

WATER FOR LIFE

Meeting Objectives

- Receive updates regarding the BWS
- Reach consensus on the draft financial policies and make a recommendation for the Board's consideration
- Examine pipeline replacement scenarios, including anticipated breaks and costs, and provide recommendation on preferred scenario
- Learn about the existing water rates and structure and how funds are used

Slide 6

Proposed Updated Policy Framework

- 1. Fund balance / working capital
 - Amount of Cash on Hand
- 2. Purposes and uses of debt
 - When and Why to Borrow
- 3. Debt to net assets ratio
 - How Much can be Borrowed
- 4. Debt service coverage ratio
 - Ability to Make Loan Payments

1. Fund Balance / Working Capital (Amount of Cash on Hand)

Current

- · Unrestricted fund balance = 45 days of operating expenses
- · Includes annual debt service
- · Allows setting aside net revenues that exceed budget for general contingencies (no limits)

Straw Man

- . Target 180 days, never less than 60 days
- Exclude annual debt service (for consistency)
- Achieve gradually over 10 years to minimize rate impacts
 Supplement cash with other cost-effective financial tools, e.g. insurance, lines of credit, commercial paper
- >180 days may be re-programmed to fund CIP

2. Purposes and Uses of Debt (When and Why to Borrow)

Current

- Select most economical financing source
 Term of debt limited to life of facility it is funding
 Cannot fund operations & maintenance

- No more than 20% variable rate debt
 Pay-as-you-go funding "...in a range in conjunction with debt to net assets ratio."

Straw Man

- Select most economical financing source
 Term of debt limited to life of facility it is funding
- Cannot fund operations & maintenance
- No more than 20% variable rate debt

3. Debt to Net Assets Ratio (How Much Can be Borrowed)

Current

· 40% to 50% debt to net assets ratio

Straw Man

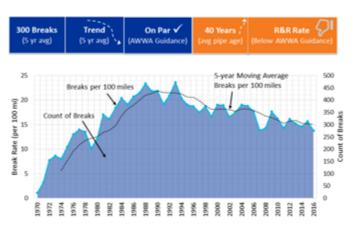
No more than 50% debt to net assets ratio

4. Debt Service Coverage Ratio (Ability to Make Loan Payments)

Current

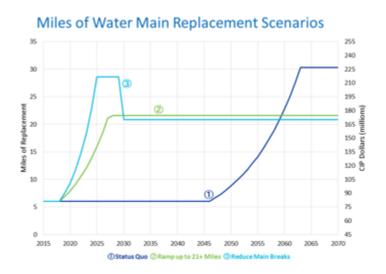

- 1.6x senior annual debt service
 1.3x junior annual debt service

Straw Man


- 1.7x senior annual debt service
 1.6x total annual debt service "all in"

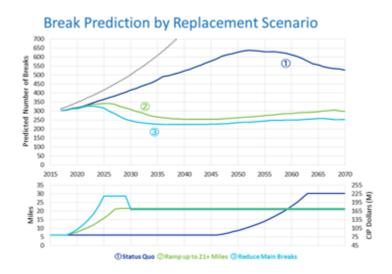
- We are looking for Stakeholder input on the preferred scenario to carry forward into the financial planning process, and ultimately to use as a basis for establishing future water rates.
- This builds upon the input the Stakeholders provided several meetings back regarding the range of alternatives to further evaluate.
- This meeting presented the results of that further evaluation.

Current Outlook


Goal of Projections

- Forecast main breaks for various financial planning scenarios
- Understand the effect of pipeline replacement rate (and thus CIP \$) on break rate
- Utilize BWS data rather than industry-estimated design lives
- → How effective is "buying down" the break rate?

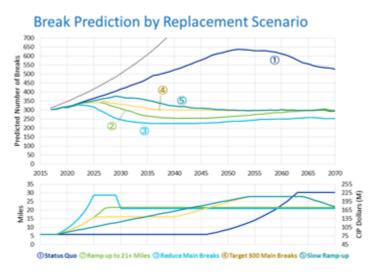
• "Design life" is the amount of time something is designed to last, and is affected by things such as choice of materials, protective coatings, etc.

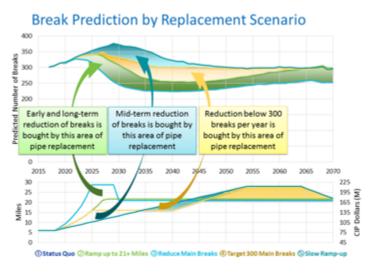

Approach to Projecting Break Rate

- Utilize break predictions for each individual pipe section from the BWS statistical break model
 - Forecast expected breaks out 60 years
- Each year "replace" [X] miles of old pipe (per Scenario)
 - Replace pipes in order of risk
- For each mile of pipe replaced, a similar length of new pipe is added that reflects the averaged system-wide break characteristics

This analysis supersedes what was shown previously.

