Centers (EOCs) and Joint Field Offices. A functional exercise does not involve any "boots on the ground" such as first responders or emergency officials responding to an incident in real time.

Functional exercises are a comprehensive exercise that provides the necessary verification, training, and practice to improve the EAP and the operational readiness and coordination efforts of all parties responsible for responding to emergencies at a dam.

Evaluation of Exercises

Emergency exercises and equipment tests should be evaluated orally and in writing. Any outdated telephone numbers on the Notification Flowchart, inundation maps with inaccurate information, and problems with procedures, priorities, assigned responsibilities, materials and equipment, and staff levels shall be corrected, the plan be updated and disseminated.

EAP Emergency Incident Log

Dam Name/State ID:			
Name:	171	Job Title:	
Incident Start	Date	Incident Start Time	
Incident Descr	iption	77	
Initial Incident Level	t Water		
Incident Detec	tion		
When did you learn about the	detect or e incident?		
How did you d learn about the			
LOG	ALL NOTIFIC	CATION AND ACTIVITY IN THE TABLE B	ELOW
DATE	TIME	ACTION/INCIDENT PROGRESSION	ACTION TAKEN BY

EAP Inspection Checklist

EAP Inspection Checklist	PAGE 1 of 2		
Dam Name:	Inspected By:		
	Date:		
Weather Condition:	Event Triggering Inspection:		
Reservoir Water Level:			
Inspection Item:	Deficiencies/Comments:		
NOTE ANY PRE-EXISTING CONDITIONS (OBSERVED:	AGE, LOCATION) AND CHANGES		
SPILLWAY:			
General Condition			
Cracks?			
Leaning?			
Seepage?			
Overtopping?			
Erosion?			
Other Comments?			
GATES/STOPLOG BAYS:			
General Condition			
Cracks?			
EMBANKMENT CREST:	BANKMENT CREST:		
Visual Settlement?			
Misalignment?	Misalignment?		
Cracking?			
EMBANKMENT UPSTREAM SLOPE:			
Erosion? Condition of Ground Cover?			
Settlement, depressions, bulges?	Settlement, depressions, bulges?		
Longitudinal/Vertical Cracks?	Longitudinal/Vertical Cracks?		

EAP Inspection Checklist	PAGE 2 of 2		
Dam Name:	Inspected By:		
	Date:		
EMBANKMENT DOWNSTREAM SLOPE:			
Erosion? Condition of Ground Cover?	? *		
Settlement, depressions, bulges?			
Longitudinal/Vertical Cracks?			
Soft spots or boggy areas?			
Movement at or beyond toe?			
Boils at toe?			
SEEPAGE:			
Location			
Does seepage contain fine soil particle	s?		
Approximate flow rate (garden hose, t	full blast = approx. 5 gal/min)		
RESERVOIR:			
Observed vortex?			
Sinkhole?	Sinkhole?		
ABUTMENT CONTACTS:	-		
General Condition			
Cracks?			
Leaning?			
OTHER OBSERVATIONS OR COMMENTS	i:		

EAP Emergency Termination Log

Dam Name/State ID:	County:
Dam Location:	Stream/River:
Date/Time:	
Weather Conditions:	
General Description of Emergency Situation:	
Area(s) of Dam Affected:	
Extent of Damage to Dam and Possible Causes:	
Effect on Dam Operation:	
Initial Reservoir Elevation/Time:	
Maximum Reservoir Elevation/Time:	
Final Reservoir Elevation/Time:	
Description of Area Flooded Downstream / Damage / Loss of Life:	
Justification for Termination of Dam Safety Emergency:	
Other Data and Comments:	
Report Prepared by: (Printed Name and Signature)	
Date:	

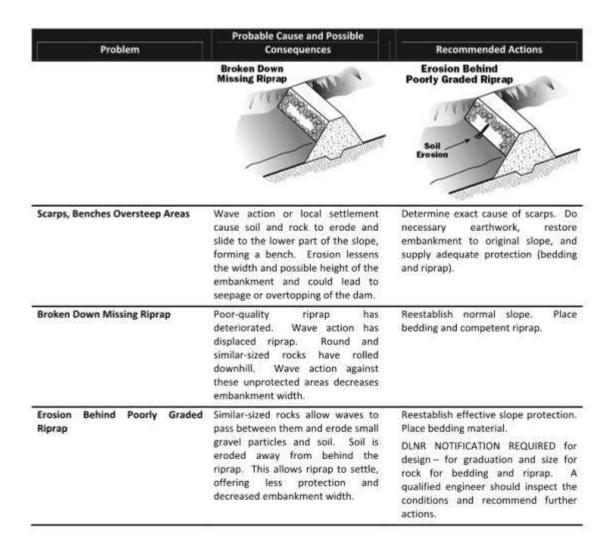
EAP Concurrence Form

EAP CONCURRENCE FORM

I have received the latest copy of the Emergency Action Plan (EAP) for the State Regulated Dam listed below, and concur with the tasks and responsibilities assigned herein for this agency in the event of an emergency and during testing of the EAP.

Dam Name:		
State Dam ID:		
EAP Revision Date:		
Signed:	Date:	
(Title, Agency Nam	1e)	

Please return completed form to the owner at their address.