- Scenario 1 is the status quo, about 6 miles of pipe replacement per year.
- Scenario 2 replaces 21+ miles per year, a rate of about 1% per year, or the whole system in about 100 years, which is the expected lifespan.
- Scenario 3 rapidly increases the rate of pipe replaced each year with the expectation of reducing future main breaks.


- Scenario 3 was expected to reduce main breaks.
- It was a pleasant surprise that Scenario 2 reduced breaks in the medium- to long-term as well.

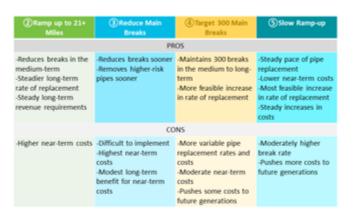


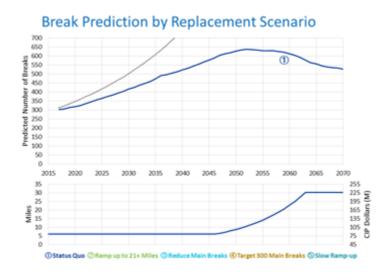
- Following the results above, two additional scenarios were developed to better refine the understanding of the balance between the rate of pipe replacement, which results in rate increases, and the expected number of main breaks.
- Scenario 4 varies the rate of pipe replacement in an attempt to maintain the current rate of about 300 breaks per year.

• Scenario 5 takes a more gradual approach to see if the same breaks rate could be achieved for lower cost.

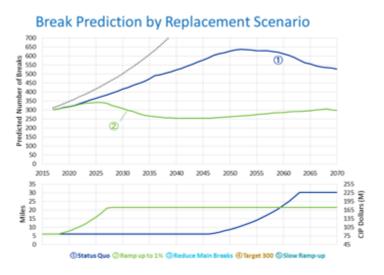
Comparison (2017-2070)

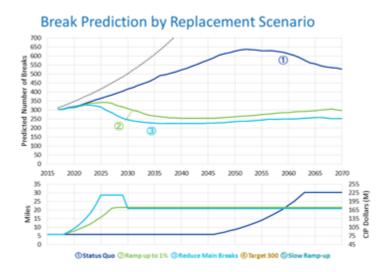
	②Ramp up to 21+ Miles	3 Reduce Main Breaks	④ Target 300 Breaks	⑤Slow Ramp-up
Total Breaks	15,545	13,778	16,647	17,339
Miles of Pipe Replaced	1,057	1,094	1,067	1,060
Avg. Breaks per Year	293	260	314	327
Year 200 miles is reached	2030	2028	2032	2034

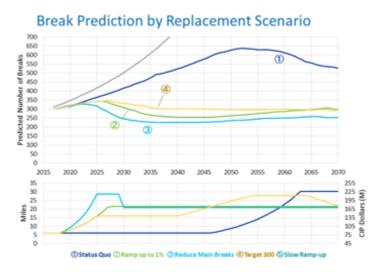

- Scenarios 2, 4, and 5 result in similar totals of miles of required pipe replacement (and thus total cost), but on different timeframes.
- As a result, the impacts on the revenue requirement, especially in the near-term, are very different for each.
- In general, it costs about \$150k to avoid a break.

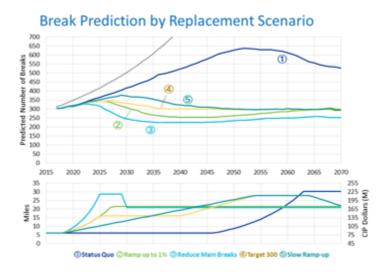

Near-Term Revenue Requirement Impacts of **Different CIP Scenarios**

	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	Cumulative Total
⑤Slow Ramp-up	0	0	0	2.5	0	0	3.0	3.0	0.5	0	0	9.3%
④ Target 300 Main Breaks	0	0	0	4.0	2.25	2.5	3.0	3.0	0.5	0	0	16.2%
②Ramp up to 21+ Miles	0	0	0	4.0	2.25	2.5	3.0	3.0	1.0	1.0	1.0	19.1%
(3) Reduce Main Breaks	0	0	0	7.0	3.5	3.5	4.0	4.5	6.5	6.5	7.0	51.2%


- Only shows changes resulting from pipe replacement
 Compared to status quo CIP of \$80 million escalated by CPI


Comparison (2017-2070)





• Scenario 4 is the status quo level of service for breaks, but not risk.

This presentation was deferred to the May 2017 meeting.

Other Items

 Next Meeting Thursday, May 18, 2017 4:00 – 6:30 pm

House of Representatives Conference Room 309 State Capitol