XIV. Appendix C - Mitigative and Preparedness Actions

1. Inspection Guidelines & Remedial Actions

Inspection Guidelines - Upstream Slope

Problem	Probable Cause and Possible Consequences	Recommended Actions
Sinkhole	Large Cracks	Slide, Slump, or Slip
Sinkhole	Piping or internal erosion of embankment materials or foundation causes a sinkhole. The cave-in of an eroded cavern can result in a sinkhole. A small hole in the wall of an outlet pipe can develop into a sinkhole. Dirty water at the exit indicates erosion of the dam. Piping can empty a reservoir through a small hole in the wall or can lead to failure of a dam as soil pipes erode through the foundation or a pervious part of the dam. Dispersive soils are particularly susceptible to sinkholes.	Inspect other parts of the dam for seepage or more sinkholes. Check seepage and leakage outflows for dirty water. A qualified engineer should inspect the conditions, identify the exact cause of sinkholes, and recommend further actions. Depending on the location in the embankment, the reservoir may need to be drawn down. DLNR NOTIFICATION REQUIRED
Large Cracks	A portion of the embankment has moved because of loss of strength, or the foundation may have moved, causing embankment movement. Indicates onset of massive slide or settlement caused by foundation failure.	Depending on embankment involved, draw reservoir level down. A qualified engineer should inspect the condition and recommend further actions. DLNR NOTIFICATION REQUIRED
Slide, Slump, or Slip	Earth or rocks move down the slope along a slippage surface because of too steep aslope, or the foundation moves. Also, look for slide movements in reservoir basin. A series of slides can lead to obstruction of the inlet or failure of the dam.	Evaluate extent of the slide. Monitor slide. Draw the reservoir level down if safety of dam is threatened. A qualified engineer should inspect the conditions and recommend further actions. DLNR NOTIFICATION REQUIRED

Inspection Guidelines - Upstream Slope

Inspection Guidelines - Upstream Slope

Inspection Guidelines - Downstream Slope

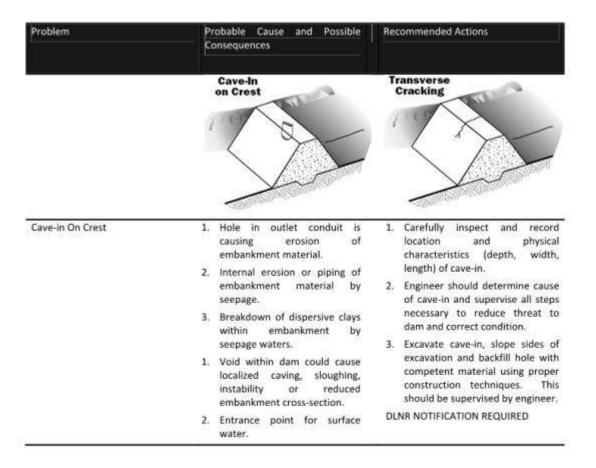
Problem	Probable Cause and Possible Consequences	Recommended Actions
Slide/Slough	Transverse Cracking	Cave In/ Collapse
Slide or Slough	Lack loss of strength of embankment material. Loss of strength can be attributed to infiltration of water into the embankment or loss of support by the foundation. Massive slide cuts through crest or upstream slope reducing freeboard and cross-section. Structural collapse or overtopping can result	Measure extent and displacement of slide. If continued movement is seen, begin lowering water level until movement stops. Have a qualified engineer inspect the condition and recommend further action. DLNR NOTIFICATION REQUIRED
Transverse Cracking	Uneven movement between adjacent segments of the embankment. Deformation caused by structural stressor instability. Can provide a path for seepage through the embankment cross-	 Inspect crack and carefully record crack location, length, depth, width and other pertinent physical features. Stake out limits of cracking. Engineer should determine cause of cracking and supervise all steps necessary to reduce danger to dam and correct condition.
	section. 2. Provides local area of low strength within embankment. Future structural movement, deformation or failure could begin. 3 Provides entrance point for surface runoff to enter embankment	Excavate slope along crack to a point below the bottom of the crack. Then, backfill excavation using competent material and correct construction techniques. This will seal the crack against seepage and surface runoff. This should be supervised by engineer. Continue to monitor crest routinely for evidence of future cracking. DLNR NOTIFICATION REQUIRED

Inspection Guidelines - Downstream Slope

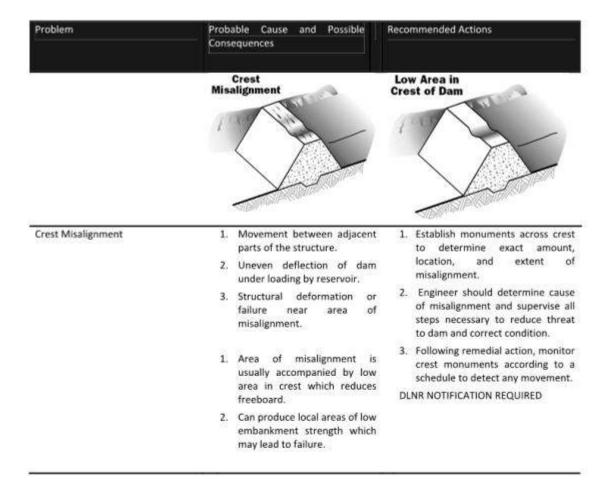
$\label{eq:confidence} \textbf{CONFIDENTIAL} - \textbf{For Official Use Only}$

Problem	Probable Cause and Possible Consequences	Recommended Actions
Cave-in or Collapse	Lack of adequate compaction.	Have a qualified engineer inspect
cave in or conapse	Piping through embankment or foundation.	the condition and recommend further action.
	3. Presence of dispersive soils.	DLNR NOTIFICATION REQUIRED
	Indicates possible washout of embankment.	
Longitudinal Cracking	Slump (Localized Condition)	Erosion
Longitudinal Cracking	Drying and shrinkage of surface material.	If cracks are from drying, dress area with well-compacted material
	Downstream movement or settlement of embankment.	to keep surface water out and natural moisture in.
		2. If cracks are extensive, a qualified
	 Can be an early warning of a potential slide. 	engineer should inspect the condition and recommend further actions.
	Shrinkage cracks allow water to enter the embankment and freezing will further crack the embankment.	DLNR NOTIFICATION REQUIRED
	 Settlement or slide, showing loss of strength in embankment that can lead to failure. 	
Slump (localized condition)	Preceded by erosion undercutting a	Inspect area for seepage.
	portion of the slope. Can also be found on steep slopes. Can expose	2. Monitor for progressive failure.
	impervious zone to erosion and lead to additional slumps.	 Have a qualified engineer inspect the condition and recommend further action.

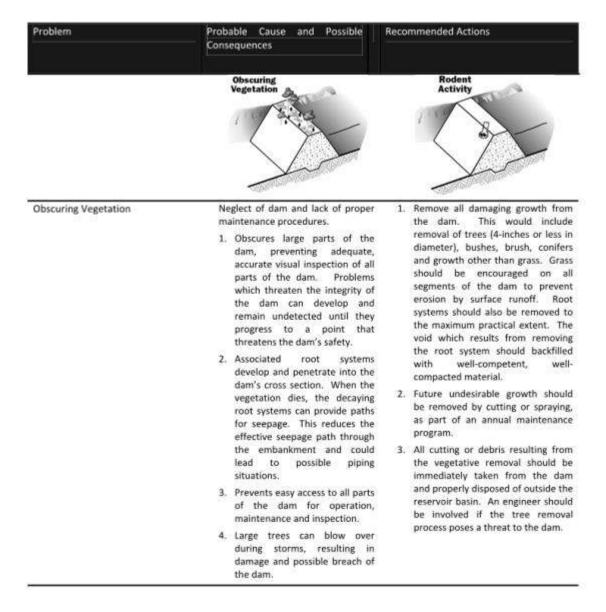
Inspection Guidelines - Downstream Slope

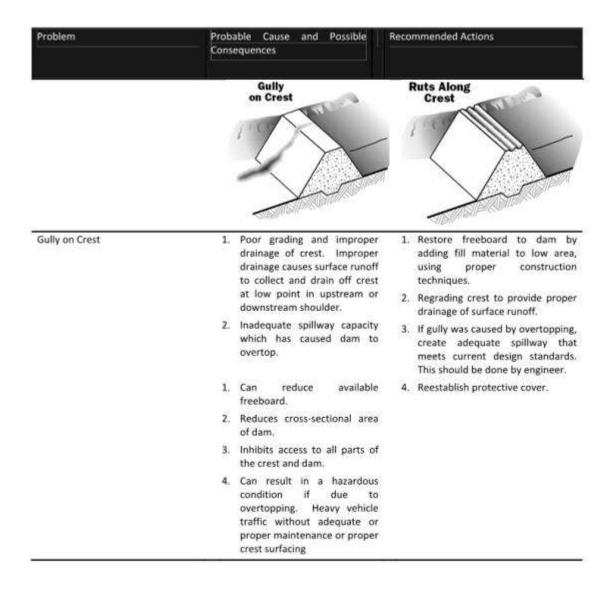

Problem	Probable Cause and Possible Consequences	Recommended Actions
Erosion	Water from intense rainstorms or snowmelt carries surface material down the slope, resulting in continuous troughs. Can be hazardous if allowed to continue. Erosion can lead to eventual deterioration of the downstream slope and failure of the structure.	 The preferred method to protect eroded areas is rock or riprap. Reestablishing protective grasses can be adequate if the problem is detected early.
	Trees/ Obscuring Brush	Livestock/ Cattle Traffic
Trees, Obscuring Brush	Natural vegetation in area. Large tree roots can create seepage paths. Large trees can blow over during storms and damage dam or cause breach. Bushes can obscure visual inspection.	1. Remove all brush and trees less than 4" in diameter. Larger trees may be allowed to stay until they die. At that time, the tree, with its root system, should be removed and the void properly filled with compacted soil. 2. Control vegetation on the
Livestock (such as cattle) Traffic	Excessive travel by livestock especially harmful to slope when	embankment that obscures visual inspection. 1. Fence livestock outside embankment area.
	wet. Creates areas bare of erosion protection and causes erosion channels. Allows water to stand.	Repair erosion protection, i.e. riprap, grass.

Inspection Guidelines - Downstream Slope

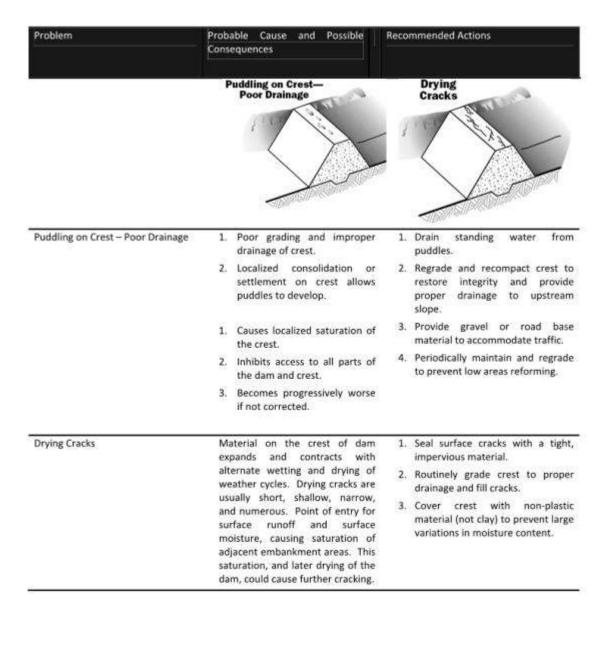

Inspection Guidelines - Crest

Problem	Probable Cause and Possible Consequences Longitudinal Crack	Recommended Actions Vertical Displacement
Longitudinal Crack	1. Uneven settlement between adjacent sections or zones within the embankment. 2. Foundation failure causing loss of support to embankment. 3. Initial stages of embankment slide. 1. Creates local area of low strength within an embankment. Could be the point of initiation of future structural movement, deformation or failure. 2. Provides entrance point for surface runoff into embankment, allowing saturation of adjacent embankment area and possible lubrication which could lead to localized failure.	Inspect crack and carefully record location, length, depth, width, alignment, and other pertinent physical features. Immediately stake out limits of cracking. Monitor frequently. Engineer should determine cause of cracking and supervise steps necessary to reduce danger to dam and correct condition. Effectively seal the cracks at the crest surface to prevent infiltration by surface water. Continue to routinely monitor crest for evidence of further cracking.


Problem	Probable Cause and Possible Consequences	Recommended Actions
Vertical Displacement	 Vertical movement between adjacent sections of the embankment. 	 Carefully inspect displacement and record its location, vertical and horizontal displacement, length and
	Structural deformation or failure caused by structure stress or instability, or by failure of the	other physical features. Immediately stake out limits of cracking.
	foundation.	Engineer should determine cause or displacement and supervise all steps
	 Creates local area of low strength within embankment which could cause future movement. 	necessary to reduce danger to dan and correct condition.
	Leads to structural instability or failure.	 Excavate area to the bottom of the displacement. Backfill excavation using competent material and
	Creates entrance point for surface water that could further	correct construction techniques under supervision of engineer.
	lubricate failure plane.	4. Continue to monitor areas routinely
	 Reduces available embankment cross-section. 	for evidence of cracking o movement.
		DLNR NOTIFICATION REQUIRED

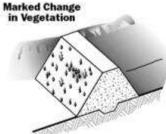


Problem	Probable Cause and Possible Consequences	Recommended Actions
Transverse Cracking	1. Uneven movement between adjacent segments of the embankment. 2. Deformation caused by structural stressor instability. 1. Can provide a path for seepage through the embankment cross-section. 2. Provides local area of low strength within embankment. Future structural movement, deformation or failure could begin. 3. Provides entrance point for surface runoff to enter embankment.	Inspect crack and carefully record crack location, length, depth, width and other pertinent physical features. Stake out limits of cracking. Engineer should determine cause of cracking and supervise all steps necessary to reduce danger to dam and correct condition. Excavate crest along crack to a point below the bottom of the crack. Then backfilling excavation using competent material and correct construction techniques. This will seal the crack against seepage and surface runoff. This should be supervised by engineer. Continue to monitor crest routinely for evidence of future cracking.
		DLNR NOTIFICATION REQUIRED



Problem	Probable Cause and Possible Re Consequences	ecommended Actions
Low Area in Crest	 Excessive settlement in the embankment or foundation directly beneath the low area in the crest, 	 Establish monuments along length of crest to determine exact amount, location, and extent of settlement in crest.
	Internal erosion of embankment material. Foundation spreading to upstream and/or downstream direction.	 Engineer should determine cause of low area and supervise all steps necessary to reduce possible threat to the dam and correct condition.
	 Prolonged wind erosion of crest area. Improper final grading following construction. Reduces freeboard available to pass flood flows safely through spillway. 	Reestablish uniform crest elevation over crest length by filling in low area using proper construction techniques. This should be supervised by engineer. Reestablish monuments across crest of dam and routinely monitor monuments to detect any settlement.

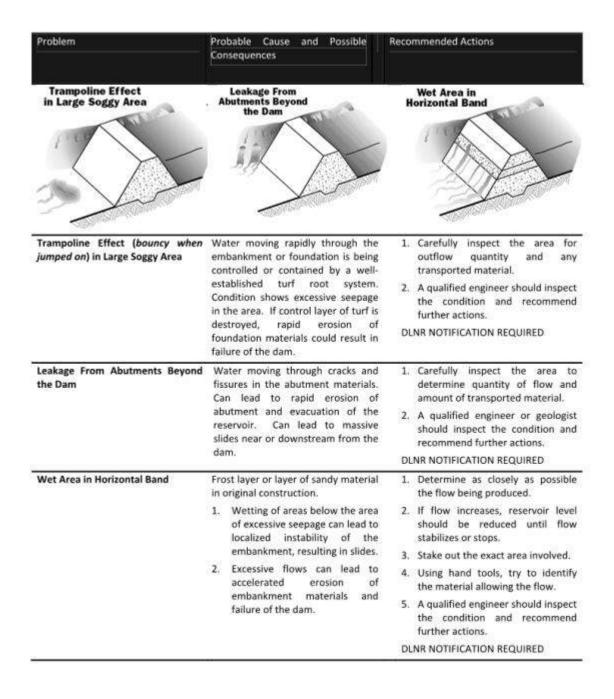
Problem	Probable Cause and Possible Consequences	Recommended Actions
Ruts Along Crest	Inhibits easy access to all parts of crest.	Drain standing water from ruts. Regrade and recompact crest to.
	 Allows continued development of rutting. 	restore integrity and provide proper drainage to upstream
	 Allows standing water to collect and saturate crest of dam. 	 Provide gravel or road base material to accommodate traffic.
	 Operating and maintenance vehicles can get stuck. 	 Periodically maintain and regrade to prevent ruts reforming.


Inspection Guidelines - Embankment Seepage Areas

Probable Cause and Recommended Actions Problem **Possible Consequences** Excessive Quantity and/or Muddy Water Exiting From a Point Stream of Water Exiting Through Cracks Near the Crest Excessive Quantity and/or Muddy Water has created an open Begin measuring outflow quantity 1 Water Exiting From a Point pathway, channel or pipe and establishing whether water is getting muddier, staying the same through the dam. The water is eroding and or clearing up. carrying embankment material. 2. If quantity of flow is increasing, 2. Large amounts of water have water level in reservoir should be accumulated in the downstream lowered until flow stabilizes or slope. Water and embankment stops. materials are exiting at one 3. Search for opening on upstream point. Surface agitation may be side and plug if possible. causing the muddy water. 4. A qualified engineer should inspect 3. Poor construction has allowed the condition and recommend water to create an open further actions to be taken. pathway or pipe through the DLNR NOTIFICATION REQUIRED embankment. 1. Continued flows can saturate parts of the embankment and lead to slides in the area. 2. Continued flows can further erode embankment materials and lead to failure of the dam.

Problem	Probable Cause and Possible Consequences	Recommended Actions
Stream of Water Exiting Through Cracks Near the Crest	Severe drying has caused shrinkage of embankment material. Settlement in the embankment or foundation is causing the transverse cracks. Flow through the crack can cause failure of the dam.	Plug upstream side of crack to stop flow. Lower water level in the reservoir should be lowered until below level of cracks. A qualified engineer should inspect the condition and recommend further actions. DLNR NOTIFICATION REQUIRED
	Exiting as a Boil in the Foundation	Abutment Contact
Seepage Water Exiting as a Boil in the Foundation	Some part of the foundation material is supplying a flow path. This could be caused by a sand or gravel layer in the foundation. Increased flows can lead to erosion of the foundation and failure of the dam.	1. Examine the boil for transportation of foundation materials. 2. If soil particles are moving downstream, sandbags or earth should be used to create a dike around the boil. The pressures created by the water level with the dike may control flow velocities and temporarily prevent further erosion. 3. If erosion is becoming greater, the

Problem		Probable Cause and Possible Consequences		1	Recommended Actions		
Seepage Contact	Exiting	at	Abutment	2.	Water flowing through pathways in the abutment. Water flowing through the embankment. Can lead to erosion of embankment materials and failure of the dam.	3. 4.	Study leakage area to determine quantity of flow and extent of saturation. Inspect daily for developing slides. Water level in reservoir may need to be lowered to assure the safety of the embankment. A qualified engineer should inspect the condition and recommend further actions. NR NOTIFICATION REQUIRED


Large Area Wet or Producing Flow

A seepage path has developed through the abutment or embankment materials and failure of the dam can occur.

- Increased flows could lead to erosion of embankment material and failure of the dam.
- Saturation of the embankment can lead to local slides which could cause failure of the dam.
- Stake out the saturated area and monitor for growth or shrinking.
- Measure any outflows as accurately as possible.
- Reservoir level may need to be lowered if saturated areas grow at a fixed storage level or if flow increases.
- A qualified engineer should inspect the condition and recommend further actions.

DLNR NOTIFICATION REQUIRED

Problem	Probable Cause and Possible Consequences	Recommended Actions
Marked Change in Vegetation	1. Embankment materials are supplying flow paths. 2. Natural seeding by wind. 3. Change in seed type during early post-construction seeding. Can show a saturated area.	Use probe and shovel to establish if the materials in this area are wetter than surrounding areas. If area shows wetness, when surrounding areas are dry or drier, a qualified engineer should inspect the condition and recommend further actions. DLNR NOTIFICATION REQUIRED
Bulge in Large Wet Area	Downstream embankment materials have begun to move. Failure of the embankment resulting from massive sliding can follow these early movements.	Compare embankment cross- section to the end of construction condition to see if observed condition may reflect end of construction. Stake out affected area and
		accurately measure outflow. 3. A qualified engineer should inspect the condition and recommend further actions. DLNR NOTIFICATION REQUIRED

$\label{lem:confidence} \textbf{CONFIDENTIAL}-\textbf{For Official Use Only}$

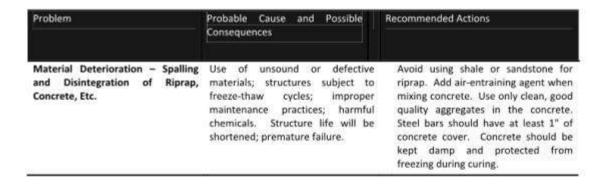
Inspection Guidelines - Concrete Upstream Slope

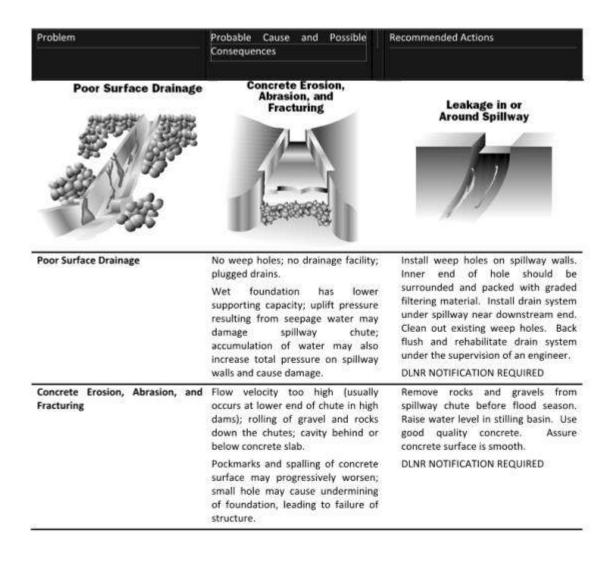
Large Increase in Flow or Sediment in Drain Outfall	Probable Cause and Possible Consequences Cracked Deteriorated Concrete Face	Recommended Actions Cracks Due to Drying
Large Increase in Flow or Sediment in Drain Outfall	Shortened seepage path or increased storage levels. 1. Higher velocity flows can cause erosion of drain, then embankment materials. 2. Can lead to piping failure.	Accurately measure outflow quantity and determine amount of increase over previous flow. Collect jar samples to compare turbidity. If either quantity or turbidity has increased by 25%, a qualified engineer should evaluate the condition and recommend further actions. DLNR NOTIFICATION REQUIRED
Cracked Deteriorated Concrete Face	Concrete deteriorated from weathering. Joint filler deteriorated or displaced. Soil is eroded behind the face and caverns can be formed. Unsupported sections of concrete crack. Ice action may displace concrete.	Determine cause. Either patch with grout or contact engineer for permanent repair method. If damage is extensive, a qualified engineer should inspect the condition and recommend further actions. DLNR NOTIFICATION REQUIRED
Cracks Due to Drying	Soil loses its moisture and shrinks, causing cracks. Note: Usually limited to crest and downstream slope. Heavy rains can fill cracks and cause small parts of embankment to move along internal slip surface.	Monitor cracks for increases in width, depth, or length. A qualified engineer should inspect condition and recommend further actions. DLNR NOTIFICATION REQUIRED

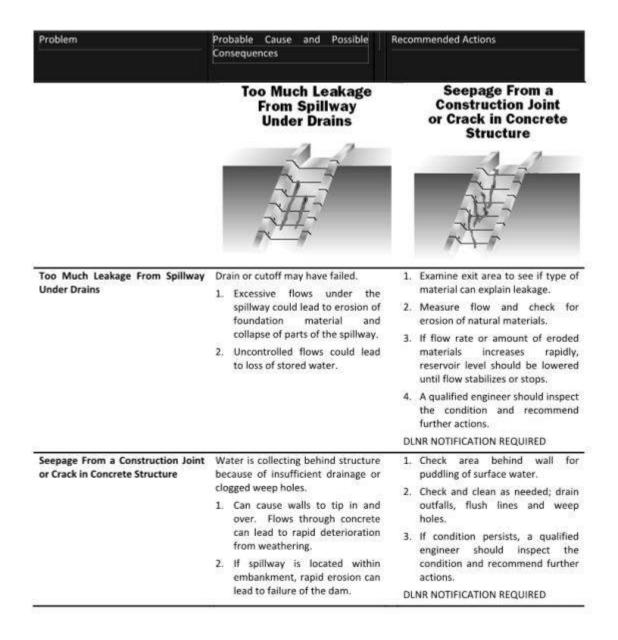
Inspection Guidelines - Concrete Upstream Slope

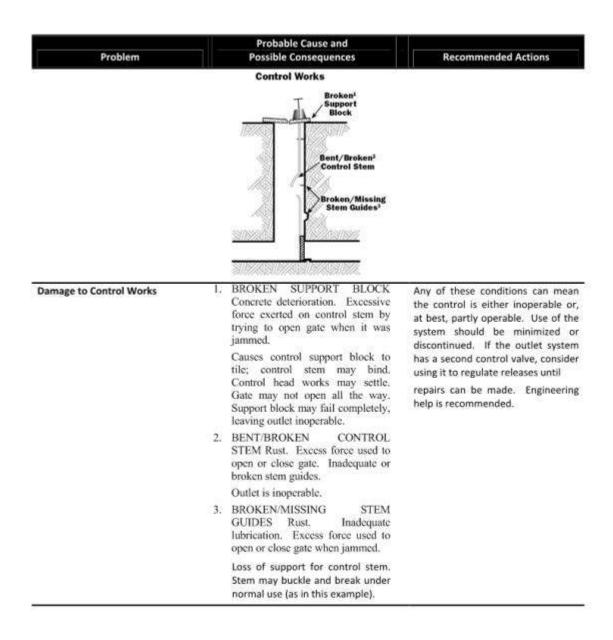
Inspection Guidelines - Spillways

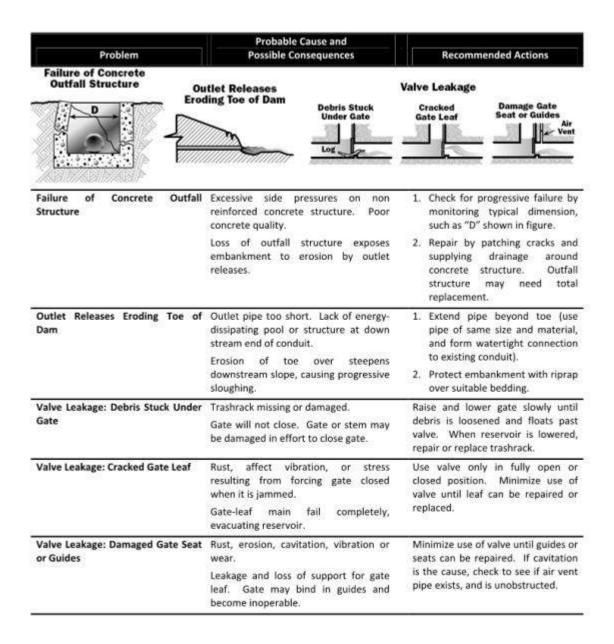
Problem	Probable Cause and Possible Consequences	Recommended Actions
Excessive Vegetation or Debris in Channel	Erosion Channels	Excessive Erosion in Earth-Slide Causes Concentrated Flows
Excessive Vegetation or Debris in Channel	Accumulation of slide materials, dead trees, excessive vegetative growth, etc., in spillway channel. Reduced discharge capacity; overflow of spillway, overcropping of dam. Prolonged overtopping can cause failure of the dam.	Clean out debris periodically; control vegetative growth in spillway channel. Install log boom in front of spillway entrance to intercept debris.
Erosion Channels	Surface runoff from intense rainstorms or flow from spillway carries surface material down the slope, resulting in continuous troughs. Livestock traffic creates gullies where flow concentrates varies. Unabated erosion can lead to slides, slumps or slips which can result in reduced spillway capacity. Inadequate spillway capacity can lead to embankment overtopping and result in dam failure.	Photograph condition. Repair damaged areas by replacing eroded material with compacted fill. Protect areas against future erosion by installing suitable rock riprap. Revegetate area if appropriate. Bring condition to the attention of the engineer during next inspection.

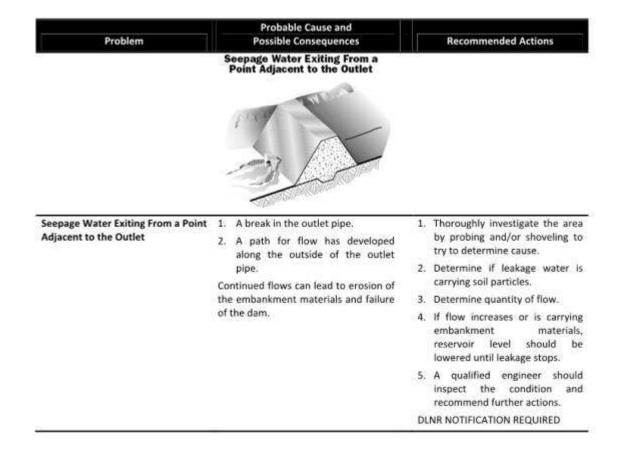

$\label{eq:confidence} \textbf{CONFIDENTIAL} - \textbf{For Official Use Only}$


Problem	Probable Cause and Possible Consequences	Recommended Actions
Excessive Erosion in Earth-Slide Causes Concentrated Flows	Discharge velocity too high; bottom and slope material loose or deteriorated; channel and bank slopes too steep; bare soil unprotected; poor construction protective surface failed. Disturbed flow pattern; loss of material, increased sediment load downstream, collapse of banks; failure of spillway; can lead to rapid evacuation of the reservoir through the severely eroded spillway.	Minimize flow velocity by proper design. Use sound material. Keep channel and bank slopes mild. Encourage growth of grass on soil surface. Construct smooth and well-compacted surfaces. Protect surface with riprap, asphalt or concrete. Repair eroded portion using sound construction practices.


Problem	Probable Cause and Possible Consequences	Recommended Actions
Large Cracks	Construction defect; local concentrate distress; local material deterioration; foundation failure, excessive backfill pressure. Disturbance in flow patterns; erosion of foundation and backfill; eventual collapse of structure.	patching. Surrounding areas should be cleaned


Problem	Probable Cause and Possible Consequences	Recommended Actions
Leakage in or Around Spillway	Cracks and joints in geologic formation at spillway are	Examine exit area to see if type of material can explain leakage.
	permitting seepage. 2. Gravel or sand layers at spillway	Measure flow quantity and check for erosion of natural materials.
	are permitting seepage.	 If flow rate or amount of eroded materials increases rapidly,
	 Could lead to excessive loss of stored water. 	reservoir level should be lowered until flow stabilizes or stops.
	Could lead to a progressive failure if velocities are high enough to cause erosion of natural materials.	 A qualified engineer should inspect the condition and recommend further actions. DLNR NOTIFICATION REQUIRED




$\label{lem:confidence} \textbf{CONFIDENTIAL}-\textbf{For Official Use Only}$

Inspection Guidelines - Inlets, Outlets, and Drains

Problem	Probable Cause and Possible Consequences	Recommended Actions
	Outlet Pipe Damage	XW
Crack	Hole	Joint Offset
Outlet Pipe Damage: Crack	Settlement; impact. Excessive seepage, possible internal erosion.	Check for evidence of water eithe entering or exiting pipe at crack hole, etc.
Outlet Pipe Damage: Hole	Rust (steel pipe); erosion (concrete pipe); cavitation.	Tap pipe in vicinity of damage area, listening for hollow soun which indicates a void has forme along the outside of the conduit.
Outlet Pipe Damage: Joint Offset	Settlement or poor construction practice. Provides passageway for water or exit or enter pipe, resulting in erosion of internal materials of the dam.	If a progressive failure is suspected request engineering advice.

2. Hyperlink to Internet Quicklinks (DOC)

http://dlnreng.hawaii.gov/dam/forms/emergency-action-plan/

February 2016 – Links to Information for the Hawaiian Islands

Weather - NOAA Satellites (6 Hour Loops)

http://www.ssd.noaa.gov/goes/west/hi/flash-rb.html (Hawaiian Islands)

http://www.ssd.noaa.gov/goes/west/tpac/flash-rb.html (Tropical Pacific)

http://www.ssd.noaa.gov/goes/west/nepac/flash-rb.html (Northeast Pacific)

http://weather.hawaii.edu/satellite/satanim.cgi?res=4km&chnl=ir&domain=hus&size=large&period=2880&in

cr=30&rr=900&satplat=goeswest&overlay=off&animtype=flash (Northeast Pacific - 48 Hours)

TV Weather

http://khon2.com/weather/radar/

http://www.kitv.com/weather

http://www.hawaiinewsnow.com/category/202017/weather

Central Pacific Hurricane Center

http://www.prh.noaa.gov/hnl/cphc/?gtwo

Hawaii Flash Flood Response Tool

http://hawaiipacioosapplication-1672159924.us-east-1.elb.amazonaws.com/

USGS Data for Hawaii

http://waterdata.usgs.gov/hi/nwis/current/?type=lake&group_key=county_cd (Reservoir Levels)

http://waterdata.usgs.gov/hi/nwis/current/?type=all&group_key=county_cd (All Real Time Gages)

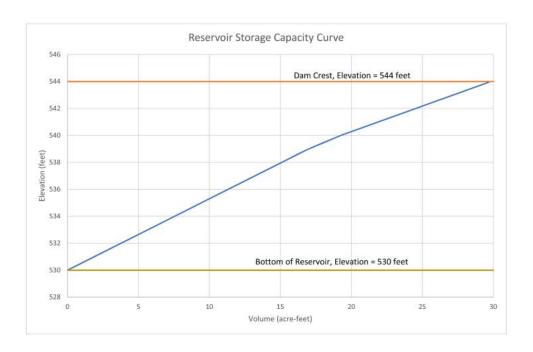
http://hvo.wr.usgs.gov/seismic/volcweb/earthquakes/ (Earthquakes)

http://waterwatch.usgs.gov/?m=real&r=hi&w=map (Stream Flow & Reservoir Level Data Map)

State of Hawaii Dam Inventory User Login

http://132.160.239.52/daminventory/login.aspx

Pacific Disaster Center Home Page


http://www.pdc.org/

Hawaii State Civil Defense (Hawaii Emergency Management Agency) Home Page

http://www.scd.hawaii.gov/

XV. Appendix D – Dam Owner Additional Information

1. Maunaolu Storage Capacity Curve

Volume
(acre feet)
0.00
3.77
7.55
11.32
15.09
19.26
24.54
29.82

Values from Gannett Fleming, Drainage Study Technical Memorandum Maunaolu Reservoir Mākaha, Oahu, Hawaii , 2019.

XVI. Appendix E - Terms & Conditions

Disclaimers:

The Department of Land and Natural Resources, Engineering Division (DLNR) has developed this DLNR Emergency Action Plan (EAP) template based on guidance from FEMA Publication 64. These guidelines help dam owners and emergency management agencies effectively develop, prepare and implement emergency actions should there be an incident at a dam facility. The use of this DLNR EAP template is highly recommended, however not mandatory.

Dam Owners are responsible for the Production, Distribution, Updating/Maintenance, and Testing of their facility EAPs, per HAR 13-190.1. Each owner shall ensure that content entered into the plan is specific for each facility. The successful use of this plan relies on the inspection and notification event triggers in the plan.

There are many factors and scenarios for a dam failure, and several assumptions were made in order to run the models. DLNR assisted with development of dam break modeling and potential inundation mapping using a sunny day dam break scenario. Dam failure evacuation maps were then developed by the Counties. Dam Owner's may provide alternative dam break models to the County Emergency Management / Civil Defense Agencies to update the dam failure evacuation maps. Upon developing revisions or modifications to the evacuation maps, dam owners shall submit a digital copy to DLNR for inclusion on this EAP site.

The use of this template is provided as a guidance to initiate an EAP. DLNR is not responsible for errors, deficiency or omissions within the plan. Any use, disclosure, or distribution by unintended recipients is prohibited. Should an error be found, please notify DLNR as soon as possible for a change to be posted.